TWO-PARAMETER TAXICAB TRIG FUNCTIONS
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ABSTRACT. In this paper, we review some of the fundamental properties of
the £1, or taxicab, metric on R2. We define and give explicit formulas for two-
parameter sine and cosine functions for this metric space. We also determine
the maximum of these functions, which is greater than 1.

1. INTRODUCTION

The ¢! metric on R2, the so-called taxicab metric, is often one of the first non-
Euclidean metrics a mathematics student encounters. For any points p = (p1, p2)
and ¢ = (q1, g2) in R?, the metric is given by the formula

dr(p,q)=|p1 — @1|+|p2 — ¢2| -

The ¢' metric is just one metric in a class of metrics defined on R? known as
Minkowski metrics; see [3] for an introduction to these spaces. Let Q be a closed,
bounded convex set in R? which contains and is symmetric about the origin. The
set Q defines a norm on R?, where € is the unit disk. Given a norm || - ||, one can
define a metric on R? by d(p, q) = ||p — q||. Examples of Minkowski metrics include
the P metrics, the /°° or max metric, and metrics with unit disk a regular 2n-gon.

Length minimizing paths in the taxi-cab plane are not necessarily unique, so we
use the vector space properties of R? and define lines to be the sets of points of
the form L = {tv+b | t € R} for some fixed v and b. We can similarly define line
segments, triangles, rays, and angles (pairs of rays sharing an initial point). We
define the length of a line segment AB to be the distance between the endpoints,
dr(A, B).

Given a metric d on a set X, a circle C of radius r is the set of all points p € X
equidistant from a given point called the center. A circle in the taxicab metric
is a square with diagonals parallel to the z and y-axis. In Euclidean space there
is an intrinsic notion of angle measure, radian measure, which is determined by
the length of an a particular circle arc. We can similarly define an intrinsic angle
measure in the taxicab plane, called t-radians.

Definition 1. Let C be a circle with radius r, and center P. Given an angle with
vertex P, let s be the length of the subtended arc. The t-radian measure, 0, of a
taxicab angle, is given by
0=-.
r
It is this notion of angle measure which was used in these previous works [1],
[5], and [8], on taxicab trigonometry. Another well-studied angle measure in a
Minkowski metric uses the area of the sector of the circle, rather than arc length,
to define the angle measure. (Due to a theorem of Haar, any area measure p
is proportional to Lebesgue measure; see [4] for a discussion of areas in normed
1
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spaces.) By Theorem 1 in [9], these two notions are equivalent (up to scale) because
the taxicab circle is an example of an equiframed curve. See [9] for the definition
of equiframed curve.

Note that an ¢' circle has 8 t-radians, which means in this metric, 4 is the
analogue of m. Some of the properties from Euclidean geometry have analogous
statements which are true in the taxicab plane. We will use the following proposi-
tions, both of which can be found in [8].

Proposition 1 (Theorem 4.2 [8]). The angle sum of a tazicab triangle is 4 t-
radians.

We define a taxicab right angle to be an angle with measure 2 t-radians, which,
as in Euclidean geometry, is an angle which has measure equal to its supplement.

Proposition 2 (Lemma 2 [8]). A Euclidean right angle has taxicab angle measure
of 2 t-radians, and conversely.

Figure 1 gives a sketch of a proof of Proposition 2.

2-x

FiGURE 1. Euclidean right angles have taxicab angle measure of 2.

Proposition 2 implies that the vectors x and y form a right angle in the taxi-
cab plane if and only if they are orthogonal in the Euclidean sense. The study of
different notions of orthogonality in Minkowski spaces is an active area of research.
Two important orthogonality types in Minkowski spaces are Birkhoff orthogonality,
(x Ly if and only if ||x — ayy|| > ||x|| for all &) and James/isosceles orthogonality
(x Ly if and only if ||x+y|| = ||x-y||.) In the taxicab plane, Birkhoff orthogonality
is not symmetric, and James orthogonality is not invariant under scaler multiplica-
tion of the vectors, which implies neither are equivalent to definition of right angle
that we use above; see the recent survey article [2] for an explanation of these facts
and extensive discussion of orthogonality in normed linear spaces.

Not all angles in the taxicab geometry behave as nicely as right angles. In Figure
2, the Euclidean angles o and (8 of the two triangles depicted are not equal, but
the taxicab angle measure of both is %

A taxicab right triangle is in standard position if the base of the triangle is parallel
to the z-axis (see a-triangle in Figure 2). For triangles in standard position, we
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can define the taxicab sine and cosine functions as we do in Euclidean geometry
with the cos 6 and sin f equal to the x and y-coordinates on the unit circle. Indeed,
the piecewise linear formulas for these functions are given in [8] and [1], and with
slightly different formulas in [5]. However, if we define the sine and cosine as ratio
of sides of right triangles, considering only triangles in standard position will not
give all possible values. To illustrate this, we refer again to Figure 2.

(6

FIGURE 2. An ¢! circle with two right-angled triangles.

Both triangles are right triangles with hypotenuse (the side opposite the 2 t-
radian angle) of length 1. Also, since « and 8 both have angle measure %, the other
non-right angle is 4 —2 — 2 = 2. In the a-triangle, we compute the cosine of a by
taking the ratio of the lengths of the adjacent side to the hypotenuse, which is %.
However, looking at the S-triangle, we see the vertex of the right angle falls outside
of the unit circle, which implies the length of the side adjacent to 8, and therefore
the cosine of 3, is greater than one.

A natural question arises: what is the maximum value of the cosine of an angle
in the taxi-cab plane? In this paper, we define and give explicit formulas for two-
parameter sine and cosine functions, describing the possible side ratios of right-
triangles in the taxi-cab plane. Using these formulas we show the maximum value
to be % + %, which is greater than 1. Thus we obtain a quantitative measure of a
difference between the Euclidean and taxi-cab plane.

We would like to thank the referee for pointing out many references on the
geometry of Minkowski metric spaces, including [7]. In Chapter 8 of this text,
Thompson defines two-parameter sine and cosine functions for general Minkowski
spaces. For Thompson’s function, the Minkowski cosine of two vectors is zero if
and only if the vectors x1 and x5 are Birkhoff orthogonal. This property does not
hold for our definition of cosine, so our functions are not a special case of those
defined by Thomspon, even up to scale. Using the sine function, Thompson defines
an « which measures how far the Minkowski space is from Euclidean space, leaving
us with a question: Is this a related to the value we obtain for maximum of our
taxicab sine function?



4 KELLY DELP AND MICHAEL FILIPSKI

2. A TWO-PARAMETER SINE AND COSINE FUNCTION

Definition 2. Given two metric spaces (X, dy) and (Y, ds), a bijection f: X — Y
is an isometry if for any two points p,q € X :

di(p,q)=d>(f(p), f(q))

Given a metric space X, the set of all isometries ¢ : X — X forms a group, and
the set of isometries that fix a point forms a subgroup of this group. An important
subgroup is the set of isometries which fix the origin, which, by the Mazur-Ulam
Theorem (see [7], Chapter 3), are linear. Using this fact and the fact that isometries
map circles to circles with the same radius, one can see that the group of isometries
that fix the origin of (R?, dr) is the group of symmetries of a square, also called the
dihedral group Dy4. This includes the set of rotations (by 90°, 180°, and 270°) and
reflections across the x-axis, y-axis and the lines passing through the origin with
slope 1. The full group of isometries is the semi-direct product D, x R?, which
is proven in [6]. This group is generated by translations and isometries that fix the
origin.

Two triangles 77,75 in the taxicab plane are congruent if there is a taxicab
isometry ¢ such that ¢(T1) = T>. Note that due to the rigidity of the isometry
group, there is no taxicab isometry taking the a-triangle in Figure 2 to the [-
triangle, so there is no angle-side-angle theorem in taxicab geometry. We will
define the taxicab sine and cosine functions to have two angle parameters; one
parameter is the usual #-angle parameter measured from a fixed axis, and the other
¢-parameter will denote the “direction” of the triangle in the plane (see Figure 3).

Before making the definition, we describe a notion of orthogonal projection in
the taxicab plane. Let L be a line and P be a point. If P is on L, the orthogonal
projection of P onto L is P. If P is not on L, the orthogonal projection is a unique
point R on L for which the line segment PR makes a Euclidean right angle with L;
Proposition 2 implies that this point R is also the unique point on L which makes
a taxicab right angle. The following definition, which is convenient for later proofs,
may seem somewhat unnatural; we refer the reader to Propositions 3 and 4 which
justify that this definition gives the desired “signed ratio” of side lengths.

Definition 3. Let L be the line through the origin O which makes reference angle
0 < ¢ < 2 with the x-azis, and let P = (p1,p2) be a point on the unit circle so that
OP makes angle 0 with L. Let R = (r1,72) be the orthogonal projection of P onto
L. We define the taxicab cosine and sine of angle 0 at reference angle ¢ as:

tcosg(0) = r1 + 1o tsing(8) = (r1 — p1) + (p2 — 72)

Given a right triangle T" with hypotenuse equal to one, there is a taxi-cab isom-
etry which maps T to a triangle of the form APRO given in Definition 3, so T' is
congruent to APRO.

Let L, be the perpendicular to L which also passes through the origin. The lines
L and L divide the plane into four quadrants, which we will refer to by numbering
counterclockwise I, IT, ITI, and TV.

Proposition 3. The value of tcosy(0) is positive for 6 in quadrants I and IV,
and negative for 0 in quadrants II and III. Similarly tsing(0) is positive for 6 in
quadrants I and II, and negative for 0 in quadrants III and IV.
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L,

(p1,p2)

FI1GURE 3. Defining sine and cosine.

Proof. Let P = (p1,p2) and R = (r1,72) be as given in Definition 3. When 6 is in
quadrants I and IV, as defined by L and L , the coordinate r; is positive and 9 is
non-negative (when ¢ = 0, the line L is the x-axis and ro = 0). Therefore tcos,0,
which is the sum of these coordinates, is positive. Similarly when 6 is in quadrants
IT and III, 7 is negative and ry is non-positive, hence tcosgf is negative.
Recall that tsingt = (11 — p1) + (p2 — r2). For fixed ¢, the coordinates of P and
R are continuous real-valued functions of 8, and therefore the functions r; —p; and
p2 — T2 are also continuous functions. When 0 < ¢ < 2, each of these functions is
zero if and only if 8 = 4n for some integer n. This follows from the fact that the
slope of L is positive, which implies the line through P and R has negative slope,
So p1 = r1 or pg = 1o if and only if P = R. Therefore the sign of each of these
functions, 1 — p; and py — 7o, is constant for € in quadrants I and II. Picking a
specific angle such as § = 2 allows us to verify that both are positive, and therefore
tsing@ is positive. Choosing an angle in the range 4 < § < 8 shows that both
of these functions are negative, and therefore tsingf is also negative when 6 is in
quadrants IIT and IV.
When ¢ = 0, we have ro = 0, and r1 = p1, so tsingf = p2, and the result follows.
O

Proposition 4. In the right triangle made by P, R and the origin O, |tcoss(0)|
gives the length of the adjacent side to 6, and |tsing(d)| gives the length of the
opposite side.

Proof. Fix an angle 0 < ¢ < 2. The length of the adjacent side is the distance from
R to the origin, which is |r1| 4 |r2|. When € is in quadrants I and IV (defined by
L and L, ), both r; and ro are non-negative, so

1| + |r2| = 71 + 12 = [tcosg(6)].

When @ lies in quadrants IT and III, both r; and 7o are non-positive, so
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[r1] + |r2| = —r1 — 12 = —(r1 + 12) = [tcosy(0)].

The length of the opposite side of # in triangle OPR is given by the distance
between P and R, which is [p; —ri| 4 [p2 — r2|. Arguing as in Proposition 3, when
0 is in quadrants I and IT we have

Ip1 — 71| + |p2 — 2| = (11 — p1) + (P2 — r2) = [tsing (0)],
and when @ is in quadrants III and IV,

Ip1 =71+ [pa —12| = = (11 —p1) — (p2 —72) = — [(r1 — p1) + (P2 — r2)] = [tsing(0)].
O

Proposition 5. The following identities hold.
tsing (6 — 4) = —tsing () and tcosy (6 — 4) = —tcosy(6).

Proof. Let P and R be the points given in Definition 3 corresponding to 6, and
P’ and R’ the points corresponding to 6 — 4. By Proposition 2, taxi-cab angles of
measure 2 are Euclidean right angles, which means P and P’ are antipodal points
on the unit circle and P’ = —P. The map (z,y) — (—x, —y) is an isometry of the
taxi-cab plane, which maps P to P’. Angles are defined by the metric, therefore
isometries preserve angle measure. It follows from the definition of R that " = —R.
Therefore,

tcosy (0 —4) = —ry — 1o = —(r1 + 1r2) = —tcosy(6)

and

tsing (0 —4) = (=1 +p1) + (—=p2 +r2) = — [(r1 — p1) + (p2 — r2)] = —tsing ().
O

3. EXPLICIT FORMULAS FOR SINE AND COSINE FUNCTIONS

Theorem 1. Let ¢ be a taxicab reference angle such that 0 < ¢ < 2 and let 6 be a

taxicab angle measured relative ¢. Let o = which is well defined for

¢? —20+2
all ¢, since 9> —2¢ +2 > 0. The sine and cosine of § with reference angle ¢ are
given by:

ol —p<0<2—9¢

1+a(@-2(6-1) 2-6<0<4-0
tsing =

a(d—0) 4—9p<0<6—-9¢

—14+a(6-0)(¢—1) 6—p<0<8—9¢
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1+ ab(¢—1) —<h<2-¢

a(2—6) 2-p<fh<d—0
tcosgl =
—14+ad-0)(¢-1) 4—9p<0<6-—9

(0 — 6) 6-¢<0<8—¢

Lemma 1. Let L be a line through the origin that makes angle ¢ with the x-axis
such that 0 < ¢ < 2. The point of intersection between L and the unit tazicab circle

N

Proof. Let @ = (q1,¢2). Since @ lies on the unit circle and 0 < ¢ < 2, both
coordinates are positive and

(1) @ +qg=1

Since the radius of the unit circle is 1, the definition of angle implies that ¢ is the
distance between @ and (1,0). This distance is given by:

(2) ln =1+ —0l=1—q1 + q2 = ¢.

We solve the system of linear equations consisting of (1) and (2) for g2 by adding
the two equations to get

g2 =

)

IVJRSS

substituting ¢o into (1) gives us g1 =1 — %, which is the desired result. O

3.1. Proof of Theorem 1 for —¢ <0 <2 — ¢.

Proof. Let 0 < ¢ < 2, and —¢ < 0 < 2 — ¢. We will determine the coordinates of
P and R, given in Definition 3, as functions of ¢ and 6. Lemma 1 implies that the
¢-axis (line L in Figure 3) intersects the circle at

(2-6 ¢
Q‘(z’z)'

Since the ¢-axis passes through the origin, we find that the equation is:

¢

3 L(x) =

3) @ =52
Next, we determine the coordinates of P, the point of intersection between the

circle and the (6 + ¢)-ray. Applying Lemma 1 again with angle (6 + ¢) gives

coordinates:
2—¢p—10
p_(290=0 o+0)
2 2
Proposition 2 implies that Euclidean right angles are taxi-cab right angles.
Therefore, to find the point R we determine the equation of the line perpendic-
ular (in the usual Euclidean sense) to the ¢-axis, Lp, through point P. Since the

x.
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¢

¢-axis has slope 5 Lp has slope

P = (p1,p2) and the slope, we can determine the equation for Lp, which is

Since we know the coordinates of

Lo = (252 ) @) 4

C(-2r  (0-2(0+0—2) +6(0+0)
@ =73 2

The point R is the intersection between the ¢-axis and Lp. Setting equations 3
and 4 equal to each other and solving for the x-coordinate of R yields

_2-6, (2-9)¢8-0)
“ T2 TaAE-0y)

Plugging 7 into L (or L,) gives the y-coordinate of R,

1

9 *0 — ¢
=0t —2g oy

T2

Thus, the coordinates of R are:

R_<2—¢+(2—¢)(¢9—9)¢25 $%0 — ¢ )

2 TP -20+2) 2 AP -20+2)

The result now follows by using the coordinates of R and P to compute tsing(6)
and tcosy(6) by the formulas given in Definition 3. O

3.2. Proof for 2 —¢p <0 <4—¢.

Proof. We again find the coordinates of P and R to compute tsing(6) and tcose(6).
When 2 < 6 + ¢ < 4, the point P is in the second quadrant (as defined by the z-
and y-axes). Let 01 be the portion of § measured from the y-axis, so 6; = ¢+ 60 — 2.

Let f: R? — R? be the map defined by (x,y) — (y, —z). This map is an order
4 isometry of the ¢! metric. Note that f(0,1) = (1,0) and f(P) is in the first
quadrant. Since angle measure is defined by the metric, angle measure is preserved
by isometries. We can therefore apply Lemma 1 to f(P) to obtain the coordinates

= (23525,

2 72

To obtain the coordinates for P we apply the inverse map:

p_ (2700 0\ _ (0 26\ _(2-¢-04-¢-0
=/ 2 "2) \ 27 2 ) A

To finish the proof for this interval, we use the same procedure as in the proof
for the first interval; that is, we find the equation of the line perpendicular to the
¢-axis through P to determine the coordinates of the point R. The line through P
perpendicular to L(zx) is
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Lp(z) = <¢¢2> (z —p1) + P2

¢ 2¢
To find rq, we set equations 3 and 5 equal to one another and solve for x, which
gives:

L _6-20-2)
YT 204 2)
Plugging 7 into L(z) (equation 3) gives ro:
o2
2T 22— 20+ 2)

The sine and cosine functions can now be computed from the formulas given in
Definition 3.
O

3.3. Prooffor 4 —¢ <0 <8—¢.

Proof. We will use the symmetry of the functions to establish the formulas for the
third and fourth intervals. Let 6 be in the given interval, and 6* = 6 — 4. Then
—¢ < 0* <4— ¢. We have determined formulas for tsin,(6*) and tcos,(6*) in this
interval, so applying Proposition 5 gives formulas for angle 6 in the remaining two
intervals.

|

It should be noted that our formulas are a generalization of those formulas in [8]
and [1]; if ¢ = 0, then 6 is in standard position and we obtain identical formulas.

4. PROPERTIES OF THE FUNCTIONS

4.1. Periodic Extensions and Graphs. In Definition 3, the generalized sine and
cosine functions were defined for all real numbers 6 and for values of ¢ such that
0 < ¢ < 2. It is evident from the definition that the #-period of these functions is
8, so for any integer k,

tcosg (0 + 8k) = tcosy(0) and tsing (6 + 8k) = tsing(6).

There is a natural ¢-extension of these functions; since rotation by right angles
gives isometries of the ¢! metric, we extend the ¢-domain of the generalized sine
and cosine functions to be ¢-periodic with period 2. Therefore, for any integer s,

tcoSp42s(0) = tcosy(0) and tsingyos(6) = tsing(6).

It should be noted that the formulas for tsing () and tcos, () given by P and R
from Definition 3 are only valid for values of ¢ in the first quadrant. Since Theorem
1 gives explicit formulas for entire ¢ and 6 periods, we may use this theorem and
the two periodic properties stated above to give values for tsing(6) and tcos(6) for
any (¢,6) € R x R. Figure 4 contains a graph of tsin,8 for two periods of ¢ and
two periods of 6.
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FIGURE 4. Graph of the generalized sine function.

Table 1 contains a family of cross sections. Referring to the formulas in Theorem
1 we see that for fixed ¢ these functions are piecewise linear. We invite the interested
reader to verify that these functions are constant when # = 2n for some interger n.

Recall that in the Euclidean metric, sin( + ) = cos(¢). The cross-sections for
the sine and cosine functions when ¢ is fixed suggest a similar identity, which we
prove.

Proposition 6. tsing(0 + 2) = tcosy(0)

Proof. While this identity follows from the symmetry of the space, Theorem 1
gives explicit formulas for tsing@ and tcosgf, so we need only check the formulas
to verify this identity. Assume that 0 < ¢ < 2 and —¢ < 0 < 2 — ¢, which implies
2— ¢ <0+2<4—¢. For angles in the interval [2 — ¢,4 — ¢],

tsingd =1+ a(6 — 2)(¢ — 1).

Therefore,

tsing(0 +2) =14+ a((0+2)—2)(¢—1)) =14+ ab(¢—1),
which is equal to tcosgf, when —¢ < 0 < 2 — ¢. The other intervals can be

verified similarly.
O

4.2. Maximum and minimum values.

Theorem 2. The mazimum value of tsingt) and tcosg0 is % + %; the minimum

value is — (5 + %)

Proof. By Proposition 6, the maximum of the sine function is equal to the maximum
of the cosine function. Also, by Proposition 5, the minimum of the sine function
is equal to the negative of the maximum. Therefore it is sufficient to verify the
maximum of the sine function.



TWO-PARAMETER TAXICAB TRIG FUNCTIONS 11

tsing6 tcose0 tsing6 tcosy6

p=1 R T S
i A\ A
b=115 1 Y =~ 4~ 0 =6

AL AN i

=15 /! (VAN ! NV h_ s S ———

Domain: —p<0<16—¢ Domain: 0<p<2

TABLE 1. Cross sections.

The sine function has a #-period of 8, and a ¢-period of 2. However, the maximum
of the sine function must occur when the sine is positive, hence § must be in the
interval [0, 4], by Proposition 3. It is therefore sufficient to find the maximum of
tsingf on the region defined by 0 < ¢ < 2 and 0 < 6 < 4. We will use standard
techniques from multivariable calculus to maximize this function.

As tsing# is piecewise defined, we will consider the intervals: [0,2—¢], [2—¢, 4—¢]
and [4 — ¢, 4]. Recall that

1 _ 1
P2 —20+2 (p2—-1)+1’
which is positive for all ¢. When 6 is in the interval [0,2 — ¢], tsingd = o, and 6
in [4 — ¢,4] implies tsingd = a(4 — 0). The partial derivatives with respect to 6 of
these functions are o and —c, therefore tsingf is increasing with respect to 6 on
[0,2 — ¢], and decreasing in 6 on [4 — ¢, 4]. This implies the absolute maximum of

tsingf occurs when 6 is in the middle interval.
When 2 — ¢ <0 <4 — ¢,

o =

(0 —-2)(p—1)

tsingd = 1 .
sing + P 2012



12 KELLY DELP AND MICHAEL FILIPSKI

The partial derivatives are,

9 {1+ (9—2)(0#—1)} _ (20 —¢*)(0-2)

) ¢? — 20 + 2 (62 — 26 + 2)2
and
a[1+<9—2><¢—1>}: 61
a0 2 — 2042 P2 —20+2

These are both zero only when (¢,6) = (1,2). In this case, tsin;(2) = 1. We
now check the boundary conditions.
—0
When ¢ =0, 2 <60 <4, and tsingt = 2 + - which has a maximium of 1. Note

that tsingf has the same maximum when ¢ = 2 because of the ¢-periodic property
previously stated.
When 6 = 2 — ¢, we have

. -1
The derivative of this function is
v P —4hp+2
900 = 7 a1 2

This function is zero when ¢ = 2 + /2. Only one of these values, ¢ = 2 — /2, is
in the region under consideration. For this value of ¢, we have 6 = V2 and we see
the value of the sine function is

. 1 1
tSIHQ_\/iﬁ = 5 —+ ﬁ
When 6 = 4 — ¢, we have
 tsin (4 =1 =2 —1)
h(¢) = tsing(4 — ¢) =1 2573
The derivative of this function is
2 — @2
W)= ———"——
D= 2oy

For values of ¢ in the interval [0,2], this derivative is zero when ¢ = v/2. Then
0 =4—+/2, and

. 1 1
tSlnﬁ(4—\/§) = 5-’-%

We can therefore conclude for values in the region 0 < ¢ < 2, and 0 < 6 <
4, the function tsingf achieves its absolute maximum, % + %, in two locations:
(2 —+/2,v/2) and (V2,4 — V/2).

O

Corollary 1. The hypotenuse of a right triangle in taxicab space is not always the
longest side of the triangle.
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