SYMPLECTIC GEOMETRY: LECTURE 1

LIAT KESSLER

1. Symplectic Linear Algebra

Symplectic vector spaces. Let V be a finite dimensional real vector space and $\omega \in \wedge^2 V^*$, i.e., ω is a bilinear antisymmetric 2-form:

$$\omega \colon V \times V \to \mathbb{R}, \, \omega(u, v) = -\omega(v, u)$$

(hence $\omega(v, v) = 0$ for all $v \in V$). We say that ω is symplectic if it is non-degenerate: for every $v \neq 0$ there is u such that $\omega(v, u) \neq 0$. We call (V, ω) a symplectic vector space.

Claim 1.1. Let $\omega \in \wedge^2 V^*$. The following are equivalent.

- The form ω is symplectic.
- The kernel

 $\ker \omega := \{ v \in V : \omega(v, u) = 0 \text{ for all } u \in V \}$

is trivial.

• The map

$$w^{\flat} \colon V \to V^*, \omega^{\flat}(v)(u) = \omega(v, u)$$

is an isomorphism.

A symplectomorphism ϕ between symplectic vector spaces (V, ω) and (V', ω') is a linear isomorphism $\phi: V \to V'$ such that $\phi^* \omega' = \omega$. (By definition, $(\phi^*\omega')(u,v) = \omega'(\phi(u),\phi(v))$.) If a symplectomorphism exists, (V, ω) and (V', ω') are said to be symplectomorphic. Note that being symplectomorphic is an equivalence relation on vector spaces of finite dimension. The group of symplectomorphisms of (V, ω) is denoted $\operatorname{Sp}(V)$.

Example. The standard symplectic vector space. Consider V = \mathbb{R}^{2n} with basis $(e_1, \ldots, e_n, f_1, \ldots, f_n)$. Then the antisymmetric bilinear form defined by

$$\omega_0(e_i, e_j) = 0, \ \omega_0(f_i, f_j) = 0, \ \omega_0(e_i, f_j) = \delta_{i,j}$$

is a symplectic form. Can you give examples of symplectomorphisms? E.g., $A(e_j) = f_j$, $A(f_j) = -e_j$, or $A(e_j) = e_j + f_j$, $A(f_j) = f_j$.

LIAT KESSLER

We will show that every symplectic vector space is symplectomorphic to the standard one.

Lemma 1.1. For (V, ω) , there exists a basis $(e_1, \ldots, e_n, f_1, \ldots, f_n)$ of V such that $\omega(e_i, f_j) = \delta_{i,j}$ and $\omega(e_i, e_j) = \omega(f_i, f_j) = 0$.

Such a basis is called a *symplectic basis*.

- Remarks. (1) A choice of a symplectic basis for V, ω) yields a symplectomorphism to $(\mathbb{R}^{2n}, \omega_0)$. Hence the dimension of a symplectic vector space is the only invariant of its isomorphism type.
 - (2) A symplectic basis is not unique, but is called a "canonical" basis.
 - (3) Using a symplectic basis, we can write $\omega = e_1^* \wedge f_1^* + \ldots + e_n^* \wedge f_n^*$ where $e_1^*, \ldots, e_n^*, f_1^*, \ldots, f_n^*$ is a basis of V^* dual to the symplectic basis. It is easy to see (e.g., by induction) then that the *n*-th exterior power

$$\omega^n = \omega \wedge \ldots \wedge \omega = \operatorname{alt}(\omega \otimes \ldots \otimes \omega) = n! e_1^* \wedge f_1^* \wedge \ldots \wedge e_n^* \wedge f_n^*,$$

in particular, $\omega^n(e_1, f_1, \ldots, e_n, f_n) = n! \neq 0$. So ω^n is a non-vanishing top degree form.

Before we prove the lemma, we define some of the terms that we will use in the proof and later on.

Subspaces of a symplectic vector space. The symplectic orthogonal complement of a linear subspace $W \subseteq V$ is defined as the subspace

$$W^{\omega} = \{ v \in V \mid \omega(v, w) = 0 \text{ for all } w \in W \}.$$

We note that W^{ω} is the pre-image of the annihilator $\operatorname{ann}(W) \subseteq V^*$ under the isomorphism ω^{\flat} . Therefore

$$\dim W^{\omega} + \dim W = \dim V, \ (W^{\omega})^{\omega} = W.$$

A linear subspace W is called *isotropic* if $W \subseteq W^{\omega}$; *coisotropic* if $W^{\omega} \subseteq W$; *symplectic* if $W \cap W^{\omega} = 0$; *Lagrangian* if $W = W^{\omega}$. For example, in $(\mathbb{R}^{2n}, \omega_0)$, the span of e_1, e_2 is isotropic; the span of e_1, f_1 is symplectic; the span of (e_1, \ldots, e_n) (or of (f_1, \ldots, f_n)) is Lagrangian.

Notice that every 1-dimensional subspace is isotropic (ask: $\omega(v, v) = 0$), and that W is isotropic iff W^{ω} is coisotropic. We will use these facts to prove the following lemma.

Lemma 1.2. In any symplectic vector space (V, ω) there is a Lagrangian subspace.

 $\mathbf{2}$

Proof. As noted, there exists an isotropic subspace. Let L be an isotropic subspace that is not contained in any isotropic subspace of strictly larger dimension. Then L must be Lagrangian: otherwise, there is $v \in L^{\omega} \setminus L$ and $L \oplus \operatorname{span}(v) > L$ is isotropic. \Box

Consequently, the dimension of a symplectic vector space is even: $\dim V = \dim L + \dim L^{\omega} = 2 \dim L$ for a Lagrangian subspace L. Note that the dimension of an isotropic subspace is $\leq \frac{1}{2} \dim V$.

You will prove a stronger version of the lemma in Problem Set 1:

Lemma 1.3. Given a Lagrangian subspace M in (V, ω) , there is a Lagrangian subspace L such that $L \cap M = \{0\}$.

Sketch of proof: Now let L be a maximal isotropic subspace with $L \cap M = \{0\}$. If it is not Lagrangian consider the quotient $\pi: L^{\omega} \to L^{\omega}/L$. The image $\pi(M \cap L^{\omega})$ is isotropic hence of positive codimension. Therefore, one can choose an 1-dimensional subspace $F \subset L^{\omega}/L$ such that $F \cap \pi(M \cap L^{\omega}) = \{0\}$. Then $L' = \pi^{-1}(F)$ is an isotropic subspace that contains L and whose intersection with M is empty.

Proof of Lemma 1.1. Take two Lagrangian subspaces L, M of (V, ω) such that $L \cap M = \{0\}$. Since $L^{\omega} = L \cap M = \{0\}$, the composition

$$M \hookrightarrow V \xrightarrow{\omega^{\flat}} V^* \to L^*,$$

where the last map is the dual to the inclusion $L \hookrightarrow V$, is an isomorphism. Let e_1, \ldots, e_n be a basis for L and f_1, \ldots, f_n the dual basis for $L^* \cong M$.

We will give another proof of the lemma using compatible complex structures.

Compatible complex structures.

Example. Let V be a complex vector space of complex dimension n, with a Hermitian metric (complex positive definite inner product, complex linear with respect to the second entry and complex anti-linear with respect to the first entry) $h: V \times V \to \mathbb{C}$. Then $\omega = \text{Im}(h)$ is a symplectic form on V (considered as a real vector space) (check). Every unitary map $V \to V$ is a symplectomorphism. Note that g = Re(h) is a real positive definite inner product (check).

Can you always find a Hermitian metric on a finite dim complex vector space? (Sure. Since the answer is clearly yes in \mathbb{C}^n , e.g., $h(u, v) = \bar{u}^T \operatorname{Id} v$.)

Lemma 1.4. Wirtinger's inequality: Let V be a complex linear space of dimension n with a positive definite Hermitian form h on V. Let g = Re(h) and $\omega = \text{Im}(h)$.

For X_1, \ldots, X_{2k} in V that are orthonormal with respect to g, we have

 $|\omega^k(X_1,\ldots,X_{2k})| \le k!,$

with equality holding precisely when $W = \text{span}(X_1, \ldots, X_{2k})$ is a complex k-dimensional subspace of L.

Proof. Note that the value of $|\omega^k(X_1, \ldots, X_{2k})|$ does not depend on the choice of an orthonormal basis to W, and that there is an orthonormal basis X_1, \ldots, X_{2k} such that

$$\omega|_{W} = \sum_{j=1}^{k} \omega(X_{2j-1}, x_{2j})(X_{2j-1}^{*} \wedge X_{2j}^{*}),$$

where X_i^* is the dual to X_i . (Check!) So

$$|\omega^{k}(X_{1},\ldots,X_{2k})| = k!\pi_{j=1}^{k}|\omega(X_{2j-1},X_{2j})|.$$

Therefore it is enough to check the case k = 1.

If k = 1 then $\omega(X_1, X_1) = 0 = \omega(x_2, X_2)$ (since antisymmetric) hence $h(X_1, X_1) = g(X_1, X_1) = 1 = h(X_2, X_2)$, and $h(X_1, X_2)$ is in $\sqrt{-1}\mathbb{R}$ (since $\operatorname{Re} h(X_1, X_2) = g(X_1, X_2) = 0$ hence $\omega(X_1, X_2) = -\sqrt{-1}h(X_1, X_2) = h(iX_1, X_2)$. Therefore, by Schwartz's inequality (applied to h):

$$|\omega(X_1, X_2)| = |h(\sqrt{-1}X_1, X_2)| \le h(\sqrt{-1}X_1, \sqrt{-1}X_1)h(X_2, X_2) = 1$$

with equality if and only if $X_2 = cX_1$ for a complex number $c \neq 0$. Since $h(X_1, X_1) = 1 = h(X_2, X_2)$ and $\operatorname{Re}(h(X_1, X_2)) = 0$, we have $c^2 = \pm 1$ and $c \neq \pm 1$, i.e., $c = \pm i$ and $\operatorname{span}(X_1, X_2 = \pm iX_1)$ is a complex 1-dimensional subspace.

We now go on the reverse direction, starting from a real symplectic vector space. A *complex structure* on a real vector space V is an automorphism $J: V \to V$ such that $J^2 = -$ Id. A complex structure J on a symplectic vector space (V, ω) is ω -compatible if

$$g(u, v) = \omega(u, Jv)$$

defines a positive definite inner product. This implies that

for
$$v \neq 0$$
, $\omega(v, Jv) = g(v, v) > 0$,

and

$$\omega(Ju, Jw) = g(Ju, v) = g(v, Ju) = \omega(v, j^2u) = -\omega(v, u) = \omega(u, v),$$

4

i.e., J is a symplectomorphism. Moreover, a complex structure J is compatible with ω iff these two conditions hold: since ω is bilinear so is g, the first condition is equivalent to g being positive definite; the second condition is equivalent to g being symmetric.

Example. Consider the standard symplectic vector space $(\mathbb{R}^{2n}, \omega_0)$. The complex structure given by $Je_i = f_i$, $Jf_i = -e_i$ is compatible with ω_0 (we noticed before that it is a symplectomorphism; also, by definition of ω_0 and J, $\omega_0(e_i, Je_i) = \omega_0(e_i, f_i) = 1 > 0$ and $\omega_0(f_i, Jf_i) = \omega_0(f_i, -e_i) = 1 > 0$). This identifies $(\mathbb{R}^{2n}, \omega_0, J)$ with \mathbb{C}^n with Im(h) for $h(u, v) = \bar{u}^T \text{ Id } v$.

In general, a compatible complex structure on (V, ω) makes V a complex vector space with Hermitian metric

$$h(u, v) = g(u, v) + \sqrt{-1}\omega(u, v).$$

(*h* is complex linear with respect to the second entry, $h(u, Jv) = \sqrt{-1}h(u, v)$, and complex anti-linear with respect to the first entry, $h(Ju, v) = -\sqrt{-1}h(u, v)$, and h(v, v) > 0 for $v \neq 0$.)

Lemma 1.5. Let (V, ω) be a symplectic vector space. Given a positive inner product G on V, there is a linear isomorphism $A: V \to V$ such that

$$J = J^G = \left(\sqrt{AA^*}\right)^{-1}A$$

is well defined and is a compatible complex structure on (V, ω) .

The factorization $A = (\sqrt{AA^*})J^G$ is called the *polar decomposition* of A.

Proof. (As noted before), since ω and G are non-degenerate, the maps $\omega^{\flat}, G^{\flat} \colon V \to V^*$ are isomorphisms between V and V^* . Hence $\omega(u, v) = G(Au, v)$ for some linear isomorphism $A \colon V \to V$. The map A is skewadjoint (with respect to G) since

$$G(A^*u, v) = G(u, Av) = G(Av, u) = \omega(v, u) = -\omega(u, v) = G(-Au, v),$$

hence $A^* = -A$. Note that AA^* is symmetric $((AA^*)^* = AA^*)$, and

positive: $G(AA^*u, u) = G(A^*u, A^*u) > 0$ for $u \neq 0$. We conclude that AA^* diagonalizes with positive eigenvalues λ_i :

$$AA^* = B \operatorname{diag}(\lambda_1, \dots, \lambda_n)B^{-1}.$$

So we can define

$$\sqrt{AA^*} = B \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})B^{-1};$$

and it is symmetric and positive definite. Let

$$J = J^G := \left(\sqrt{AA^*}\right)^{-1} A.$$

LIAT KESSLER

Since A commutes with $\sqrt{AA^*} = \sqrt{-A^2}$, we get that J commutes with A. Since $A^* = -A$, also $J^* = -J$. Hence, since $JJ^* = \text{Id}$ (check), we have $J^2 = -\text{Id}$, i.e., J is a complex structure. We get

 $\omega(Ju,Jv)=G(AJu,Jv)=G(JAu,Jv)=G(JJ^*Au,v)=G(Au,v)=\omega(u,v),$ and

$$\omega(u,Ju) = G(Au,Ju) = G(J^*Au,u) = G(\sqrt{AA^*}u,u) > 0$$

for $u \neq 0$ (since $\sqrt{AA^*}$ is positive definite). Hence J is ω -compatible.

Remarks. (1) In general, the positive inner product defined by $\omega(u, Jv)$ is different from G(u, v). However, if J is given and $G(u, v) = \omega(u, Jv)$ then $J^G = J$. (In that case, $A = J^*$ and $AA^* = \text{Id.}$)

(2) The construction is canonical. The map $\sqrt{AA^*}$ does not depend on the choice of *B* nor on the ordering of the eigenvalues in the diagonal map.

Denote by $\mathcal{J}(V, \omega)$ the space of compatible complex structures. We equip it with the subset topology induced from the topology on the space of linear endomorphisms of V. Let $\operatorname{Riem}(V)$ denote the space of positive definite inner products; it is a convex open subset of the space of symmetric bilinear forms.

The previous lemma and Remarks imply the following result.

Corollary 1.1. The map $G \mapsto J^G$ is a continuous and surjective map $F \colon \operatorname{Riem}(V) \to \mathcal{J}(V, \omega)$. Furthermore (by construction) for $H \colon \mathcal{J}(V, \omega) \to \operatorname{Riem}(V)$ associating to J the inner product $\omega(u, Jv)$ is a section, i.e., $F \circ H(J) = J$.

Theorem 1.1. The space $\mathcal{J}(V, \omega)$ is contractible and not empty.

Proof. The existence of a compatible complex structure follows directly from the previous Corollary and the fact that $\operatorname{Riem}(V)$ is not empty. Since $\operatorname{Riem}(V)$ is a convex subset of a vector space, it is contractible. If $\Phi: I \times \operatorname{Riem}(v) \to \operatorname{Riem}(V)$ is a contraction: $\Phi_0 = \operatorname{Id}_{\operatorname{Riem}(V)}$ and Φ_1 is a map onto a point, then $F \circ \Phi \circ (\operatorname{Id} \times H): I \times \mathcal{J}(M, \omega) \to \mathcal{J}(M, \omega)$ is a contraction of $\mathcal{J}(M, \omega)$ to a point. \Box

We deduce a second proof for the existence of a symplectic basis for (V, ω) .

Proof of Lemma 1.1. Let J be an ω -compatible complex structure on V (exists by the previous theorem). Let h be the Hermitian form:

$$h(u, v) = \omega(u, Jv) + \sqrt{-1\omega(u, v)}.$$

6

Pick an orthonormal (w.r.t h) basis of (V, J) as a complex space: (e_1, \ldots, e_n) . Let $f_i = Je_i$ Then $(e_1, \ldots, e_n, f_1, \ldots, f_n)$ is a symplectic basis:

$$\omega(e_i, f_j) = \operatorname{Im}(h(e_i, Je_j)) = \operatorname{Im}(\sqrt{-1}h(e_i, e_j)) = \operatorname{Im}(\sqrt{-1}\delta_{i,j}) = \delta_{i,j},$$

$$\omega(e_i, e_j) = \operatorname{Im}(h(e_i, e_j)) = \operatorname{Im}\delta_{i,j} = 0,$$

and similarly $\omega(f_i, f_j) = 0.$

Remark 1.1. The two proofs we gave to Lemma 1.1 are related. The transition from the second proof to the first one is by the following claim: If J is ω -compatible and L is a Lagrangian subspace of (V, ω) then JL is also Lagrangian and $JL = L^{\perp}$, where \perp denotes orthogonallity with respect to the positive inner product $g(u, v) = \omega(u, Jv)$.

The two proofs used two important tools of symplectic geometry: Lagrangian sub-manifolds and compatible almost complex structures, which we will discuss in the next talk, when we move from symplectic vector spaces to symplectic manifolds.

References

- [1] Eckhard Meinrenken, *Symplectic Geometry Lecture Notes*, University of Toronto.
- [2] Ana Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics, Springer-Verlag, 2008.