SYMPLECTIC GEOMETRY: LECTURE 1

LIAT KESSLER

1. Symplectic Linear Algebra

Symplectic vector spaces. Let V be a finite dimensional real vector space and $\omega \in \wedge^2 V^*$, i.e., ω is a bilinear antisymmetric 2-form:

$$
\omega \colon V \times V \to \mathbb{R}, \, \omega(u, v) = -\omega(v, u)
$$

(hence $\omega(v, v) = 0$ for all $v \in V$). We say that ω is *symplectic* if it is non-degenerate: for every $v \neq 0$ there is u such that $\omega(v, u) \neq 0$. We call (V, ω) a symplectic vector space.

Claim 1.1. Let $\omega \in \wedge^2 V^*$. The following are equivalent.

- The form ω is symplectic.
- The kernel

 $\ker \omega := \{v \in V : \omega(v, u) = 0 \text{ for all } u \in V\}$

is trivial.

• The map

$$
w^{\flat} \colon V \to V^*, \omega^{\flat}(v)(u) = \omega(v, u)
$$

is an isomorphism.

A symplectomorphism ϕ between symplectic vector spaces (V, ω) and (V', ω') is a linear isomorphism $\phi \colon V \to V'$ such that $\phi^* \omega' = \omega$. (By definition, $(\phi^*\omega')(u, v) = \omega'(\phi(u), \phi(v))$. If a symplectomorphism exists, (V, ω) and (V', ω') are said to be *symplectomorphic*. Note that being symplectomorphic is an equivalence relation on vector spaces of finite dimension. The group of symplectomorphisms of (V, ω) is denoted $Sp(V)$.

Example. The standard symplectic vector space. Consider $V =$ \mathbb{R}^{2n} with basis $(e_1, \ldots, e_n, f_1, \ldots, f_n)$. Then the antisymmetric bilinear form defined by

$$
\omega_0(e_i, e_j) = 0, \, \omega_0(f_i, f_j) = 0, \, \omega_0(e_i, f_j) = \delta_{i,j}
$$

is a symplectic form. Can you give examples of symplectomorphisms? E.g., $A(e_j) = f_j$, $A(f_j) = -e_j$, or $A(e_j) = e_j + f_j$, $A(f_j) = f_j$.

2 LIAT KESSLER

We will show that every symplectic vector space is symplectomorphic to the standard one.

Lemma 1.1. For (V, ω) , there exists a basis $(e_1, \ldots, e_n, f_1, \ldots, f_n)$ of V such that $\omega(e_i, f_j) = \delta_{i,j}$ and $\omega(e_i, e_j) = \omega(f_i, f_j) = 0$.

Such a basis is called a *symplectic basis*.

- Remarks. (1) A choice of a symplectic basis for V, ω) yields a symplectomorphism to $(\mathbb{R}^{2n}, \omega_0)$. Hence the dimension of a symplectic vector space is the only invariant of its isomorphism type.
	- (2) A symplectic basis is not unique, but is called a "canonical" basis.
	- (3) Using a symplectic basis, we can write $\omega = e_1^* \wedge f_1^* + \ldots$ $e_n^* \wedge f_n^*$ where $e_1^*, \ldots, e_n^*, f_1^*, \ldots, f_n^*$ is a basis of V^* dual to the symplectic basis. It is easy to see (e.g., by induction) then that the n-th exterior power

$$
\omega^n = \omega \wedge \ldots \wedge \omega = alt(\omega \otimes \ldots \otimes \omega) = n!e_1^* \wedge f_1^* \wedge \ldots \wedge e_n^* \wedge f_n^*,
$$

in particular, $\omega^n(e_1, f_1, \ldots, e_n, f_n) = n! \neq 0$. So ω^n is a nonvanishing top degree form.

Before we prove the lemma, we define some of the terms that we will use in the proof and later on.

Subspaces of a symplectic vector space. The symplectic orthogonal complement of a linear subspace $W \subseteq V$ is defined as the subspace

$$
W^{\omega} = \{ v \in V \mid \omega(v, w) = 0 \text{ for all } w \in W \}.
$$

We note that W^{ω} is the pre-image of the annihilator ann $(W) \subseteq V^*$ under the isomorphism ω^{\flat} . Therefore

$$
\dim W^{\omega} + \dim W = \dim V, \ (W^{\omega})^{\omega} = W.
$$

A linear subspace W is called *isotropic* if $W \subseteq W^{\omega}$; *coisotropic* if $W^{\omega} \subseteq W$; symplectic if $W \cap W^{\omega} = 0$; Lagrangian if $W = W^{\omega}$. For example, in $(\mathbb{R}^{2n}, \omega_0)$, the span of e_1, e_2 is isotropic; the span of e_1, f_1 is symplectic; the span of (e_1, \ldots, e_n) (or of (f_1, \ldots, f_n)) is Lagrangian.

Notice that every 1-dimensional subspace is isotropic (ask: $\omega(v, v)$) 0), and that W is isotropic iff W^{ω} is coisotropic. We will use these facts to prove the following lemma.

Lemma 1.2. In any symplectic vector space (V, ω) there is a Lagrangian subspace.

Proof. As noted, there exists an isotropic subspace. Let L be an isotropic subspace that is not contained in any isotropic subspace of strictly larger dimension. Then L must be Lagrangian: otherwise, there is $v \in L^{\omega} \setminus L$ and $L \oplus \text{span}(v) > L$ is isotropic.

Consequently, the dimension of a symplectic vector space is even: $\dim V = \dim L + \dim L^{\omega} = 2 \dim L$ for a Lagrangian subspace L. Note that the dimension of an isotropic subspace is $\leq \frac{1}{2}$ $rac{1}{2}$ dim V.

You will prove a stronger version of the lemma in Problem Set 1:

Lemma 1.3. Given a Lagrangian subspace M in (V, ω) , there is a Lagrangian subspace L such that $L \cap M = \{0\}.$

Sketch of proof: Now let L be a maximal isotropic subspace with $L \cap M = \{0\}$. If it is not Lagrangian consider the quotient $\pi: L^{\omega} \to$ L^{ω}/L . The image $\pi(M \cap L^{\omega})$ is isotropic hence of positive codimension. Therefore, one can choose an 1-dimensional subspace $F \subset L^{\omega}/L$ such that $F \cap \pi(M \cap L^{\omega}) = \{0\}$. Then $L' = \pi^{-1}(F)$ is an isotropic subspace that contains L and whose intersection with M is empty.

Proof of Lemma 1.1. Take two Lagrangian subspaces L, M of (V, ω) such that $L \cap M = \{0\}$. Since $L^{\omega} = L \cap M = \{0\}$, the composition

$$
M \hookrightarrow V \xrightarrow{\omega^{\flat}} V^* \to L^*,
$$

where the last map is the dual to the inclusion $L \hookrightarrow V$, is an isomorphism. Let e_1, \ldots, e_n be a basis for L and f_1, \ldots, f_n the dual basis for $L^* \cong M$. $* \cong M.$

We will give another proof of the lemma using compatible complex structures.

Compatible complex structures.

Example. Let V be a complex vector space of complex dimension n , with a Hermitian metric (complex positive definite inner product, complex linear with respect to the second entry and complex anti-linear with respect to the first entry) $h: V \times V \to \mathbb{C}$. Then $\omega = \text{Im}(h)$ is a symplectic form on V (considered as a real vector space) (check). Every unitary map $V \to V$ is a symplectomorphism. Note that $g = \text{Re}(h)$ is a real positive definite inner product (check).

Can you always find a Hermitian metric on a finite dim complex vector space? (Sure. Since the answer is clearly yes in \mathbb{C}^n , e.g., $h(u, v) = \bar{u}^T \operatorname{Id} v.$

Lemma 1.4. Wirtinger's inequality: Let V be a complex linear space of dimension n with a positive definite Hermitian form h on V . Let $g = \text{Re}(h)$ and $\omega = \text{Im}(h)$.

For X_1, \ldots, X_{2k} in V that are orthonormal with respect to g, we have

 $|\omega^{k}(X_1,\ldots,X_{2k})| \leq k!,$

with equality holding precisely when $W = \text{span}(X_1, \ldots, X_{2k})$ is a complex k-dimensional subspace of L.

Proof. Note that the value of $|\omega^k(X_1,\ldots,X_{2k})|$ does not depend on the choice of an orthonormal basis to W , and that there is an orthonormal basis X_1, \ldots, X_{2k} such that

$$
\omega|_W = \sum_{j=1}^k \omega(X_{2j-1}, x_{2j})(X_{2j-1}^* \wedge X_{2j}^*),
$$

where X_i^* is the dual to X_i . (Check!) So

$$
|\omega^k(X_1,\ldots,X_{2k})|=k!\pi_{j=1}^k|\omega(X_{2j-1},X_{2j})|.
$$

Therefore it is enough to check the case $k = 1$.

If $k = 1$ then $\omega(X_1, X_1) = 0 = \omega(x_2, X_2)$ (since antisymmetric) hence $h(X_1, X_1) = g(X_1, X_1) = 1 = h(X_2, X_2)$, and $h(X_1, X_2)$ is in $\sqrt{-1}\mathbb{R}$ (since Re $h(X_1, X_2) = g(X_1, X_2) = 0$ hence $\omega(X_1, X_2) = \sqrt{-1}\mathbb{R}$ (since Re $h(X_1, X_2) = g(X_1, X_2) = 0$ hence $\omega(X_1, X_2) = \sqrt{-1}\mathbb{R}$ $-\sqrt{-1}h(X_1, X_2) = h(iX_1, X_2)$. Therefore, by Schwartz's inequality (applied to h):

$$
|\omega(X_1, X_2)| = |h(\sqrt{-1}X_1, X_2)| \le h(\sqrt{-1}X_1, \sqrt{-1}X_1)h(X_2, X_2) = 1
$$

with equality if and only if $X_2 = cX_1$ for a complex number $c \neq 0$. Since $h(X_1, X_1) = 1 = h(X_2, X_2)$ and $\text{Re}(h(X_1, X_2)) = 0$, we have $c^2 = \pm 1$ and $c \neq \pm 1$, i.e., $c = \pm i$ and $\text{span}(X_1, X_2 = \pm iX_1)$ is a complex 1-dimensional subspace.

 \Box

We now go on the reverse direction, starting from a real symplectic vector space. A *complex structure* on a real vector space V is an automorphism $J: V \to V$ such that $J^2 = -Id$. A complex structure J on a symplectic vector space (V, ω) is ω -compatible if

$$
g(u, v) = \omega(u, Jv)
$$

defines a positive definite inner product. This implies that

for
$$
v \neq 0
$$
, $\omega(v, Jv) = g(v, v) > 0$,

and

$$
\omega(Ju,Jw) = g(Ju,v) = g(v,Ju) = \omega(v,j^2u) = -\omega(v,u) = \omega(u,v),
$$

i.e., J is a symplectomorphism. Moreover, a complex structure J is compatible with ω iff these two conditions hold: since ω is bilinear so is g, the first condition is equivalent to g being positive definite; the second condition is equivalent to g being symmetric.

Example. Consider the standard symplectic vector space $(\mathbb{R}^{2n}, \omega_0)$. The complex structure given by $Je_i = f_i$, $Jf_i = -e_i$ is compatible with ω_0 (we noticed before that it is a symplectomorphism; also, by definition of ω_0 and J , $\omega_0(e_i, Je_i) = \omega_0(e_i, f_i) = 1 > 0$ and $\omega_0(f_i, Jf_i) =$ $\omega_0(f_i, -e_i) = 1 > 0$). This identifies $(\mathbb{R}^{2n}, \omega_0, J)$ with \mathbb{C}^n with $\text{Im}(h)$ for $h(u, v) = \bar{u}^T \mathrm{Id} v$.

In general, a compatible complex structure on (V, ω) makes V a complex vector space with Hermitian metric

$$
h(u, v) = g(u, v) + \sqrt{-1}\omega(u, v).
$$

(*h* is complex linear with respect to the second entry, $h(u, Jv) =$ $\overline{-1}h(u, v)$, and complex anti-linear with respect to the first entry, $h(Ju, v) = -\sqrt{-1}h(u, v)$, and $h(v, v) > 0$ for $v \neq 0$.)

Lemma 1.5. Let (V, ω) be a symplectic vector space. Given a positive inner product G on V, there is a linear isomorphism $A: V \to V$ such that

$$
J = J^G = \left(\sqrt{AA^*}\right)^{-1} A
$$

is well defined and is a compatible complex structure on (V, ω) .

The factorization $A = (\sqrt{A A^*}) J^G$ is called the *polar decomposition* of A.

Proof. (As noted before), since ω and G are non-degenerate, the maps $\omega^{\flat}, G^{\flat} : V \to V^*$ are isomorphisms between V and V^* . Hence $\omega(u, v) =$ $G(Au, v)$ for some linear isomorphism $A: V \to V$. The map A is skewadjoint (with respect to G) since

$$
G(A^*u, v) = G(u, Av) = G(Av, u) = \omega(v, u) = -\omega(u, v) = G(-Au, v),
$$

hence $A^* = -A$. Note that AA^* is symmetric $((AA^*)^* = AA^*)$, and

positive: $G(AA^*u, u) = G(A^*u, A^*u) > 0$ for $u \neq 0$. We conclude that AA^* diagonalizes with positive eigenvalues λ_i :

$$
AA^* = B \operatorname{diag}(\lambda_1, \ldots, \lambda_n) B^{-1}.
$$

So we can define

$$
\sqrt{AA^*} = B \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n}) B^{-1};
$$

and it is symmetric and positive definite. Let

$$
J = J^G := (\sqrt{AA^*})^{-1}A.
$$

6 LIAT KESSLER

Since A commutes with $\sqrt{AA^*} =$ √ $-A^2$, we get that J commutes with A. Since $A^* = -A$, also $J^* = -J$. Hence, since $JJ^* = Id$ (check), we have $J^2 = -Id$, i.e., J is a complex structure. We get

 $\omega(Ju, Jv) = G(AJu, Jv) = G(JAu, Jv) = G(JJ^*Au, v) = G(Au, v) = \omega(u, v),$ and

$$
\omega(u, Ju) = G(Au, Ju) = G(J^*Au, u) = G(\sqrt{AA^*}u, u) > 0
$$

for $u \neq 0$ (since $\sqrt{AA^*}$ is positive definite). Hence J is ω -compatible. П

Remarks. (1) In general, the positive inner product defined by $\omega(u, Jv)$ is different from $G(u, v)$. However, if J is given and $G(u, v) =$ $\omega(u, Jv)$ then $J^G = J$. (In that case, $A = J^*$ and $AA^* = Id$.)

 $\omega(u, Jv)$ then $J^* = J$. (In that case, $A = J^*$ and $AA^* = \text{id}$.)
(2) The construction is canonical. The map $\sqrt{AA^*}$ does not depend on the choice of B nor on the ordering of the eigenvalues in the diagonal map.

Denote by $\mathcal{J}(V, \omega)$ the space of compatible complex structures. We equip it with the subset topology induced from the topology on the space of linear endomorphisms of V. Let $\text{Riem}(V)$ denote the space of positive definite inner products; it is a convex open subset of the space of symmetric bilinear forms.

The previous lemma and Remarks imply the following result.

Corollary 1.1. The map $G \mapsto J^G$ is a continuous and surjective map $F: \text{Riem}(V) \to \mathcal{J}(V, \omega)$. Furthermore (by construction) for $H: \mathcal{J}(V, \omega) \to$ Riem (V) associating to J the inner product $\omega(u, Jv)$ is a section, i.e., $F \circ H(J) = J.$

Theorem 1.1. The space $\mathcal{J}(V, \omega)$ is contractible and not empty.

Proof. The existence of a compatible complex structure follows directly from the previous Corollary and the fact that $Riem(V)$ is not empty. Since $\text{Riem}(V)$ is a convex subset of a vector space, it is contractible. If $\Phi: I \times \text{Riem}(v) \to \text{Riem}(V)$ is a contraction: $\Phi_0 = \text{Id}_{\text{Riem}(V)}$ and Φ_1 is a map onto a point, then $F \circ \Phi \circ (\text{Id} \times H) : I \times \mathcal{J}(M, \omega) \to \mathcal{J}(M, \omega)$ is a contraction of $\mathcal{J}(M,\omega)$ to a point.

We deduce a second proof for the existence of a symplectic basis for (V, ω) .

Proof of Lemma 1.1. Let J be an ω -compatible complex structure on V (exists by the previous theorem). Let h be the Hermitian form:

$$
h(u, v) = \omega(u, Jv) + \sqrt{-1}\omega(u, v).
$$

Pick an orthonormal (w.r.t h) basis of (V, J) as a complex space: (e_1, \ldots, e_n) . Let $f_i = Je_i$ Then $(e_1, \ldots, e_n, f_1, \ldots, f_n)$ is a symplectic basis:

$$
\omega(e_i, f_j) = \text{Im}(h(e_i, Je_j)) = \text{Im}(\sqrt{-1}h(e_i, e_j)) = \text{Im}(\sqrt{-1}\delta_{i,j}) = \delta_{i,j},
$$

$$
\omega(e_i, e_j) = \text{Im}(h(e_i, e_j)) = \text{Im}\,\delta_{i,j} = 0,
$$
and similarly
$$
\omega(f_i, f_j) = 0.
$$

Remark 1.1. The two proofs we gave to Lemma 1.1 are related. The transition from the second proof to the first one is by the following claim: If J is ω -compatible and L is a Lagrangian subspace of (V, ω) then JL is also Lagrangian and $JL = L^{\perp}$, where \perp denotes orthogonallity with respect to the positive inner product $g(u, v) = \omega(u, Jv)$.

The two proofs used two important tools of symplectic geometry: Lagrangian sub-manifolds and compatible almost complex structures, which we will discuss in the next talk, when we move from symplectic vector spaces to symplectic manifolds.

REFERENCES

- [1] Eckhard Meinrenken, Symplectic Geometry Lecture Notes, University of Toronto.
- [2] Ana Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics, Springer-Verlag, 2008.