Rewriting Systems and Discrete Morse Theory

Ken Brown

Cornell University

March 2, 2013

Outline

Review of Discrete Morse Theory

Rewriting Systems and Normal Forms

Collapsing the Classifying Space

Outline

Review of Discrete Morse Theory

Rewriting Systems and Normal Forms

Collapsing the Classifying Space

 (Brown–Geoghegan, 1984) Had cell complex X with one vertex and infinitely many cells in each positive dimension.
 "Collapsed" it to quotient complex with only two cells in each positive dimension.

- (Brown–Geoghegan, 1984) Had cell complex X with one vertex and infinitely many cells in each positive dimension.
 "Collapsed" it to quotient complex with only two cells in each positive dimension.
- (Brown, 1989) Formalized the method ("collapsing scheme"), applied it to groups with a rewriting system.

- (Brown–Geoghegan, 1984) Had cell complex X with one vertex and infinitely many cells in each positive dimension.
 "Collapsed" it to quotient complex with only two cells in each positive dimension.
- (Brown, 1989) Formalized the method ("collapsing scheme"), applied it to groups with a rewriting system.
- (Forman, 1995) Developed discrete Morse theory, motivated by differential topology.

- (Brown–Geoghegan, 1984) Had cell complex X with one vertex and infinitely many cells in each positive dimension.
 "Collapsed" it to quotient complex with only two cells in each positive dimension.
- (Brown, 1989) Formalized the method ("collapsing scheme"), applied it to groups with a rewriting system.
- (Forman, 1995) Developed discrete Morse theory, motivated by differential topology.
- (Chari, 2000) Formulated discrete Morse theory combinatorially in terms of "Morse matchings"; these are the same as collapsing schemes.

Given a cell complex X, try to "collapse" it to a homotopy-equivalent quotient complex Y with fewer cells.

Given a cell complex X, try to "collapse" it to a homotopy-equivalent quotient complex Y with fewer cells.

The Method

Classify the cells into three types:

- critical
- redundant
- collapsible

with a bijection ("Morse matching") between the redundant *n*-cells and the collapsible (n + 1)-cells for each *n*.

Given a cell complex X, try to "collapse" it to a homotopy-equivalent quotient complex Y with fewer cells.

The Method

Classify the cells into three types:

- critical
- redundant
- collapsible

with a bijection ("Morse matching") between the redundant *n*-cells and the collapsible (n + 1)-cells for each *n*.

 $\bullet \ \tau \leftrightarrow \sigma \implies \tau < \sigma$

Given a cell complex X, try to "collapse" it to a homotopy-equivalent quotient complex Y with fewer cells.

The Method

Classify the cells into three types:

- critical
- redundant
- collapsible

with a bijection ("Morse matching") between the redundant *n*-cells and the collapsible (n + 1)-cells for each *n*.

 $\bullet \ \tau \leftrightarrow \sigma \implies \tau < \sigma$

Build X in steps, where σ is adjoined along with τ, and all faces of σ other than τ are already present.

Given a cell complex X, try to "collapse" it to a homotopy-equivalent quotient complex Y with fewer cells.

The Method

Classify the cells into three types:

- critical
- redundant
- collapsible

with a bijection ("Morse matching") between the redundant *n*-cells and the collapsible (n + 1)-cells for each *n*.

 $\bullet \ \tau \leftrightarrow \sigma \implies \tau < \sigma$

- Build X in steps, where σ is adjoined along with τ, and all faces of σ other than τ are already present.
- Homotopy type changes only when we adjoin a critical cell.

Given a cell complex X, try to "collapse" it to a homotopy-equivalent quotient complex Y with fewer cells.

The Method

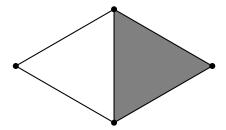
Classify the cells into three types:

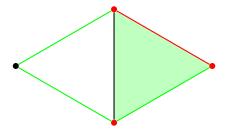
- critical
- redundant
- collapsible

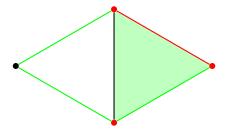
with a bijection ("Morse matching") between the redundant *n*-cells and the collapsible (n + 1)-cells for each *n*.

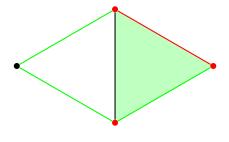
 $\bullet \ \tau \leftrightarrow \sigma \implies \tau < \sigma$

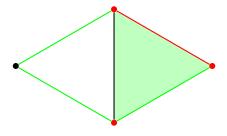
- Build X in steps, where σ is adjoined along with τ, and all faces of σ other than τ are already present.
- Homotopy type changes only when we adjoin a critical cell.
- $X \simeq Y$, where Y has one cell for each critical cell of X.

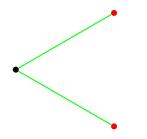


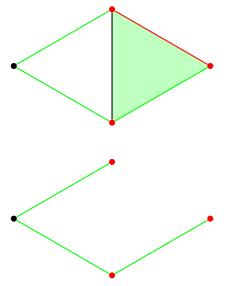




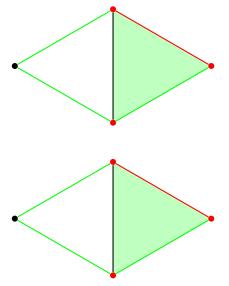


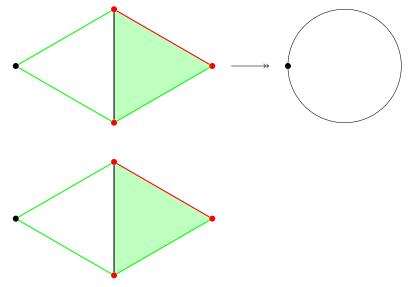


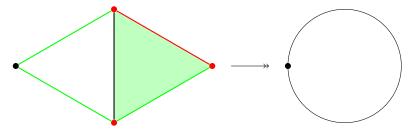


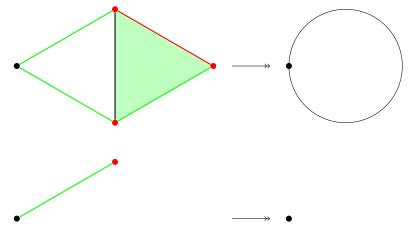


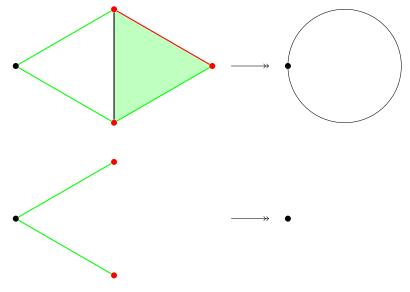


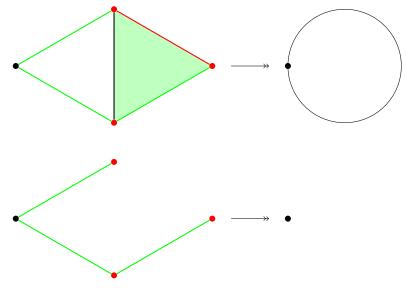


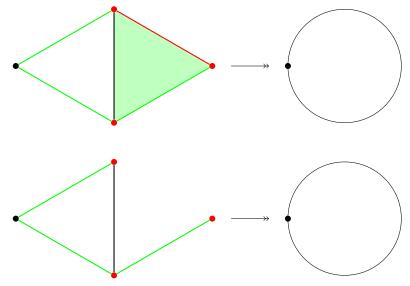


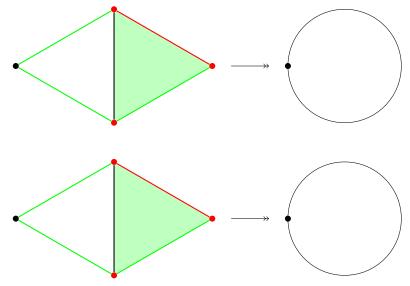












- ► X: boundary of 3-simplex
- Vertices: 1, 2, 3, 4
- Simplices: nonempty proper subsets
- ▶ Match by inserting/deleting vertex 1 when possible.

X collapses to a 2-sphere with one vertex and one 2-cell.

Morse Matchings: Summary

Given X as before (classification of cells, matching), want to build X by adjoining, for n = 0, 1, 2, ...

- Critical n-cells.
- Redundant *n*-cells *τ*, along with associated collapsible (*n*+1)-cells *σ*.

Want all (redundant) faces of σ other than τ to be there already.

Definition

Given $\sigma \leftrightarrow \tau$ and another redundant face $\tau' < \sigma$, write $\tau \succ \tau'$. The data above define a **Morse matching** if there is no infinite descending chain $\tau \succ \tau' \succ \tau'' \succ \cdots$ of redundant cells.

Proposition

A Morse matching yields a canonical homotopy equivalence $X \rightarrow Y$, where Y has one cell for each critical cell of X.

Outline

Review of Discrete Morse Theory

Rewriting Systems and Normal Forms

Collapsing the Classifying Space

Notation and Terminology

- ► *M*: A monoid
- S: A set of generators
- ► *F*: The free monoid on *S*
- $q: F \rightarrow M$: The quotient map

F consists of words on the alphabet S, and q takes a word w to the element of M represented by w.

Notation and Terminology

- ► *M*: A monoid
- S: A set of generators
- ► *F*: The free monoid on *S*
- $q: F \rightarrow M$: The quotient map

F consists of words on the alphabet S, and q takes a word w to the element of M represented by w.

• $R \subseteq F \times F$: A set of defining relations for M

M is the quotient of F by the smallest equivalence relation containing R and compatible with multiplication.

Notation and Terminology

- ► *M*: A monoid
- S: A set of generators
- ► *F*: The free monoid on *S*
- $q: F \rightarrow M$: The quotient map

F consists of words on the alphabet S, and q takes a word w to the element of M represented by w.

• $R \subseteq F \times F$: A set of defining relations for M

M is the quotient of F by the smallest equivalence relation containing R and compatible with multiplication.

- Given $(w_1, w_2) \in R$, write $w_1 \rightarrow w_2$ ("rewriting rule").
- More generally, write $uw_1v \rightarrow uw_2v$ for $u, v \in F$.

We say that uw_1v reduces to uw_2v .

Want to use rewriting to reduce every element to a normal form.

Complete Rewriting Systems

Definition

R is a complete rewriting system for M if:

- ► The set of irreducible words is a set of normal forms for *M*.
- There is no infinite chain $w \to w' \to w'' \to \cdots$ of reductions.

The first condition is equivalent to the diamond property (M. H. A. Newman, 1942).

Complete Rewriting Systems

Definition

R is a complete rewriting system for M if:

- ► The set of irreducible words is a set of normal forms for *M*.
- There is no infinite chain $w \to w' \to w'' \to \cdots$ of reductions.

The first condition is equivalent to the diamond property (M. H. A. Newman, 1942).

Example (Free commutative monoid on 2 generators)

Two generators s, t, one rewriting rule $ts \rightarrow st$, normal forms $s^i t^j$.

Complete Rewriting Systems

Definition

R is a complete rewriting system for M if:

- The set of irreducible words is a set of normal forms for *M*.
- There is no infinite chain $w \to w' \to w'' \to \cdots$ of reductions.

The first condition is equivalent to the diamond property (M. H. A. Newman, 1942).

Example (Free commutative monoid on 2 generators) Two generators s, t, one rewriting rule $ts \rightarrow st$, normal forms $s^i t^j$.

Example (Free group on 2 generators)

Four monoid generators a, \bar{a}, b, \bar{b} , four rewriting rules

$$aar{a}
ightarrow 1 \qquad ar{a} a
ightarrow 1 \qquad bar{b}
ightarrow 1 \qquad ar{b} b
ightarrow 1$$

leading to the standard normal forms (reduced words in the sense of group theory).

- Group presentation: $\langle x_0, x_1, \dots; x_i^{-1} x_n x_i = x_{n+1}$ for $i < n \rangle$
- This is MM^{-1} , where M is defined by the rewriting rules

$$x_n x_i \rightarrow x_i x_{n+1}$$
 (i < n)

• Normal forms $x_{i_1}x_{i_2}\cdots x_{i_m}$ with $i_1 \leq i_2 \leq \cdots \leq i_m$.

- Group presentation: $\langle x_0, x_1, \ldots; x_i^{-1} x_n x_i = x_{n+1}$ for $i < n \rangle$
- This is MM^{-1} , where M is defined by the rewriting rules

$$x_n x_i \rightarrow x_i x_{n+1}$$
 (i < n)

- ▶ Normal forms $x_{i_1}x_{i_2}\cdots x_{i_m}$ with $i_1 \leq i_2 \leq \cdots \leq i_m$.
- Verify diamond property when two rules overlap:

 $x_1 x_0 \to x_0 x_2$ $x_2 x_1 \to x_1 x_3$

- Group presentation: $\langle x_0, x_1, \ldots; x_i^{-1} x_n x_i = x_{n+1}$ for $i < n \rangle$
- This is MM^{-1} , where M is defined by the rewriting rules

$$x_n x_i \rightarrow x_i x_{n+1}$$
 (i < n)

- ▶ Normal forms $x_{i_1}x_{i_2}\cdots x_{i_m}$ with $i_1 \leq i_2 \leq \cdots \leq i_m$.
- Verify diamond property when two rules overlap:

 $x_1 x_0 \to x_0 x_2$ $x_2 x_1 \to x_1 x_3$

 $x_2 x_1 x_0$

- Group presentation: $\langle x_0, x_1, \ldots; x_i^{-1} x_n x_i = x_{n+1}$ for $i < n \rangle$
- This is MM^{-1} , where M is defined by the rewriting rules

$$x_n x_i \rightarrow x_i x_{n+1}$$
 (i < n)

- ▶ Normal forms $x_{i_1}x_{i_2}\cdots x_{i_m}$ with $i_1 \leq i_2 \leq \cdots \leq i_m$.
- Verify diamond property when two rules overlap:

 $x_1 x_0 \to x_0 x_2$ $x_2 x_1 \to x_1 x_3$

 $x_2 x_1 x_0$

- Group presentation: $\langle x_0, x_1, \ldots; x_i^{-1} x_n x_i = x_{n+1}$ for $i < n \rangle$
- This is MM^{-1} , where M is defined by the rewriting rules

$$x_n x_i \rightarrow x_i x_{n+1}$$
 (i < n)

- ▶ Normal forms $x_{i_1}x_{i_2}\cdots x_{i_m}$ with $i_1 \leq i_2 \leq \cdots \leq i_m$.
- Verify diamond property when two rules overlap:

 $x_1 x_0 \to x_0 x_2$ $x_2 x_1 \to x_1 x_3$

- Group presentation: $\langle x_0, x_1, \ldots; x_i^{-1} x_n x_i = x_{n+1}$ for $i < n \rangle$
- This is MM^{-1} , where M is defined by the rewriting rules

$$x_n x_i \rightarrow x_i x_{n+1}$$
 (i < n)

- ▶ Normal forms $x_{i_1}x_{i_2}\cdots x_{i_m}$ with $i_1 \leq i_2 \leq \cdots \leq i_m$.
- Verify diamond property when two rules overlap:

 $x_1 x_0 \to x_0 x_2$ $x_2 x_1 \to x_1 x_3$

- Group presentation: $\langle x_0, x_1, \ldots; x_i^{-1} x_n x_i = x_{n+1}$ for $i < n \rangle$
- This is MM^{-1} , where M is defined by the rewriting rules

$$x_n x_i \rightarrow x_i x_{n+1}$$
 (i < n)

- ▶ Normal forms $x_{i_1}x_{i_2}\cdots x_{i_m}$ with $i_1 \leq i_2 \leq \cdots \leq i_m$.
- Verify diamond property when two rules overlap:

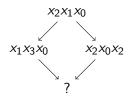
 $x_1x_0 \rightarrow x_0x_2$ $x_2x_1 \rightarrow x_1x_3$ $x_2x_1x_0$ $x_1x_3x_0$ $x_2x_0x_2$

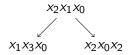
- Group presentation: $\langle x_0, x_1, \dots; x_i^{-1} x_n x_i = x_{n+1}$ for $i < n \rangle$
- This is MM^{-1} , where M is defined by the rewriting rules

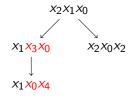
$$x_n x_i \rightarrow x_i x_{n+1}$$
 (i < n)

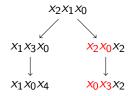
- ▶ Normal forms $x_{i_1}x_{i_2}\cdots x_{i_m}$ with $i_1 \leq i_2 \leq \cdots \leq i_m$.
- Verify diamond property when two rules overlap:

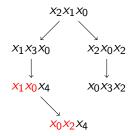
 $x_1 x_0 \to x_0 x_2$ $x_2 x_1 \to x_1 x_3$

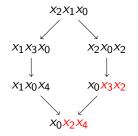


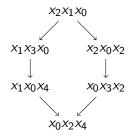












▶ That's all there is to it! *M* has a complete rewriting system.

Outline

Review of Discrete Morse Theory

Rewriting Systems and Normal Forms

Collapsing the Classifying Space

The Classifying Space of a Monoid

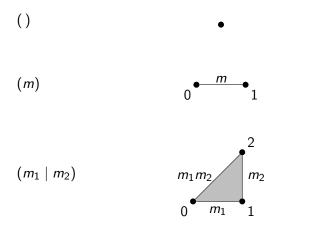
Associated to a monoid M is a CW-complex X = BM.

- Cells are simplices with face identifications.
- One *n*-cell for each *n*-tuple $(m_1 | m_2 | \cdots | m_n)$.
- Face operators delete m_1 , delete a bar, delete m_n .

The Classifying Space of a Monoid

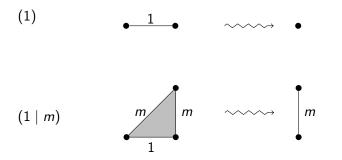
Associated to a monoid M is a CW-complex X = BM.

- Cells are simplices with face identifications.
- One *n*-cell for each *n*-tuple $(m_1 | m_2 | \cdots | m_n)$.
- Face operators delete m_1 , delete a bar, delete m_n .



Normalization

If some $m_i = 1$, the cell $(m_1 | m_2 | \cdots | m_n)$ is degenerate; squash it to a suitable face.



So X has one *n*-cell for each *n*-tuple of nontrivial elements of M.

What is BM?

- If M is a group, then BM = K(M, 1), the (original)
 Eilenberg−MacLane space with π₁ = M and π_i = 0 for i > 0.
- Its cellular chain complex is the standard complex for defining H_{*}(M) algebraically.
- More generally, if M admits a group of fractions G = MM⁻¹, then BM ≃ K(G, 1).
- It's always true that $\pi_1(BM)$ is the group completion of M.

Matching in Low Dimensions

Assume *M* has a complete rewriting system. View *n*-simplices as *n*-tuples of (irreducible) words $(w_1 | w_2 | \cdots | w_n)$.

1-cells

- A 1-cell (w) is **critical** if and only if $w \in S$.
- If l(w) > 1, write w = su and make (w) redundant via (w) ↔ (s | u). [Faces (u), (w), (s).]

Matching in Low Dimensions

Assume *M* has a complete rewriting system. View *n*-simplices as *n*-tuples of (irreducible) words $(w_1 | w_2 | \cdots | w_n)$.

1-cells

- A 1-cell (w) is critical if and only if $w \in S$.
- If l(w) > 1, write w = su and make (w) redundant via
 (w) ↔ (s | u). [Faces (u), (w), (s).]

2-cells

- $(s \mid u)$ is collapsible if *su* is irreducible.
- $\blacktriangleright (su \mid v) \leftrightarrow (s \mid u \mid v).$
- (s | uv) ↔ (s | u | v) if suv is reducible? OK if su still reducible; in this case use smallest prefix u.
- ► (s | w) is critical if sw is reducible but every proper prefix is irreducible.

Given a cell $(w_1 | w_2 | \cdots | w_n)$, read from left to right and try to insert or delete a bar. A cell is redundant if we insert a bar, collapsible if we delete a bar, and **critical** otherwise.

Restrictions

- $(\cdots \mid u \mid v \mid \dots) \mapsto (\cdots \mid uv \mid \dots)$ is OK only if uv is irreducible.
- $(\cdots \mid u \mid vw \mid \dots) \mapsto (\cdots \mid u \mid v \mid w \mid \dots)$ is OK only if uv is reducible.

Given a cell $(w_1 | w_2 | \cdots | w_n)$, read from left to right and try to insert or delete a bar. A cell is redundant if we insert a bar, collapsible if we delete a bar, and **critical** otherwise.

Restrictions

- ► $(\cdots \mid u \mid v \mid ...) \mapsto (\cdots \mid uv \mid ...)$ is OK only if uv is irreducible.
- $(\cdots \mid u \mid vw \mid \dots) \mapsto (\cdots \mid u \mid v \mid w \mid \dots)$ is OK only if uv is reducible.

Theorem This works.

Given a cell $(w_1 | w_2 | \cdots | w_n)$, read from left to right and try to insert or delete a bar. A cell is redundant if we insert a bar, collapsible if we delete a bar, and **critical** otherwise.

Restrictions

- ► $(\cdots \mid u \mid v \mid ...) \mapsto (\cdots \mid uv \mid ...)$ is OK only if uv is irreducible.
- $(\cdots \mid u \mid vw \mid \dots) \mapsto (\cdots \mid u \mid v \mid w \mid \dots)$ is OK only if uv is reducible.

Theorem

If M is a monoid with a set of normal forms that comes from a complete rewriting system, then the procedure above is a Morse matching. Thus X = BM has a canonical quotient Y with one cell for each critical cell of X, and the quotient map is a homotopy equivalence.

Given a cell $(w_1 | w_2 | \cdots | w_n)$, read from left to right and try to insert or delete a bar. A cell is redundant if we insert a bar, collapsible if we delete a bar, and **critical** otherwise.

Restrictions

- $(\cdots \mid u \mid v \mid \dots) \mapsto (\cdots \mid uv \mid \dots)$ is OK only if uv is irreducible.
- $(\cdots \mid u \mid vw \mid \dots) \mapsto (\cdots \mid u \mid v \mid w \mid \dots)$ is OK only if uv is reducible.

Remarks

- The Morse matching depends only on the normal forms, not on the rewriting rules.
- But the fact that we have a complete rewriting system is used in the proof.
- And the rules are needed to figure out what Y looks like.

() (s) (t) $(sw) \leftrightarrow (s \mid w)$ $(tw) \leftrightarrow (t \mid w)$

() *(s)* (t) $(sw) \leftrightarrow (s \mid w)$ $(tw) \leftrightarrow (t \mid w)$ $(su \mid v) \leftrightarrow (s \mid u \mid v)$ $(tu \mid v) \leftrightarrow (t \mid u \mid v)$ $(t \mid su) \leftrightarrow (t \mid s \mid u)$ $(t \mid s)$

$$()$$

$$(s)$$

$$(t)$$

$$(sw) \leftrightarrow (s \mid w)$$

$$(tw) \leftrightarrow (t \mid w)$$

$$(su \mid v) \leftrightarrow (s \mid u \mid v)$$

$$(tu \mid v) \leftrightarrow (t \mid u \mid v)$$

$$(t \mid su) \leftrightarrow (t \mid s \mid u)$$

$$(t \mid s)$$

No more critical cells. For example, consider dimension 3:

 $(u \mid v \mid w)$

$$()$$

$$(s)$$

$$(t)$$

$$(sw) \leftrightarrow (s \mid w)$$

$$(tw) \leftrightarrow (t \mid w)$$

$$(su \mid v) \leftrightarrow (s \mid u \mid v)$$

$$(tu \mid v) \leftrightarrow (t \mid u \mid v)$$

$$(t \mid su) \leftrightarrow (t \mid s \mid u)$$

$$(t \mid s)$$

No more critical cells. For example, consider dimension 3:

 $(t \mid v \mid w)$

$$()$$

$$(s)$$

$$(t)$$

$$(sw) \leftrightarrow (s \mid w)$$

$$(tw) \leftrightarrow (t \mid w)$$

$$(su \mid v) \leftrightarrow (s \mid u \mid v)$$

$$(tu \mid v) \leftrightarrow (t \mid u \mid v)$$

$$(t \mid su) \leftrightarrow (t \mid s \mid u)$$

$$(t \mid s)$$

No more critical cells. For example, consider dimension 3:

 $(t \mid s \mid w)$

$$()$$

$$(s)$$

$$(t)$$

$$(sw) \leftrightarrow (s \mid w)$$

$$(tw) \leftrightarrow (t \mid w)$$

$$(su \mid v) \leftrightarrow (s \mid u \mid v)$$

$$(tu \mid v) \leftrightarrow (t \mid u \mid v)$$

$$(t \mid su) \leftrightarrow (t \mid s \mid u)$$

$$(t \mid s)$$

No more critical cells. For example, consider dimension 3:

 $(t \mid s \mid w)$

Note

The collapsed complex Y is a torus.

Example (free group on *a*, *b*, usual normal forms)

Four critical cells in each positive dimension:

$$(a) (\bar{a}) (b) (\bar{b})$$
$$(a \mid \bar{a}) (\bar{a} \mid a) (b \mid \bar{b}) (\bar{b} \mid b)$$
$$\vdots$$

Example (free group on *a*, *b*, usual normal forms)

Four critical cells in each positive dimension:

$$(a) (\bar{a}) (b) (\bar{b})$$
$$(a | \bar{a}) (\bar{a} | a) (b | \bar{b}) (\bar{b} | b)$$
$$\vdots$$

Extend Morse matching to get rid of most of them...

```
(\bar{a}) \leftrightarrow (a \mid \bar{a})(\bar{a} \mid a) \leftrightarrow (a \mid \bar{a} \mid a)
```

:

Example (free group on *a*, *b*, usual normal forms)

Four critical cells in each positive dimension:

$$(a) (\bar{a}) (b) (\bar{b})$$
$$(a | \bar{a}) (\bar{a} | a) (b | \bar{b}) (\bar{b} | b)$$
$$\vdots$$

Extend Morse matching to get rid of most of them...

```
 \begin{array}{c} (\bar{a}) \leftrightarrow (a \mid \bar{a}) \\ (\bar{a} \mid a) \leftrightarrow (a \mid \bar{a} \mid a) \\ \cdot \end{array}
```

... leaving three critical cells (), (a), (b); Y is a figure 8.

Thompson's Monoid

Generators x_0, x_1, \ldots , normal forms

$$x_{i_1}x_{i_2}\cdots x_{i_n}$$
 with $i_1 \leq i_2 \leq \cdots \leq i_n$

Critical cells

$$(x_{i_1} | x_{i_2} | \cdots | x_{i_n})$$
 with $i_1 > i_2 > \cdots > i_n$

The resulting collapsed complex Y is the "big" cubical complex found by Brown–Geoghegan. This can be further collapsed.

Variants

- Chain complexes
- Algebras with rewriting system
- Small categories

Thompson's Group via a Category

Let M be the following category of PL-homeomorphisms:

- ▶ Objects: The intervals $[0, I] \subset \mathbb{R}$, I = 1, 2, ...
- Morphisms: PL-maps [0, *I*] → [0, *m*] obtained by dyadically subdividing [0, *I*] into *m* subintervals and mapping them linearly to the standard unit intervals in [0, *m*].

Dyadic subdivision: Start with standard subdivision into unit intervals, repeatedly insert midpoints.

Thompson's Group via a Category

Let M be the following category of PL-homeomorphisms:

- ▶ Objects: The intervals $[0, I] \subset \mathbb{R}$, I = 1, 2, ...
- Morphisms: PL-maps [0, *I*] → [0, *m*] obtained by dyadically subdividing [0, *I*] into *m* subintervals and mapping them linearly to the standard unit intervals in [0, *m*].

Dyadic subdivision: Start with standard subdivision into unit intervals, repeatedly insert midpoints.

- ► *BM* is an Eilenberg–MacLane space for Thompson's group.
- Generators: $i^{(l)}: [0, l] \to [0, l+1], i = 1, ..., l.$
- Normal forms: [0, *I*] → [0, *I* + 1] → · · · → [0, *I* + *n*] with weakly increasing *i*'s; these come from rewriting rules.
- Result is a space constructed by Melanie Stein for the study of PL-homeomorphism groups; it can be collapsed further.

References

Kenneth S. Brown and Ross Geoghegan, An infinite-dimensional torsion-free FP_∞ group, Invent. Math. 77 (1984), 367–381.

Kenneth S. Brown,

The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem,

Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., vol. 23, Springer, New York, 1992, pp. 137–163.

🔋 Robin Forman,

Morse theory for cell complexes, Adv. Math. **134** (1998), 90–145.

Manoj K. Chari,

On discrete Morse functions and combinatorial decompositions, Discrete Math. **217** (2000), 101–113.