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Abstract

A black and white image can be represented by a matrix containing numbers between 0 and 1; we describe a way to
visualize the squares of these image matrices, and more generally any non-negative power. The squares all share a
common feature, stripes, and we explain the mathematics behind these.

Introduction

This paper grew out of explorations in a Linear Algebra course. Most exercises found in a typical Linear
Algebra textbook require students to work with matrices of size n x m, where each dimension is at most 6.
Images provide good examples of objects that can be represented by large matrices. A black and white photo
can be represented by an array of numbers between 0 (black) and 1 (white). One can ask, what does the sum
of two images look like? Of course, when we add two image matrices togther, the maximum value of the
sum is likely greater then one. Averaging the entries gives a way to visualize the sum. Figure 1 contains an
image which illustrates this (c), as well as some intermediate linear combinations (b and d).
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Figure 1: Linear Combinations

After addition, the next operation studied by students is multiplication. A natural question arises.

Question 1. What does the square of an image look like?

We will give one potential answer to this question, and then look at more general powers of images.

Images of Squares

Suppose A is an n X n matrix corresponding to a black and white image. Since all of the entries in A are
non-negative, A will also have all non-negative entries. Also, since the value of any entry in A is at most 1,
the maximum entry in A2 is less than or equal to n. To create an image matrix we must rescale the values
of A? so that they all fall between 0 and 1. Let M denote the maximum value of the entries in A2. Any
increasing function f : [0, M] — [0, 1] could be applied to the entires of the matrix to create an image, with
different functions creating different effects. For the purposes of this paper, we will use the linear rescaling



function, f(z) = %;v Simply put, whenever we have a matrix with non-negative values, some of which
may be greater than one, we divide every entry in the matrix by the maximum entry in that matrix.

Experimenting with several images, we see that squares of image matrices all share similar characteristics—
they are “stripey”. Figure 2 contains examples of squares of portraits. Despite being very different from the
original images, some of the features, such as eyes, mouths and mustaches, seem to contribute to the square
image.
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Figure 2: Squares

The image squares suggest the question: “Where do the stripes come from?” Although only portraits
are shown above, we’ll argue that any image obtained by squaring will be striped. For evidence, consider the
random (150 x 150) matrix and its square in Figure 3.

e g -

(a) random matrix (b) random matrix squared
Figure 3: Randomness and order
The stripes in the squared image are a consequence of the Perron-Frobenius theorem, which is a state-

ment about the eigenvalues and eigenvectors of positive matices. Theorem 1 contains one version of the
Perron-Frobenius theorem, which can be found in many linear algebra texts. See [1] for example. A positive



matrix is one in which all entries are real and positive. Matrices corresponding to the images can always be
represented by positive matrices. Recall that a vector v is an eigenvector of A, with corresponding eigenvalue
A, if Av = .

Theorem 1 (Perron-Frobenius). Let A be a square positive matrix. Then A has a real eigenvalue \1 with
the following properties:

1. )\1>0

2. A1 has a corresponding positive eigenvector, which is unique up to scale.

3. If X is any other eigenvalue of A, then |\| < \1.

We will sometimes refer to the Perron-Frobenius eigenvalue (eigenvector) as the dominant eigenvalue
(eigenvector). Before discussing the stripe effect, we will consider a matrix of smaller dimension and discuss
a consequence of Theorem 1.
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The largest eigenvalue of this matrix is 5, and v = (1,1, 1) is the corresponding eigenvector. Every
vector in the positive octant of R? can be projected (by rescaling) into the larger triangle shown in Figure 4,
which is defined by the intersection of the plane defined by x+y+ 2 = 1 and the positive octant. The specific
plane into which we are projecting is not important; this plane was chosen for visualization purposes. The
important point is to think of vectors in this octant up to positive scale factors.

The point p = (1/3,1/3,1/3) shown in Figure 4 corresponds to the eigenvector v. Since v is the
dominant eigenvector, for any vector w in R? with positive entries, applying A to w pulls w closer to the
direction of v. In other words, after projecting Aw into the plane = + y + z = 1, the point Aw is closer to
p. In Figure 4 we show two triangles; the larger triangle 7" is defined by the standard basis vectors (1,0, 0),
(0,1,0) and (0,0, 1). The smaller triangle, A(T'), is the (projected) image of the larger triangle after applying
the matrix A. The entire large triangle is mapped into the smaller one, which contains the eigenvector v.

Figure 4: Action of A on R?

Now let’s return to an (n X n) image matrix A. For context, we note that all of the examples shown in
this paper have resolution between n = 150 and n = 625. Since all of the entries in the matrix A are positive,
the Perron-Frobenius theorem tells us the largest eigenvalue is a positive real number, and the corresponding
eigenvector v has all positive entries as well. Suppose A = [a|az|as|- - |a,], where a; denotes the i'"



column vector of A. We may think of A2 as
A? = AA = Alat|as|as|- - - |an] = [Aa1|Aaz| Aas| - - - | Aay) .

As in the three dimensional case, for any of the columns a;, the vector Aa; lies closer to the direction of the
eigenvector v. So, after rescaling by the maximum value of A2, the column vector of A2 which corresponds
to Aa; has values which are very close to the rescaled eigenvector v. Therefore, all of the column vectors of
the rescaled A? are very similar, creating the horizontal stripes in the square image.

The vertical stripes can similarly be explained. Let @; denote a row of A, then i*" row of A? is given
by a;A. Let w be the left eigenvector of A corresponding to the largest eigenvalue. (Note that the left
eigenvectors of a matrix are equal to the eigenvectors of the transpose of A.) After rescaling, all the rows of
A? are close to the rescaled vector w, creating the vertical stripes.

(a)F (b) Matrix with the dominant eigenvec-
tor of 7' in every row

(c) Matrix with the dominant eigenvec- (d) F?
tor of F' in every column

Figure 5: Matrices of an eigenvector

The above discussion is best illustrated with pictures. Figure 5a contains an image of this author ap-
preciating a work by artist Parastou Forouhar, taken in the Queensland Gallery of Modern Art in Brisbane,
Australia. Let F' denote the corresponding image matrix. Figure 5d contains an image created from F2.
In 5¢ we show the image corresponding to the matrix that has the rescaled Perron-Frobenius eigenvector of
F in every column. Compare to F'? and we see the eigenvector coincides with the horizontal stripes in the
square matrix. The image in 5b is from the matrix which has the (rescaled) Perron-Frobenius eigenvector of
FT in every row, which clearly corresponds to the vertical stripes.



A natural question arises: What does the cube (or higher power) of an image matrix look like? The
answer is that not very much interesting happens after the square. Essentially, the sequence of rescaled
power matrices converges to the rescaled product of the matrices found in Figure Sc and 5b, each of which
contains a single eigenvector repeated. The convergence happens very quickly. This is evident from how
closely the eigenvector matrices agree with the square image illustrated in Figure 5. It’s almost impossible
to detect with the naked eye the difference in even the “square” image and the limiting product matrix. All
of the higher powers also produce images that look like the image found in 5d.

Visualizing subgroups of GL(n, C)

For any integer n, the set of n X n matrices with entries in a field F and non-zero determinant forms a
group called the general linear group, GL(n, F). If F' = R this group is also a manifold of dimension n?.
In the introduction we described a way to interpolate between two matrices; this interpolation (Figure 1)
can be thought of as a straight line in the group GL(150,R), with start and end points giving the matrices
for the original images. In this section we’ll describe a way to visualize another sort of path in these large
dimensional (Lie) groups.

Let M be a diagonalizable matrix, so M = V~'DV were V is a matrix containing the eigenvectors
of M, and D is the matrix containing the eigenvalues of M on the diagonal. Using the diagonalization we
may define non-integer powers of M by M* = V~'D!V, where D is a diagonal matrix containing the ¢
power of the eigenvalues. For diagonalizable matrices, M defines a one-parameter subgroup of GL(n, F).
We will describe a way to visualize a path in this subgroup when M is a matrix corresponding to an image,
the results of which are shown in Figure 6.

The matrix M that we begin with comes from the image found in Figure 6i. Although this matrix is not
diagonalizable over R, it is diagonalizable over the complex numbers. (Thus far every image matrix we have
checked has been diagonalizable over C.) Therefore for non-integer values of ¢, the matrix M has complex
numbers. To create the images found in Figure 6, we take the norm of all the entries in M, and then use the
same normalization (divide by the max value of the matrix) to create an image. For ¢ = 0 we get the identity
matrix, and ¢ = 2 is the previously discussed square.

This is just one way to visualize the matrices with complex values. Another method we have tried with
reasonable success uses color; for each complex entry in the matrix M we assign the real part of a entry with
a value on the red spectrum, and the complex part a green value. It’s interesting to see where the numbers
with the largest imaginary values appear and disappear along the paths 0 <t < land1 <t < 2.

Methods and Conclusions

All of the images in this paper were created in Mathematica, which has built-in support for image processing.
For example, it is possible to “drag and drop” jpegs into a Mathematica notebook and immediately start
manipulating. The ease with which one can turn matrices into images makes us hopeful that these tools can
be used by undergraduates (with little to no programming knowledge) for class projects and exploration.

The mathematics used to explain the striped effect that occurs in the image can be found in a typical un-
dergraduate linear algebra class. However, this author thinks it is unlikely that she would have predicted the
effect. The images illuminated the mathematics, giving a nice illustration of the Perron-Frobenius Theorem.
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Figure 6: A" for 0<t <2



