SYMPLECTIC GEOMETRY: LECTURE 2

LIAT KESSLER

1. Symplectic Manifolds

1.1. Basic definitions.

1.1. Recall: manifolds, immersion, submersion, embedding, tangent bundle, co-tangent bundle ([3]). In particular, we have partition of unity.

Let ω be a differential 2-form on M, i.e, an assignment of anti-symmetric bilinear 2-form ω_p on T_pM for each $p \in M$, that varies smoothly in p. We say that ω is closed if $d\omega = 0$ where d is the exterior derivative,

We say that ω is *symplectic* if it is closed and ω_p is symplectic (non-degenerate) for all $p \in M$.

Note: If ω is symplectic then dim $T_pM = \dim M$ must be even.

A symplectic manifold is a pair (M, ω) where M is a manifold and ω a symplectic form.

Example. Let $M = \mathbb{R}^{2n}$, or an open subset of \mathbb{R}^{2n} , with linear coordinates $x_1, \ldots, x_n, y_1, \ldots, y_n$. The form

$$\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$$

is symplectic. Is ω_0 closed? YES (as follows from the linearity and the multiplicative law of the exterior derivative). It is even exact: $\omega_0 = d \sum_{i=1}^n x_i dy_i$. The ordered set

$$\left(\left(\frac{\partial}{\partial x_1}\right)_p, \dots, \left(\frac{\partial}{\partial x_n}\right)_p, \left(\frac{\partial}{\partial y_1}\right)_p, \dots, \left(\frac{\partial}{\partial y_n}\right)_p\right)$$

is a symplectic basis of T_pM

1.2. We saw that the *n*th exterior power ω^n is a top degree non-vanishing form, i.e., a volume form. Hence (M,ω) is canonically oriented by the symplectic structure. (Does the mobius strip admit a symplectic form?)

Claim 1.1. Assume that M is compact and with no boundary.

• The de Rham cohomology class $[\omega^n] \in H^{2n}(M;\mathbb{R})$ is non-zero. Proof: otherwise $\omega^n = d\Omega$ for a 2n-1-form. Then

$$0 = \int_{\partial M} \Omega = \int_{M} d\Omega = \int_{M} \omega^{n} \neq 0,$$

where the first equation is since M is compact; the second by Stokes' theorem; the third by assumption and the last inequality since ω^n is non-vanishing. (Remark: Stokes Theorem holds here since M is compact.)

- Therefore $[\omega]$ is non zero (i.e., ω is not exact). (Proof: $[\omega]^n = [\omega^n]$.)
- In particular, if n > 1 there are no symplectic forms on S^{2n} . There is a symplectic form (the area form) on S^2 and you will study it in Problem Set 2.

A symplectomorphism between (M_1, ω_1) and (M_2, ω_2) is a diffeomorphism $\phi: M_1 \to M_2$ such that $\phi^*\omega_2 = \omega_1$, i.e., . The group of symplectomorphisms of M onto itself is denoted by $\operatorname{Symp}(M, \omega)$.

Example. Let Σ be an orientable 2-manifold and ω a volume form. Then ω is non-degenerate (since $\omega^n = \omega \neq 0$ everwhere) and closed (since it is a top degree form). a symplectomorphism in this case is a volume-preserving diffeomorphism. By a result of Moser, any two volume forms on a compact manifold M, defining the same orientation and having the same total volume are related by a diffeomorphism of M. In particular, every closed symplectic 2-manifold is determined up to symplectomorphism by its genus and total volume. (You will prove this result of Moser in PS3.)

1.2. Almost complex structures. An almost complex structure on a (real) manifold M is an automorphism $J \colon TM \to TM$ such that $J^2 = -\operatorname{Id}$ (i.e., it is an almost complex structure on every T_pM that varies smoothly). It is *integrable* if it comes from a complex atlas on the manifold. An almost complex structure J is *compatible* with a symplectic form ω if $\omega(\cdot, J \cdot)$ is a Riemannian metric on M, i.e., J is ω -compatible on every tangent space T_pM .

We denote by $\mathcal{J}(M,\omega)$ the space of ω -compatible almost complex structures on M. Our proof from symplectic linear algebra can be carried fiberwise, to get a canonical surjective map $\operatorname{Riem}(M) \to \mathcal{J}(M,\omega)$ which is a left inverse to the map $\mathcal{J}(M,\omega) \to \operatorname{Riem}(M)$ associating to J_p the corresponding inner product $\omega(\cdot, J_p \cdot)$ on $T_p M$. Since the polar decomposition is canonical, the obtained J is smooth. Therefore, $\mathcal{J}(M,\omega)$ is not empty. Moreover, any $J_0, J_1 \in \mathcal{J}(M,\omega)$ can be smoothly deformed within $\mathcal{J}(M,\omega)$: use a convex combination

$$g_t := (1-t)g_0 + tg_1$$

of the corresponding Riemannian metrics, and apply the polar decomposition to (ω, g_t) to obtain a smooth family of J_t s joining J_0 to J_1 .

Corollary 1.1. The space $\mathcal{J}(M,\omega)$ is path-connected and not empty.

Exercise. (1) Fix a symplectic form ω on M. Let $J_0, J_1 \in \mathcal{J}(M, \omega)$ and $0 \le t \le 1$. Show that $J_t := (1-t)J_0 + tJ_1$ is not necessarily in $\mathcal{J}(M, \omega)$.

(2) Fix an almost complex structure J on M. Let ω_0 and ω_1 be symplectic forms that are compatible with J, and $0 \le t \le 1$. Show that $\omega_t = (1 - t)\omega_0 + t\omega_1$ is a symplectic form that is compatible with J.

This exercise is in PS2.

If J is integrable and ω -compatible, the triple (M, ω, J) is called a Kähler manifold.

Example. For example, in an open set $U \subset \mathbb{C}^n (\cong \mathbb{R}^{2n})$ with coordinates $z_j = x_j + iy_j$. The almost complex structure induced from multiplication by i is, in the symplectic basis:

$$J_0\left(\frac{\partial}{\partial x_j}\right)_p = \left(\frac{\partial}{\partial y_j}\right)_p,$$

$$J_0 \left(\frac{\partial}{\partial y_j} \right)_p = - \left(\frac{\partial}{\partial x_j} \right)_p.$$

For a complex manifold, this defines a complex structure locally, in a chart, which is well-defined globally, since the transition maps are holomorphic (using the Cauchy-Riemann equations). [1, p.102].

1.3. Kähler manifolds.

Let M be a complex manifold (a manifold with an atlas consisting of open subsets of \mathbb{C}^n such that the transition functions are holomorphic) with a Hermitian h metric on TM. As before, we can get a non-degenerate 2-form by assigning $\omega_p = \text{Im}(h_p)$ at every $p \in M$. If this form is closed $(d\omega = 0)$ we get a Kähler structure. Do we always have a Hermitian metric on a complex manifold? Yes, using partition of unity.

Claim 1.2. If (M, ω, J) is a Kähler manifold, then there is a Hermitian metric h on the complex manifold such that $\omega = \operatorname{Im} h$.

Proof: Exercise (PS2). Read 16.1.

Example. For example, $\mathbb{C}^n (\cong \mathbb{R}^{2n})$ with coordinates $z_j = x_j + iy_j$, $\bar{z}_j = x_j - iy_j$. We have

$$d\bar{z}_j \otimes dz_j = (dx_j - idy_j) \otimes (dx_j + idy_j)$$

$$= (dx_j \otimes dx_j + dy_j \otimes dy_j) + i(dx_j \otimes dy_j - dy_j \otimes dx_j)$$

$$= (dx_j \otimes dx_j + dy_j \otimes dy_j) + idx_j \wedge dy_j.$$

Therefore the Hermitian metric

$$h(z) = \sum_{j=1}^{n} d\bar{z}_{j} \otimes dz_{j} = g_{0} + i\omega_{0}.$$

 $(g_0 = \sum_{j=1}^n (dx_j \otimes dx_j + dy_j \otimes dy_j), \ \omega_0 = \sum_{i=1}^n dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^n dz_j \wedge d\bar{z}_j.)$ So (\mathbb{C}^n, ω_0) is Kähler.

Claim 1.3. Let (M, ω, J) be a Kähler manifold. Let (N, J_N) be a complex manifold and $\iota: N \to M$ a complex immersion, i.e., $J \circ d\iota = d\iota \circ J_N$. Then $(N, \iota^*\omega, J_N)$ is a Kähler manifold.

Proof. It is enough to note that a complex subspace of a Hermitian vector space is Hermitian. Applying this to each $d\iota_n(T_nN) \subset T_{\iota(n)}M$ we see that the closed 2-form $\iota^*\omega$ $(d \circ \iota^* = \iota^* \circ d)$ is non-degenerate, and $J_N \in \mathcal{J}(N, \iota^*\omega)$.

In particular, every complex submanifold of \mathbb{C}^n , with the pullback of ω_0 , is Kähler.

1.4. Wirtinger's inequality (proved in a previous lecture) says that for X_1, \ldots, X_{2k} in \mathbb{R}^{2n} that are orthonormal with respect to $g_0 = \omega_0(\cdot, J_0 \cdot)$, we have

$$|\omega_0^k(X_1 \wedge \ldots \wedge X_{2n})| \le k!,$$

with equality holding precisely when $\operatorname{span}(X_1, \ldots, X_k)$ is a complex k-dimensional subspace of \mathbb{C}^n .

Therefore, if N is a smooth 2k-dimensional manifold (smoothly) immersed in \mathbb{C}^n , Wirtinger's inequality implies that

$$\int_{N} \frac{1}{k!} \omega_0^k \le \int_{N} dV = \operatorname{Vol}(N)$$

with equality precisely when N is an immersed complex k-dimensional submanifold of \mathbb{C}^n . (The volume is with respect to the Riemannian metric q_0 .)

(The proof is by partition of unity, on each chart using the Euclidean coordinate basis that we specified in the first example in the lecture.)

Note that the form $\frac{\omega_0^k}{k!}$ on \mathbb{C}^n is exact (since ω_0 is), i.e., $\frac{\omega_0^k}{k!} = d\alpha$.

Corollary 1.2. If (N_1, ∂) and (N_2, ∂) are compact 2k-manifolds with boundary immersed in \mathbb{C}^n and having the same boundary ∂ , and N_1 is a complex k-manifold then

$$Vol(N_1) = \int_{N_1} \frac{\omega^k}{k!} = \int_{\partial} \alpha = \int_{N_2} \frac{\omega^k}{k!} \le Vol(N_2),$$

where the equalities in the middle are due to Stokes' theorem.

Corollary 1.3. [4, Theorem B]. If a k-dimensional subvariety of a ball of radius R in \mathbb{C}^n passes through the center of the ball then its 2k-volume is at least the volume of the unit ball in an Euclidean 2k-space times R^{2k} .

This corollary is used in the proof of Gromov's non-squeezing theorem that we will discuss later in the semester.

Example. Any almost complex structure on a (real) 2-dimensional manifold is integrable. (Theorem, proof: PS2.) As a result, an orientable 2-manifold with a volume form and a compatible complex structure is Kähler.

Example. The complex projective space

$$\mathbb{CP}^n = (\mathbb{C}^{n+1} \setminus \{0\})/(\mathbb{C} \setminus \{0\}) = S^{2n+1}/S^1$$

is the space of complex lines in \mathbb{C}^{n+1} : \mathbb{CP}^n is obtained from $\mathbb{C}^{n+1} \setminus \{0\}$ by making the identifications $(z_0, \ldots, z_n) \sim (\lambda z_0, \ldots, \lambda z_n)$ for all $\lambda \in \mathbb{C} \setminus \{0\}$. It is a complex manifold. One denotes by $[z_0, \ldots, z_n]$ the equivalence class of (z_0, \ldots, z_n) , and calls z_0, \ldots, z_n the homogeneous coordinates of the point $p = [z_0, \ldots, z_n]$.

Let

where ι is an embedding and π a projection. At every point $z \in S^{2n+1}$, we have a canonical splitting of tangent spaces

$$T_z\mathbb{C}^{n+1} = T_{\pi(z)}\mathbb{CP}^n \oplus \operatorname{span}_{\mathbb{C}}\{z\}$$

as complex vector spaces. Since $T_{\pi(z)}\mathbb{CP}^n$ is a complex subspace, it is also symplectic. This induces a non-degenerate 2-form ω on \mathbb{CP}^n which by construction is compatible with the complex structure. Letting $\bar{\omega}$ be the symplectic (closed) form in \mathbb{C}^{n+1} , we have $\iota^*\bar{\omega} = \pi^*\omega$. Therefore $\pi^*d\omega = d\pi^*\omega = d\iota^*\bar{\omega} = \iota^*d\bar{\omega} = 0$, showing that ω is closed. This shows that \mathbb{CP}^n is a Kähler manifold. The 2-form ω is called the *Fubini-Study* form.

Therefore, by Claim 1.3, every non-singular (i.e., smooth) projective variety (i.e., zero locus of a collection of homogeneous polynomials) is a Kähler submanifold.

Remark 1.1. Every symplectic manifold admits a compatible almost complex structure but not necessarily an integrable one. (Examples: Kodaira, Thurston, McDuff and Gompf.)

1.3. Cotangent bundles. Let X be any n-dimensional manifold and $M = T^*X$ its cotangent bundle. Let

$$\pi \colon M = T^*X \to X, \ p = (x, \eta) \mapsto x, \ \eta \in T_x^*X$$

the bundle projection, and

$$d\pi: TM \to TX, \ d\pi_p: T_pM \to T_xX$$

its tangent map. The tautoligical 1-form α is defined point-wise by

$$\alpha_p(v) = \eta(d\pi_p(v))$$

for $v \in T_pM$.

Proposition 1.1. The form α is the unique 1-form on T^*X with the property that for any 1-form β on the base X:

$$\beta = \beta^* \alpha,$$

where on the right hand side, β is viewed as a section $\beta: X \to T^*X = M$.

Proof. The property holds for α : first note that $\beta(x) = (x, \beta_x)$. So for $u \in T_x X$ we have

$$(1.5) \qquad (\beta^*\alpha)_x(u) = \alpha_{\beta(x)}(d_x\beta(u)) = \beta_x(d\pi_{(x,\beta_x)}(d_x\beta(u))) = \beta_x(u).$$

The first equality is by definition of a pullback; the second by definition of α ; the third since $\pi \circ \beta \colon X \to X$ is Id, and by the chain rule.

The uniqueness is since for every $v \in T_pM \setminus \ker d_p\pi$ $(p = (x, \eta))$ there is a 1-form β on X with $\beta(x) = p$ such that v is in the image of $d_x\beta$ hence, by (1.5), α is determined on v. Therefore the property determines α on $T_pM \setminus \ker d_p\pi$ hence, since these vectors span T_pM , on T_pM .

We will use this characterization of the tautological 1-form to further understand it. In local coordinates: if the manifold X is described by coordinate charts (U, x_1, \ldots, x_n) with $x_i \colon U \to \mathbb{R}$ then at any $x \in U$, the differentials $(dx_1)_x, \ldots, (dx_n)_x$ form a basis of T_x^*X . Namely, if $\eta \in T_x^*X$ then $\eta = \sum_{i=1}^n \eta_i(dx_i)_x$ for real functions η_i, \ldots, η_n . The chart $(T^*U = \{(x, \eta) : x \in U, \eta \in T_x^*X\}, x_1, \ldots, x_n, \eta_1, \ldots, \eta_n)$ is a coordinate chart for T^*X : the coordinates are the *cotangent coordinates*.

Claim 1.4. In the cotangent coordinates,

$$\alpha = \sum_{i=1}^{n} \eta_i dx_i.$$

Proof. Because of Proposition 1.1, it is enough that for a 1-form $\beta = \sum_{i=1}^{n} \beta_i dx_i$ on X,

$$\beta^* \sum_{i=1}^n \eta_i dx_i = \sum_{i=1}^n \beta^* \eta_i d\beta^* x_i = \sum_{i=1}^n \beta_i dx_i = \beta.$$

Theorem 1.1. Let $M = T^*X$ and α the canonical 1-form. Then $\omega = -d\alpha$ is a symplectic form on M.

Proof. In cotangent coordinates, $\omega = \sum_{i} dx_{i} \wedge d\eta_{i}$.

Given a diffeomorphism $f: X_1 \to X_2$. Then $df: TX_1 \to TX_2$ is a diffeomorphism and

$$F = (df^{-1})^* : T^*X_1 \to T^*X_2$$

is a diffeomorphism, called the *cotangent lift of f*. For every $\beta \in \Omega^1(X_1)$ there is a commutative diagram

$$T^*X_1 \xrightarrow{F} T^*X_2$$

$$\beta \uparrow \qquad (f^{-1})^*\beta \uparrow$$

$$X_1 \xrightarrow{f} X_2$$

Proposition 1.2. Let $F: T^*X_1 \to T^*X_2$ be the cotangent lift of $f: X_1 \to X_2$. Then F preserves the canonical 1-form: $F^*\alpha_2 = \alpha_1$, hence F is a symplectomomorphism: $F^*\omega_2 = \omega_1$.

Proof. It is enough to show that for every $\beta \in \Omega^1(X_1)$ we have $\beta^*(F^*\alpha_2) = \beta$. Indded,

$$\beta^*(F^*\alpha_2) = (F \circ \beta)^*(\alpha_2) = ((f^{-1})^*\beta \circ f)^*\alpha_2 = f^*((f^{-1})^*\beta)^*\alpha_2 = f^*(f^{-1})^*\beta = \beta,$$
 where in the equality before the last we used the property that for every $\gamma \in \Omega^1(X_2)$ we have $\gamma^*\alpha_2 = \alpha_2$.

This gives a natural homomorphism

$$\operatorname{Diff}(X) \to \operatorname{Symp}(T^*X, \omega), \ f \to (df^{-1})^*.$$

Another subgroup of $\operatorname{Symp}(T^*X,\omega)$ is obtained from a homomorphism

$$Z^1(X) \to \operatorname{Symp}(T^*X, \omega).$$

In PS2 you will prove the following proposition.

Proposition 1.3. Let $\sigma \in \Omega^2(X)$ be a closed 2-form on X. The 2-form $\omega = -d\alpha + \pi^*\sigma$

is a symplectic form on T^*M . The Liouville form of $-d\alpha + \pi^*\sigma$ equals the Liouville form of $-d\alpha$.

Corollary 1.4. For any manifold X with a closed 2-form σ there is a symplectic manifold (M, ω) and $\iota \colon X \to M$ such that $i^*\omega = \sigma$.

Take $M = T^*X$ and $\omega = -d\alpha + \pi^*\sigma$ and $\iota: X \to M$ the zero section embedding $x \mapsto (x,0)$.

- 1.4. Lagrangian Submanifolds and Symplectomorphisms. [1, 3.1, 3.2, 3.4].
- 1.5. **Darboux Theorem.** By the Darboux theorem, the dimension is the only local invariant of symplectic manifolds, up to symplectomorphisms. [1, Theorem 8.1, p.7]. The proof is the goal of our next lectures.

References

- [1] Ana Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics, Springer-Verlag, 2008.
- [2] Eckhard Meinrenken, Symplectic Geometry Lecture Notes, University of Toronto.
- [3] Victor Guillemin and Alan Pollack, Differential Topology, Prentice-Hall, 1974.
- [4] Gabriel Stolzenberg, Volumes, limits, and extensions of analytic varieties, Lecture Notes in Mathematics, Springer, 1966.