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Industrial Strength Factorization

Given an integer N ,

determine the prime divisors of N .

Definition. An integer p is prime means:

1/p is not an integer, and

for integers a, b,

if p | ab, then p | a or p | b.



Industrial Strength Factorization

Application:

break certain public key cryprography.

Metaproblem I: How much does it cost to

factor a d digit number N?

Metaproblem II: Given d, design a strategy for

picking N which maximizes the cost to factor.

Metaproblem III: Given a determined adversary

who has solved Metaproblem II and who picks

N , how much does it cost to factor N?



Fast and Slow

Definition (for today) A fast algorithm is one

which runs in polynomial time in the length of

its input.

Example. Multiplication of two numbers N1

and N2 each with at most d digits.

about 2d2 operations, depending how you count.

1 3 7
× 3 7

4 9
2 1
2 1
9
7

+ 3
5 0 6 9



Fast and Slow

Fast examples:

Let N be a d digit integer.

Write N on the board: O(d).

For a < N , compute Na: O(d2).

For a < N , compute GCD(N, a): O(d3).



Fast and Slow

What is slow?

Factor an odd integer N by trial division.

Example N = 209.

try 3
try 5
try 7
try 9
try 11 !



Fast and Slow

To factor N with d digits

by trial division, we may have to go up to
√
N ,

which has about d/2 digits.

Slow example: O(
√
N) = O(exp(d/2)).

For d = 150, at speed of 109 trials / second,

trial division potentially takes 1066 seconds.

One year is π · 107 seconds.

π =
√

10.

π · 1058 years is a long time.



Trial Division

Trial division is great for finding small factors.

The adversary picks N with exactly two prime

divisors, both large.

What if we magically knew prime numbers?

We wouldn’t have to try 9 or 77.

Definition. π(x) is the number of primes

between 1 and x.

Now check only π(
√
N) things.



Trial Division

Definition. π(x) is the number of primes

between 1 and x.

Chebyshev’s Theorem π(x) > x/2 logx.

Prime Number Theorem (1896) π(x) ∼ x/ logx.

conjectured by Gauss, proved by Hadamard

and de la Vallée-Poussin.

Conclusion. O(π(
√
N)) is still slow.

Fun fact:
p prime∏

s<p≤s+100

≈ e100.



Summary of Fast and Slow

Definition. LN [v, λ] is

O(exp(λ(logN)v(log logN)1−v)).

LN [v] includes LN [v, λ] for every λ.

LN [1] is slow. e.g. trial division.

LN [0] is fast, e.g. GCD(N, a).

Avoid embarrassment!

Check whether N is composite.

Answering “Is N composite?” is L[0].

New result in ’02. Previous best was

O((logN)c log log logN).



Analytical Estimate

Let Ψ(x, y)

be number of integers between 1 and x

with all prime divisors less than y.

Theorem For u sufficiently large and x > 1,

Ψ(x, x1/u) > x/uu(1+o(1)).

Lemma (Canfield-Erdős-Pomerance)

There is a constant c such that

for u > c and all x > 1,

if u > (logx)3/8, then

Ψ(x, x1/u) > x/u3u.



Analytical Estimate

Lemma (Canfield-Erdős-Pomerance)

There is a constant c such that

for u > c and all x > 1,

if u > (logx)3/8, then

Ψ(x, x1/u) > x/u3u.

Proof. If x < u3u, trivial.

Suppose x ≥ u3u ≥ c3c ≥ c3.

By Chebyshev, π(x1/u) > ux1/u/2 logx.

Let m = buc; u = m+ θ.

Let π′(y) = max(1, π(y)).



Analytical Estimate

Lemma (Canfield-Erdős-Pomerance)

There is a constant c such that

for u > c and all x > 1,

if u > (logx)3/8, then

Ψ(x, x1/u) > x/u3u.

Proof (continued).

Claim. (2 logx)m+1 < u3u :

(2 logx)m+1 < (2 logx)u+1.

For u > 3 and u ≥ log3/8 x,

(2 logx)u+1 ≤ (u3)u.



Analytical Estimate

Lemma (Canfield-Erdős-Pomerance)

There is a constant c such that

for u > c and all x > 1,

if u > (logx)3/8, then

Ψ(x, x1/u) > x/u3u.

Proof (concluded).

Ψ(x, x1/u) > π(x1/u)mπ′(xθ/u)/(m+ 1)!

> (ux1/u)mxθ/u

2um logm+1 x

= x/(2 logx)m+1

> x/u3u.

Exeunt Canfield, Erdős, and Pomerance.

Enter Fermat.



Fermat’s Method

Quick... factor 3599.

3599 = 602 − 12.

If x2 ≡ y2 (N), compute GCD(x− y,N).

50% chance to get a factor of N , because

(x− y)(x+ y) ≡ 0 (N).

3599 = 59 · 61.



Fermat’s Method

Fermat’s method: for each x = 1,2, ...,

check whether N + x2 is a square.

The adversary chooses N = pq with

prime factors far away from
√
N .

p ≈ N1/e will do.

Now, Fermat’s method is O(
√
N), which is

slow.

Let’s use another idea of Fermat.



Fermat’s Method

(This isn’t the other useful Fermat idea.)

Factor 64027.

Yes, x3 + y3 = (x+ y)(x2 − xy + y2).

But cubes are rarer than squares.



Pollard’s p− 1 Method

Fermat’s Little Theorem

If p is prime and a ∈ Z, and GCD(a, p) = 1,

then

ap−1 ≡ 1 (p).

Given N , if a kind oracle would tell us p−1 for

p dividing N , then

ap−1 − 1 ≡ 0 (p).

Therefore, GCD(ap−1 − 1, N) is p or N .

Pollard’s method finds m such that (p−1) | m.

Thus, GCD(am − 1, N) is p or N .



Pollard’s p− 1 Method

Let mj = LCM(1,2, . . . , j).

Given N = pq, for large enough j, p−1 divides

mj.

So: amj ≡ 1 (p). Maybe amj 6≡ 1 (q).

Then GCD(amj − 1, N) = p.

Here’s an example for N = 20701.



Pollard’s p− 1 Method for N = 20701

Pick a = 2.
(If GCD(a,N), that’s an instant win.)

Let mj = LCM(1,2, . . . , j).

Let Xj = 2mj reduced modulo N .

Let Fj = GCD(Xj − 1, N).

j mj Xj Fj
2 2 4 1
3 6 64 1
4 12 4096 1
5 60 6493 1
6 60 6493 1
7 420 17273 127
8 840 13717 127
9 2520 6986 127

So N = 127 · 163.

Next: another example.



Pollard’s p− 1 Method for N = 5029

j mj Xj Fj
2 2 4 1
3 6 64 1
4 12 4096 1
5 60 1156 1
6 60 6493 1
7 420 4153 1
8 840 2968 1
9 2520 625 1

11 4920 1
13 4327 1
16 4991 1
17 850 1
19 2077 1

Better luck with the next method!



Pollard’s p− 1 Method Performance

Pollard’s method finds factors p such that prime

power factors of p− 1 are all small.

Typical size of largest prime power factor of

p− 1 is

p1−1/e ≈ N1/e−1/e2
.

So: Pollard’s method is slow against a smart

adversary.



Pollard’s p− 1 Method Performance

The adversary already chooses:

N = pq, the product of exactly two primes,

p, q are not small.

p, q are not too close to
√
N

(p ≈ N1/e)

Now add: p− 1, q − 1 each have at least some

large prime power factor.



Rational Sieve Method

Given N , let’s solve x2 ≡ y2 (N).

Method:

Find lots of integers a such that a and N + a

have only small prime factors.

Pick a subset of the a′s such that∏
i

ai/(N + ai) = s2/t2.

Conclude: For x = s, y = t,

x2 ≡ y2 (N).

GCD(x − y,N) has even odds to be a prime

divisor of N .



Rational Sieve Vocabulary

Given N , we pick B, the smoothness bound.

We treat a prime p less than B as small.

An integer a is B-smooth means every prime p

dividing a is less than B.

The set B of small primes is the factor base.

A pair (a,N + a) of smooth numbers is a rela-

tion or smooth relation.

Here is an example with N = 5029, B = 20.



Rational Sieve for N = 5029

Factor N = 5029.

Factor base B = {2,3,5,7,11,13,17,19}.

a a+N 2 3 5 7 11 13 17 19
A 11 5040 0 0 1 1 1 0 0 0
B 20 5049 0 1 1 0 1 0 1 0
C 25 5054 1 0 0 1 0 0 0 0
D 91 5120 0 0 1 1 0 1 0 0
E 119 5148 0 0 0 1 1 1 1 0
F 171 5200 0 0 0 0 0 1 0 1
G 196 5225 0 0 0 0 1 0 0 1
H 221 5250 1 1 1 1 0 1 1 0
I 275 5304 1 1 0 0 1 1 1 0

Eliminate 19 with F +G replacing F,G.

Eliminate 2 and 3 with B + C + H and H + I

replacing B,C,H, I.



Eliminate 19 with F +G.
Eliminate 2 and 3 with B + C +H and H + I.

5 7 11 13 17
A 1 1 1 0 0
D 1 1 0 1 0
E 0 1 1 1 1

F +G 0 0 1 1 0
B + C +H 0 0 1 1 0

H + I 1 1 1 0 0

Only row E has 17, so strike it.

5 7 11 13
H + I 1 1 1 0

A 1 1 1 0
D 1 1 0 1

F +G 0 0 1 1
B + C +H 0 0 1 1

Relations:

A+H + I
A+D + F +G
B + C + F +G+H



Rational Sieve for N = 5029

Assembling relations:

a a+N 2 3 5 7 11 13 17 19
A 11 5040 0 0 1 1 1 0 0 0
H 221 5250 1 1 1 1 0 1 1 0
I 275 5304 1 1 0 0 1 1 1 0

Now compute over Z, not mod 2:

a/(a+N) 2 3 5 7 11 13 17 19
A 11/5040 −4 −2 −1 −1 1 0 0 0
H 221/5250 −1 −1 −3 −1 0 1 1 0
I 275/5304 −3 −1 2 0 1 −1 −1 0

A+H + I −8 −4 −2 −2 2 0 0 0

112 ≡ (24 · 32 · 5 · 7)2

For x = 11, y = 5040, x2 ≡ y2 (N).

Alas, N = y − x.



Rational Sieve for N = 5029

Assembling relations:

a a+N 2 3 5 7 11 13 17 19
A 11 5040 0 0 1 1 1 0 0 0
D 91 5120 0 0 1 1 0 1 0 0
F 171 5200 0 0 0 0 0 1 0 1
G 196 5225 0 0 0 0 1 0 0 1

Now compute over Z, not mod 2:

a/(a+N) 2 3 5 7 11 13 17 19
A 11/5040 −4 −2 −1 −1 1 0 0 0
D 91/5120 −10 0 −1 1 0 1 0 0
F 171/5200 −4 2 −2 0 0 −1 0 1
G 196/5225 2 0 −2 2 −1 0 0 −1

total −16 0 −6 2 0 0 0 0

For x = 7, y = 2853 = 32000, x2 ≡ y2 (N).

Hooray! GCD(N, 32007) = 47.



Rational Sieve Performance

How common are smooth numbers?

From a random sample of integers of size L[v, λ],

the fraction of L[w, µ] smooth ones is:

Ψ(L[v, λ], L[w, µ])/L[v, λ].

The expected sample size to find one L[w, µ]

smooth ones is:

L[v, λ]/Ψ(L[v, λ], L[w, µ]) =

L[v − w, (v − w)λ/µ].

The expected sample size to find L[w, µ] smooth

ones is:

L[w, µ]L[v − w, (v − w)λ/µ].



Rational Sieve Performance

We choose a small prime bound B of size L[w, µ].

Factor base B has size L[w, µ].

Search for smooth pairs a,N + a;

a is B-smooth. N + a has size L[1,1].

Search region size:

L[1− w, (1− w)/µ]L[w, µ].

Linear algebra problem:

L[w, µ]2 = L[w,2µ].



Rational Sieve Performance

Search region size:

L[1− w, (1− w)/µ]L[w, µ].

Minimize max(w,1− w): w = 1/2.

Search region size is:

L[1/2, µ+ 1/2µ].

Minimum at µ =
√

2/2.

Search region size is:

L[1/2,
√

2].

Linear algebra is also

L[1/2,
√

2].


