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History

I (Brown–Geoghegan, 1984) Had cell complex X with one
vertex and infinitely many cells in each positive dimension.
“Collapsed” it to quotient complex with only two cells in each
positive dimension.

I (Brown, 1989) Formalized the method (“collapsing scheme”),
applied it to groups with a rewriting system.

I (Forman, 1995) Developed discrete Morse theory, motivated
by differential topology.

I (Chari, 2000) Formulated discrete Morse theory
combinatorially in terms of “Morse matchings”; these are the
same as collapsing schemes.
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Goal
Given a cell complex X , try to “collapse” it to a
homotopy-equivalent quotient complex Y with fewer cells.

The Method
Classify the cells into three types:

I critical

I redundant

I collapsible

with a bijection (“Morse matching”) between the redundant n-cells
and the collapsible (n + 1)-cells for each n.

I τ ↔ σ =⇒ τ < σ

I Build X in steps, where σ is adjoined along with τ , and all
faces of σ other than τ are already present.

I Homotopy type changes only when we adjoin a critical cell.

I X ' Y , where Y has one cell for each critical cell of X .



Goal
Given a cell complex X , try to “collapse” it to a
homotopy-equivalent quotient complex Y with fewer cells.

The Method
Classify the cells into three types:

I critical

I redundant

I collapsible

with a bijection (“Morse matching”) between the redundant n-cells
and the collapsible (n + 1)-cells for each n.

I τ ↔ σ =⇒ τ < σ

I Build X in steps, where σ is adjoined along with τ , and all
faces of σ other than τ are already present.

I Homotopy type changes only when we adjoin a critical cell.

I X ' Y , where Y has one cell for each critical cell of X .



Goal
Given a cell complex X , try to “collapse” it to a
homotopy-equivalent quotient complex Y with fewer cells.

The Method
Classify the cells into three types:

I critical

I redundant

I collapsible

with a bijection (“Morse matching”) between the redundant n-cells
and the collapsible (n + 1)-cells for each n.

I τ ↔ σ =⇒ τ < σ

I Build X in steps, where σ is adjoined along with τ , and all
faces of σ other than τ are already present.

I Homotopy type changes only when we adjoin a critical cell.

I X ' Y , where Y has one cell for each critical cell of X .



Goal
Given a cell complex X , try to “collapse” it to a
homotopy-equivalent quotient complex Y with fewer cells.

The Method
Classify the cells into three types:

I critical

I redundant

I collapsible

with a bijection (“Morse matching”) between the redundant n-cells
and the collapsible (n + 1)-cells for each n.

I τ ↔ σ =⇒ τ < σ

I Build X in steps, where σ is adjoined along with τ , and all
faces of σ other than τ are already present.

I Homotopy type changes only when we adjoin a critical cell.

I X ' Y , where Y has one cell for each critical cell of X .



Goal
Given a cell complex X , try to “collapse” it to a
homotopy-equivalent quotient complex Y with fewer cells.

The Method
Classify the cells into three types:

I critical

I redundant

I collapsible

with a bijection (“Morse matching”) between the redundant n-cells
and the collapsible (n + 1)-cells for each n.

I τ ↔ σ =⇒ τ < σ

I Build X in steps, where σ is adjoined along with τ , and all
faces of σ other than τ are already present.

I Homotopy type changes only when we adjoin a critical cell.

I X ' Y , where Y has one cell for each critical cell of X .



Goal
Given a cell complex X , try to “collapse” it to a
homotopy-equivalent quotient complex Y with fewer cells.

The Method
Classify the cells into three types:

I critical

I redundant

I collapsible

with a bijection (“Morse matching”) between the redundant n-cells
and the collapsible (n + 1)-cells for each n.

I τ ↔ σ =⇒ τ < σ

I Build X in steps, where σ is adjoined along with τ , and all
faces of σ other than τ are already present.

I Homotopy type changes only when we adjoin a critical cell.

I X ' Y , where Y has one cell for each critical cell of X .



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 1



Example 2

I X : boundary of 3-simplex

I Vertices: 1, 2, 3, 4

I Simplices: nonempty proper subsets

I Match by inserting/deleting vertex 1 when possible.

1

2↔ 12

3↔ 13

4↔ 14

23↔ 123

24↔ 124

34↔ 134

234

X collapses to a 2-sphere with one vertex and one 2-cell.



Morse Matchings: Summary

Given X as before (classification of cells, matching), want to build
X by adjoining, for n = 0, 1, 2, . . .

I Critical n-cells.

I Redundant n-cells τ , along with associated collapsible
(n + 1)-cells σ.

Want all (redundant) faces of σ other than τ to be there already.

Definition
Given σ ↔ τ and another redundant face τ ′ < σ, write τ � τ ′.
The data above define a Morse matching if there is no infinite
descending chain τ � τ ′ � τ ′′ � · · · of redundant cells.

Proposition

A Morse matching yields a canonical homotopy equivalence
X � Y , where Y has one cell for each critical cell of X .
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Notation and Terminology

I M: A monoid

I S : A set of generators

I F : The free monoid on S

I q : F � M: The quotient map

F consists of words on the alphabet S , and q takes a word w to
the element of M represented by w .

I R ⊆ F × F : A set of defining relations for M

M is the quotient of F by the smallest equivalence relation
containing R and compatible with multiplication.

I Given (w1,w2) ∈ R, write w1 → w2 (“rewriting rule”).

I More generally, write uw1v → uw2v for u, v ∈ F .

We say that uw1v reduces to uw2v .

Want to use rewriting to reduce every element to a normal form.
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Complete Rewriting Systems

Definition
R is a complete rewriting system for M if:

I The set of irreducible words is a set of normal forms for M.

I There is no infinite chain w → w ′ → w ′′ → · · · of reductions.

The first condition is equivalent to the diamond property
(M. H. A. Newman, 1942).

Example (Free commutative monoid on 2 generators)

Two generators s, t, one rewriting rule ts → st, normal forms s i t j .

Example (Free group on 2 generators)

Four monoid generators a, ā, b, b̄, four rewriting rules

aā→ 1 āa→ 1 bb̄ → 1 b̄b → 1

leading to the standard normal forms (reduced words in the sense
of group theory).
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Example (Thompson’s Group and Monoid)

I Group presentation:
〈

x0, x1, . . . ; x−1i xnxi = xn+1 for i < n
〉

I This is MM−1, where M is defined by the rewriting rules

xnxi → xixn+1 (i < n)

I Normal forms xi1xi2 · · · xim with i1 ≤ i2 ≤ · · · ≤ im.

I Verify diamond property when two rules overlap:

x1x0 → x0x2

x2x1 → x1x3
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Example (Thompson’s Group and Monoid)

I Group presentation:
〈

x0, x1, . . . ; x−1i xnxi = xn+1 for i < n
〉
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Completing the Diamond

x2x1x0

x1x3x0 x2x0x2



Completing the Diamond

x2x1x0

x1x3x0 x2x0x2

x1x0x4



Completing the Diamond

x2x1x0

x1x3x0 x2x0x2

x1x0x4 x0x3x2



Completing the Diamond

x2x1x0

x1x3x0 x2x0x2

x1x0x4 x0x3x2

x0x2x4



Completing the Diamond
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Completing the Diamond

x2x1x0

x1x3x0 x2x0x2

x1x0x4 x0x3x2

x0x2x4

I That’s all there is to it! M has a complete rewriting system.
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The Classifying Space of a Monoid
Associated to a monoid M is a CW-complex X = BM.

I Cells are simplices with face identifications.

I One n-cell for each n-tuple (m1 | m2 | · · · | mn).

I Face operators delete m1, delete a bar, delete mn.

( )

(m)
0 1

m

(m1 | m2)

0 1

2

m1

m2m1m2
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Normalization

If some mi = 1, the cell (m1 | m2 | · · · | mn) is degenerate; squash
it to a suitable face.

(1) 1

(1 | m)

1

mm m

So X has one n-cell for each n-tuple of nontrivial elements of M.



What is BM?

I If M is a group, then BM = K (M, 1), the (original)
Eilenberg–MacLane space with π1 = M and πi = 0 for i > 0.

I Its cellular chain complex is the standard complex for defining
H∗(M) algebraically.

I More generally, if M admits a group of fractions G = MM−1,
then BM ' K (G , 1).

I It’s always true that π1(BM) is the group completion of M.



Matching in Low Dimensions

Assume M has a complete rewriting system. View n-simplices as
n-tuples of (irreducible) words (w1 | w2 | · · · | wn).

1-cells

I A 1-cell (w) is critical if and only if w ∈ S .

I If l(w) > 1, write w = su and make (w) redundant via
(w)↔ (s | u). [Faces (u), (w), (s).]

2-cells

I (s | u) is collapsible if su is irreducible.

I (su | v)↔ (s | u | v).

I (s | uv)↔ (s | u | v) if suv is reducible? OK if su still
reducible; in this case use smallest prefix u.

I (s | w) is critical if sw is reducible but every proper prefix is
irreducible.



Matching in Low Dimensions

Assume M has a complete rewriting system. View n-simplices as
n-tuples of (irreducible) words (w1 | w2 | · · · | wn).

1-cells

I A 1-cell (w) is critical if and only if w ∈ S .

I If l(w) > 1, write w = su and make (w) redundant via
(w)↔ (s | u). [Faces (u), (w), (s).]

2-cells

I (s | u) is collapsible if su is irreducible.

I (su | v)↔ (s | u | v).

I (s | uv)↔ (s | u | v) if suv is reducible? OK if su still
reducible; in this case use smallest prefix u.

I (s | w) is critical if sw is reducible but every proper prefix is
irreducible.



The Morse Matching

Given a cell (w1 | w2 | · · · | wn), read from left to right and try to
insert or delete a bar. A cell is redundant if we insert a bar,
collapsible if we delete a bar, and critical otherwise.

Restrictions

I (· · · | u | v | . . . ) 7→ (· · · | uv | . . . ) is OK only if uv is
irreducible.

I (· · · | u | vw | . . . ) 7→ (· · · | u | v | w | . . . ) is OK only if uv is
reducible.
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The Morse Matching

Given a cell (w1 | w2 | · · · | wn), read from left to right and try to
insert or delete a bar. A cell is redundant if we insert a bar,
collapsible if we delete a bar, and critical otherwise.

Restrictions

I (· · · | u | v | . . . ) 7→ (· · · | uv | . . . ) is OK only if uv is
irreducible.

I (· · · | u | vw | . . . ) 7→ (· · · | u | v | w | . . . ) is OK only if uv is
reducible.

Theorem
If M is a monoid with a set of normal forms that comes from a
complete rewriting system, then the procedure above is a Morse
matching. Thus X = BM has a canonical quotient Y with one cell
for each critical cell of X , and the quotient map is a homotopy
equivalence.



The Morse Matching

Given a cell (w1 | w2 | · · · | wn), read from left to right and try to
insert or delete a bar. A cell is redundant if we insert a bar,
collapsible if we delete a bar, and critical otherwise.

Restrictions

I (· · · | u | v | . . . ) 7→ (· · · | uv | . . . ) is OK only if uv is
irreducible.

I (· · · | u | vw | . . . ) 7→ (· · · | u | v | w | . . . ) is OK only if uv is
reducible.

Remarks

I The Morse matching depends only on the normal forms, not
on the rewriting rules.

I But the fact that we have a complete rewriting system is used
in the proof.

I And the rules are needed to figure out what Y looks like.



Example (free commutative monoid, normal forms s it j)

( )

(s)

(t)

(sw)↔ (s | w)

(tw)↔ (t | w)

(su | v)↔ (s | u | v)

(tu | v)↔ (t | u | v)

(t | su)↔ (t | s | u)

(t | s)

No more critical cells. For example, consider dimension 3:

Note
The collapsed complex Y is a torus.
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Example (free group on a, b, usual normal forms)

Four critical cells in each positive dimension:

(a) (ā) (b) (b̄)

(a | ā) (ā | a) (b | b̄) (b̄ | b)

...

Extend Morse matching to get rid of most of them. . .

(ā)↔ (a | ā)

(ā | a)↔ (a | ā | a)

...

. . . leaving three critical cells ( ), (a), (b); Y is a figure 8.
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(a | ā) (ā | a) (b | b̄) (b̄ | b)

...

Extend Morse matching to get rid of most of them. . .

(ā)↔ (a | ā)
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Thompson’s Monoid

Generators x0, x1, . . . , normal forms

xi1xi2 · · · xin with i1 ≤ i2 ≤ · · · ≤ in

Critical cells

(xi1 | xi2 | · · · | xin) with i1 > i2 > · · · > in

The resulting collapsed complex Y is the “big” cubical complex
found by Brown–Geoghegan. This can be further collapsed.



Variants

I Chain complexes

I Algebras with rewriting system

I Small categories



Thompson’s Group via a Category
Let M be the following category of PL-homeomorphisms:

I Objects: The intervals [0, l ] ⊂ R, l = 1, 2, . . . .

I Morphisms: PL-maps [0, l ]→ [0,m] obtained by dyadically
subdividing [0, l ] into m subintervals and mapping them
linearly to the standard unit intervals in [0,m].

Dyadic subdivision: Start with standard subdivision into unit
intervals, repeatedly insert midpoints.

0 1 2 3

I BM is an Eilenberg–MacLane space for Thompson’s group.

I Generators: i (l) : [0, l ]→ [0, l + 1], i = 1, . . . , l .
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