
SYMPLECTIC GEOMETRY: LECTURE 1

LIAT KESSLER

1. Symplectic Linear Algebra

Symplectic vector spaces. Let V be a finite dimensional real vector
space and ω ∈ ∧2V ∗, i.e., ω is a bilinear antisymmetric 2-form:

ω : V × V → R, ω(u, v) = −ω(v, u)

(hence ω(v, v) = 0 for all v ∈ V ). We say that ω is symplectic if it is
non-degenerate: for every v 6= 0 there is u such that ω(v, u) 6= 0. We
call (V, ω) a symplectic vector space.

Claim 1.1. Let ω ∈ ∧2V ∗. The following are equivalent.

• The form ω is symplectic.
• The kernel

kerω := {v ∈ V : ω(v, u) = 0 for all u ∈ V }
is trivial.
• The map

w[ : V → V ∗, ω[(v)(u) = ω(v, u)

is an isomorphism.

A symplectomorphism φ between symplectic vector spaces (V, ω) and
(V ′, ω′) is a linear isomorphism φ : V → V ′ such that φ∗ω′ = ω. (By
definition, (φ∗ω′)(u, v) = ω′(φ(u), φ(v)).) If a symplectomorphism ex-
ists, (V, ω) and (V ′, ω′) are said to be symplectomorphic. Note that
being symplectomorphic is an equivalence relation on vector spaces of
finite dimension. The group of symplectomorphisms of (V, ω) is de-
noted Sp(V ).

Example. The standard symplectic vector space. Consider V =
R2n with basis (e1, . . . , en, f1, . . . , fn). Then the antisymmetric bilinear
form defined by

ω0(ei, ej) = 0, ω0(fi, fj) = 0, ω0(ei, fj) = δi,j

is a symplectic form. Can you give examples of symplectomorphisms?
E.g., A(ej) = fj, A(fj) = −ej, or A(ej) = ej + fj, A(fj) = fj.

1



2 LIAT KESSLER

We will show that every symplectic vector space is symplectomorphic
to the standard one.

Lemma 1.1. For (V, ω), there exists a basis (e1, . . . , en, f1, . . . , fn) of
V such that ω(ei, fj) = δi,j and ω(ei, ej) = ω(fi, fj) = 0.

Such a basis is called a symplectic basis.

Remarks. (1) A choice of a symplectic basis for V, ω) yields a sym-
plectomorphism to (R2n, ω0). Hence the dimension of a sym-
plectic vector space is the only invariant of its isomorphism
type.

(2) A symplectic basis is not unique, but is called a “canonical”
basis.

(3) Using a symplectic basis, we can write ω = e∗1 ∧ f ∗1 + . . . +
e∗n ∧ f ∗n where e∗1, . . . , e

∗
n, f

∗
1 , . . . , f

∗
n is a basis of V ∗ dual to the

symplectic basis. It is easy to see (e.g., by induction) then that
the n-th exterior power

ωn = ω ∧ . . . ∧ ω = alt(ω ⊗ . . .⊗ ω) = n!e∗1 ∧ f ∗1 ∧ . . . ∧ e∗n ∧ f ∗n,

in particular, ωn(e1, f1, . . . , en, fn) = n! 6= 0. So ωn is a non-
vanishing top degree form.

Before we prove the lemma, we define some of the terms that we will
use in the proof and later on.

Subspaces of a symplectic vector space. The symplectic orthogo-
nal complement of a linear subspace W ⊆ V is defined as the subspace

W ω = {v ∈ V | ω(v, w) = 0 for all w ∈ W}.

We note that W ω is the pre-image of the annihilator ann(W ) ⊆ V ∗

under the isomorphism ω[. Therefore

dimW ω + dimW = dimV, (W ω)ω = W.

A linear subspace W is called isotropic if W ⊆ W ω; coisotropic if
W ω ⊆ W ; symplectic if W ∩W ω = 0; Lagrangian if W = W ω. For
example, in (R2n, ω0), the span of e1, e2 is isotropic; the span of e1, f1
is symplectic; the span of (e1, . . . , en) (or of (f1, . . . , fn)) is Lagrangian.

Notice that every 1-dimensional subspace is isotropic (ask: ω(v, v) =
0), and that W is isotropic iff W ω is coisotropic. We will use these facts
to prove the following lemma.

Lemma 1.2. In any symplectic vector space (V, ω) there is a La-
grangian subspace.
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Proof. As noted, there exists an isotropic subspace. Let L be an
isotropic subspace that is not contained in any isotropic subspace of
strictly larger dimension. Then L must be Lagrangian: otherwise, there
is v ∈ Lω r L and L⊕ span(v) > L is isotropic. �

Consequently, the dimension of a symplectic vector space is even:
dimV = dimL+ dimLω = 2 dimL for a Lagrangian subspace L. Note
that the dimension of an isotropic subspace is ≤ 1

2
dimV .

You will prove a stronger version of the lemma in Problem Set 1:

Lemma 1.3. Given a Lagrangian subspace M in (V, ω), there is a
Lagrangian subspace L such that L ∩M = {0}.

Sketch of proof: Now let L be a maximal isotropic subspace with
L ∩M = {0}. If it is not Lagrangian consider the quotient π : Lω →
Lω/L. The image π(M∩Lω) is isotropic hence of positive codimension.
Therefore, one can choose an 1-dimensional subspace F ⊂ Lω/L such
that F ∩π(M ∩Lω) = {0}. Then L′ = π−1(F ) is an isotropic subspace
that contains L and whose intersection with M is empty.

Proof of Lemma 1.1. Take two Lagrangian subspaces L,M of (V, ω)
such that L ∩M = {0}. Since Lω = L ∩M = {0}, the composition

M ↪→ V
ω[

−→ V ∗ → L∗,

where the last map is the dual to the inclusion L ↪→ V , is an isomor-
phism. Let e1, . . . , en be a basis for L and f1, . . . , fn the dual basis for
L∗ ∼= M . �

We will give another proof of the lemma using compatible complex
structures.

Compatible complex structures.

Example. Let V be a complex vector space of complex dimension n,
with a Hermitian metric (complex positive definite inner product, com-
plex linear with respect to the second entry and complex anti-linear
with respect to the first entry) h : V × V → C. Then ω = Im(h) is a
symplectic form on V (considered as a real vector space) (check). Ev-
ery unitary map V → V is a symplectomorphism. Note that g = Re(h)
is a real positive definite inner product (check).

Can you always find a Hermitian metric on a finite dim complex
vector space? (Sure. Since the answer is clearly yes in Cn, e.g.,
h(u, v) = ūT Id v.)



4 LIAT KESSLER

Lemma 1.4. Wirtinger’s inequality: Let V be a complex linear
space of dimension n with a positive definite Hermitian form h on V .
Let g = Re(h) and ω = Im(h).

For X1, . . . , X2k in V that are orthonormal with respect to g, we have

|ωk(X1, . . . , X2k)| ≤ k!,

with equality holding precisely when W = span(X1, . . . , X2k) is a com-
plex k-dimensional subspace of L.

Proof. Note that the value of |ωk(X1, . . . , X2k)| does not depend on the
choice of an orthonormal basis to W , and that there is an orthonormal
basis X1, . . . , X2k such that

ω|W =
k∑

j=1

ω(X2j−1, x2j)(X
∗
2j−1 ∧X∗2j),

where X∗i is the dual to Xi. (Check!) So

|ωk(X1, . . . , X2k)| = k!πk
j=1|ω(X2j−1, X2j)|.

Therefore it is enough to check the case k = 1.
If k = 1 then ω(X1, X1) = 0 = ω(x2, X2) (since antisymmetric)

hence h(X1, X1) = g(X1, X1) = 1 = h(X2, X2), and h(X1, X2) is
in
√
−1R (since Reh(X1, X2) = g(X1, X2) = 0 hence ω(X1, X2) =

−
√
−1h(X1, X2) = h(iX1, X2). Therefore, by Schwartz’s inequality

(applied to h):

|ω(X1, X2)| = |h(
√
−1X1, X2)| ≤ h(

√
−1X1,

√
−1X1)h(X2, X2) = 1

with equality if and only if X2 = cX1 for a complex number c 6= 0.
Since h(X1, X1) = 1 = h(X2, X2) and Re(h(X1, X2)) = 0, we have
c2 = ±1 and c 6= ±1, i.e., c = ±i and span(X1, X2 = ±iX1) is a
complex 1-dimensional subspace.

�

We now go on the reverse direction, starting from a real symplectic
vector space. A complex structure on a real vector space V is an auto-
morphism J : V → V such that J2 = − Id. A complex structure J on
a symplectic vector space (V, ω) is ω-compatible if

g(u, v) = ω(u, Jv)

defines a positive definite inner product. This implies that

for v 6= 0, ω(v, Jv) = g(v, v) > 0,

and

ω(Ju, Jw) = g(Ju, v) = g(v, Ju) = ω(v, j2u) = −ω(v, u) = ω(u, v),
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i.e., J is a symplectomorphism. Moreover, a complex structure J is
compatible with ω iff these two conditions hold: since ω is bilinear so
is g, the first condition is equivalent to g being positive definite; the
second condition is equivalent to g being symmetric.

Example. Consider the standard symplectic vector space (R2n, ω0). The
complex structure given by Jei = fi, Jfi = −ei is compatible with ω0

(we noticed before that it is a symplectomorphism; also, by defini-
tion of ω0 and J , ω0(ei, Jei) = ω0(ei, fi) = 1 > 0 and ω0(fi, Jfi) =
ω0(fi,−ei) = 1 > 0). This identifies (R2n, ω0, J) with Cn with Im(h)
for h(u, v) = ūT Id v.

In general, a compatible complex structure on (V, ω) makes V a
complex vector space with Hermitian metric

h(u, v) = g(u, v) +
√
−1ω(u, v).

(h is complex linear with respect to the second entry, h(u, Jv) =√
−1h(u, v), and complex anti-linear with respect to the first entry,

h(Ju, v) = −
√
−1h(u, v), and h(v, v) > 0 for v 6= 0.)

Lemma 1.5. Let (V, ω) be a symplectic vector space. Given a positive
inner product G on V , there is a linear isomorphism A : V → V such
that

J = JG = (
√
AA∗)

−1
A

is well defined and is a compatible complex structure on (V, ω).

The factorization A = (
√
AA∗)JG is called the polar decomposition

of A.

Proof. (As noted before), since ω and G are non-degenerate, the maps
ω[, G[ : V → V ∗ are isomorphisms between V and V ∗. Hence ω(u, v) =
G(Au, v) for some linear isomorphism A : V → V . The map A is skew-
adjoint (with respect to G) since

G(A∗u, v) = G(u,Av) = G(Av, u) = ω(v, u) = −ω(u, v) = G(−Au, v),

hence A∗ = −A. Note that AA∗ is symmetric ((AA∗)∗ = AA∗), and
positive: G(AA∗u, u) = G(A∗u,A∗u) > 0 for u 6= 0. We conclude that
AA∗ diagonalizes with positive eigenvalues λi:

AA∗ = B diag(λ1, . . . , λn)B−1.

So we can define√
AA∗ = B diag(

√
λ1, . . . ,

√
λn)B−1;

and it is symmetric and positive definite. Let

J = JG := (
√
AA∗)

−1
A.
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Since A commutes with
√
AA∗ =

√
−A2, we get that J commutes with

A. Since A∗ = −A, also J∗ = −J . Hence, since JJ∗ = Id (check), we
have J2 = − Id, i.e., J is a complex structure. We get

ω(Ju, Jv) = G(AJu, Jv) = G(JAu, Jv) = G(JJ∗Au, v) = G(Au, v) = ω(u, v),

and

ω(u, Ju) = G(Au, Ju) = G(J∗Au, u) = G(
√
AA∗u, u) > 0

for u 6= 0 (since
√
AA∗ is positive definite). Hence J is ω-compatible.

�

Remarks. (1) In general, the positive inner product defined by ω(u, Jv)
is different from G(u, v). However, if J is given and G(u, v) =
ω(u, Jv) then JG = J . (In that case, A = J∗ and AA∗ = Id.)

(2) The construction is canonical. The map
√
AA∗ does not depend

on the choice of B nor on the ordering of the eigenvalues in the
diagonal map.

Denote by J (V, ω) the space of compatible complex structures. We
equip it with the subset topology induced from the topology on the
space of linear endomorphisms of V . Let Riem(V ) denote the space of
positive definite inner products; it is a convex open subset of the space
of symmetric bilinear forms.

The previous lemma and Remarks imply the following result.

Corollary 1.1. The map G 7→ JG is a continuous and surjective map
F : Riem(V )→ J (V, ω). Furthermore (by construction) for H : J (V, ω)→
Riem(V ) associating to J the inner product ω(u, Jv) is a section, i.e.,
F ◦H(J) = J .

Theorem 1.1. The space J (V, ω) is contractible and not empty.

Proof. The existence of a compatible complex structure follows directly
from the previous Corollary and the fact that Riem(V ) is not empty.
Since Riem(V ) is a convex subset of a vector space, it is contractible.
If Φ: I ×Riem(v)→ Riem(V ) is a contraction: Φ0 = IdRiem(V ) and Φ1

is a map onto a point, then F ◦Φ ◦ (Id×H) : I ×J (M,ω)→ J (M,ω)
is a contraction of J (M,ω) to a point. �

We deduce a second proof for the existence of a symplectic basis for
(V, ω).

Proof of Lemma 1.1. Let J be an ω-compatible complex structure on
V (exists by the previous theorem). Let h be the Hermitian form:

h(u, v) = ω(u, Jv) +
√
−1ω(u, v).
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Pick an orthonormal (w.r.t h) basis of (V, J) as a complex space:
(e1, . . . , en). Let fi = Jei Then (e1, . . . , en, f1, . . . , fn) is a symplec-
tic basis:

ω(ei, fj) = Im(h(ei, Jej)) = Im(
√
−1h(ei, ej)) = Im(

√
−1δi,j) = δi,j,

ω(ei, ej) = Im(h(ei, ej)) = Im δi,j = 0,

and similarly ω(fi, fj) = 0. �

Remark 1.1. The two proofs we gave to Lemma 1.1 are related. The
transition from the second proof to the first one is by the following
claim: If J is ω-compatible and L is a Lagrangian subspace of (V, ω)
then JL is also Lagrangian and JL = L⊥, where ⊥ denotes orthogo-
nallity with respect to the positive inner product g(u, v) = ω(u, Jv).

The two proofs used two important tools of symplectic geometry:
Lagrangian sub-manifolds and compatible almost complex structures,
which we will discuss in the next talk, when we move from symplectic
vector spaces to symplectic manifolds.
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