Industrial Strength Factorization

Lawren Smithline Cornell University lawren@math.cornell.edu http://www.math.cornell.edu/~lawren Industrial Strength Factorization

Given an integer N,

determine the prime divisors of N.

Definition. An integer p is prime means:

1/p is not an integer, and

for integers a, b,

if $p \mid ab$, then $p \mid a$ or $p \mid b$.

Industrial Strength Factorization

Application: break certain public key cryprography.

Metaproblem I: How much does it cost to factor a d digit number N?

Metaproblem II: Given d, design a strategy for picking N which maximizes the cost to factor.

Metaproblem III: Given a determined *adversary* who has solved Metaproblem II and who picks N, how much does it cost to factor N?

Definition (for today) A fast algorithm is one which runs in polynomial time in the length of its input.

Example. Multiplication of two numbers N_1 and N_2 each with at most d digits.

about $2d^2$ operations, depending how you count.

		1	3	7
	X		3	7
			4	9
		2	1	
		2	1	
		9		
		7		
+	3			
	5	0	6	9

Fast examples:

Let N be a d digit integer.

Write N on the board: O(d).

For a < N, compute Na: $O(d^2)$.

For a < N, compute GCD(N, a): $O(d^3)$.

What is slow?

Factor an odd integer N by trial division.

Example N = 209.

try 3 try 5 try 7 try 9 try 11 !

To factor N with d digits

by trial division, we may have to go up to \sqrt{N} , which has about d/2 digits.

Slow example: $O(\sqrt{N}) = O(\exp(d/2))$.

For d = 150, at speed of 10^9 trials / second, trial division potentially takes 10^{66} seconds.

One year is $\pi \cdot 10^7$ seconds.

 $\pi = \sqrt{10}.$

 $\pi\cdot 10^{58}$ years is a long time.

Trial Division

Trial division is great for finding small factors.

The adversary picks N with exactly two prime divisors, both large.

What if we magically knew prime numbers?

We wouldn't have to try 9 or 77.

Definition. $\pi(x)$ is the number of primes between 1 and x.

Now check only $\pi(\sqrt{N})$ things.

Trial Division

Definition. $\pi(x)$ is the number of primes between 1 and x.

Chebyshev's Theorem $\pi(x) > x/2 \log x$.

Prime Number Theorem (1896) $\pi(x) \sim x/\log x$.

conjectured by Gauss, proved by Hadamard and de la Vallée-Poussin.

Conclusion. $O(\pi(\sqrt{N}))$ is still slow.

Fun fact:

 \prod_{s

Summary of Fast and Slow

Definition. $L_N[v, \lambda]$ is $O(\exp(\lambda(\log N)^v (\log \log N)^{1-v})).$

 $L_N[v]$ includes $L_N[v, \lambda]$ for every λ .

 $L_N[1]$ is slow. e.g. trial division.

 $L_N[0]$ is fast, e.g. GCD(N,a).

Avoid embarrassment! Check whether N is composite.

Answering "Is N composite?" is L[0]. New result in '02. Previous best was $O((\log N)^{c \log \log \log N}).$

Let $\Psi(x, y)$ be number of integers between 1 and xwith all prime divisors less than y.

Theorem For u sufficiently large and x > 1,

$$\Psi(x, x^{1/u}) > x/u^{u(1+o(1))}.$$

Lemma (Canfield-Erdős-Pomerance)

There is a constant c such that for u > c and all x > 1, if $u > (\log x)^{3/8}$, then

$$\Psi(x, x^{1/u}) > x/u^{3u}.$$

Lemma (Canfield-Erdős-Pomerance)

There is a constant c such that for u > c and all x > 1, if $u > (\log x)^{3/8}$, then

$$\Psi(x, x^{1/u}) > x/u^{3u}.$$

Proof. If $x < u^{3u}$, trivial.

Suppose $x \ge u^{3u} \ge c^{3c} \ge c^3$.

By Chebyshev, $\pi(x^{1/u}) > ux^{1/u}/2\log x$.

Let $m = \lfloor u \rfloor$; $u = m + \theta$.

Let $\pi'(y) = \max(1, \pi(y)).$

Lemma (Canfield-Erdős-Pomerance) There is a constant c such that for u > c and all x > 1, if $u > (\log x)^{3/8}$, then $\Psi(x, x^{1/u}) > x/u^{3u}$.

Proof (continued).

Claim.
$$(2 \log x)^{m+1} < u^{3u}$$
:
 $(2 \log x)^{m+1} < (2 \log x)^{u+1}$.

For
$$u > 3$$
 and $u \ge \log^{3/8} x$,
 $(2 \log x)^{u+1} \le (u^3)^u$.

Lemma (Canfield-Erdős-Pomerance) There is a constant c such that for u > c and all x > 1, if $u > (\log x)^{3/8}$, then

$$\Psi(x,x^{1/u}) > x/u^{3u}.$$

Proof (concluded).

$$\begin{split} \Psi(x, x^{1/u}) &> \pi(x^{1/u})^m \pi'(x^{\theta/u})/(m+1)! \\ &> \frac{(ux^{1/u})^m x^{\theta/u}}{2u^m \log^{m+1} x} \\ &= x/(2\log x)^{m+1} \\ &> x/u^{3u}. \end{split}$$

Exeunt Canfield, Erdős, and Pomerance. Enter Fermat.

Fermat's Method

Quick... factor 3599.

$$3599 = 60^2 - 1^2.$$

If $x^2 \equiv y^2$ (N), compute GCD(x - y, N). 50% chance to get a factor of N, because

$$(x-y)(x+y) \equiv 0 \ (N).$$

 $3599 = 59 \cdot 61.$

Fermat's Method

Fermat's method: for each x = 1, 2, ..., check whether $N + x^2$ is a square.

The adversary chooses N = pq with prime factors far away from \sqrt{N} .

 $p \approx N^{1/e}$ will do.

Now, Fermat's method is $O(\sqrt{N})$, which is slow.

Let's use another idea of Fermat.

Fermat's Method

(This isn't the other useful Fermat idea.)

Factor 64027.

Yes,
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$
.

But cubes are rarer than squares.

Pollard's p-1 Method

Fermat's Little Theorem

If p is prime and $a \in \mathbb{Z}$, and GCD(a, p) = 1, then

$$a^{p-1} \equiv 1 \ (p).$$

Given N, if a kind oracle would tell us p-1 for p dividing N, then

$$a^{p-1} - 1 \equiv 0 \ (p).$$

Therefore, $GCD(a^{p-1}-1, N)$ is p or N.

Pollard's method finds m such that $(p-1) \mid m$.

Thus, $GCD(a^m - 1, N)$ is p or N.

Pollard's p-1 Method

Let $m_j = LCM(1, 2, ..., j)$.

Given N = pq, for large enough j, p-1 divides m_j .

So: $a^{m_j} \equiv 1$ (p). Maybe $a^{m_j} \not\equiv 1$ (q).

Then $GCD(a^{m_j} - 1, N) = p$.

Here's an example for N = 20701.

Pollard's p-1 Method for N = 20701Pick a = 2. (If GCD(a, N), that's an instant win.)

Let $m_j = LCM(1, 2, ..., j).$

Let $X_j = 2^{m_j}$ reduced modulo N.

Let $F_j = GCD(X_j - 1, N)$.

j	m_{j}	X_j	F_j
2	2	4	1
3	6	64	1
4	12	4096	1
5	60	6493	1
6	60	6493	1
7	420	17273	127
8	840	13717	127
9	2520	6986	127

So $N = 127 \cdot 163$.

Next: another example.

j	m_{j}	X_j	F_{j}
2	2	4	1
3	6	64	1
4	12	4096	1
5	60	1156	1
6	60	6493	1
7	420	4153	1
8	840	2968	1
9	2520	625	1
11		4920	1
13		4327	1
16		4991	1
17		850	1
19		2077	1

Better luck with the next method!

Pollard's p-1 Method Performance

Pollard's method finds factors p such that prime power factors of p-1 are all small.

Typical size of largest prime power factor of p-1 is

$$p^{1-1/e} \approx N^{1/e-1/e^2}.$$

So: Pollard's method is slow against a smart adversary.

Pollard's p-1 Method Performance

The adversary already chooses:

N = pq, the product of exactly two primes,

p,q are not small.

p,q are not too close to \sqrt{N}

 $(p \approx N^{1/e})$

Now add: p - 1, q - 1 each have at least some large prime power factor.

Rational Sieve Method

Given N, let's solve $x^2 \equiv y^2$ (N).

Method:

Find lots of integers a such that a and N + a have only small prime factors.

Pick a subset of the a's such that

$$\prod_i a_i / (N + a_i) = s^2 / t^2.$$

Conclude: For x = s, y = t,

$$x^2 \equiv y^2$$
 (N).

GCD(x - y, N) has even odds to be a prime divisor of N.

Rational Sieve Vocabulary

Given N, we pick B, the smoothness bound.

We treat a prime p less than B as small.

An integer a is B-smooth means every prime p dividing a is less than B.

The set \mathcal{B} of small primes is the *factor base*.

A pair (a, N + a) of smooth numbers is a *relation* or *smooth relation*.

Here is an example with N = 5029, B = 20.

Rational Sieve for N = 5029

Factor N = 5029.

Factor base $\mathcal{B} = \{2, 3, 5, 7, 11, 13, 17, 19\}.$

	a	a + N	2	3	5	7	11	13	17	19
A	11	5040	0	0	1	1	1	0	0	0
B	20	5049	0	1	1	0	1	0	1	0
C	25	5054	1	0	0	1	0	0	0	0
D	91	5120	0	0	1	1	0	1	0	0
E	119	5148	0	0	0	1	1	1	1	0
F	171	5200	0	0	0	0	0	1	0	1
G	196	5225	0	0	0	0	1	0	0	1
H	221	5250	1	1	1	1	0	1	1	0
Ι	275	5304	1	1	0	0	1	1	1	0

Eliminate 19 with F + G replacing F, G.

Eliminate 2 and 3 with B + C + H and H + I replacing B, C, H, I.

Eliminate 19 with F + G. Eliminate 2 and 3 with B + C + H and H + I.

	5	7	11	13	17
A	1	1	1	0	0
D	1	1	0	1	0
E	0	1	1	1	1
F+G	0	0	1	1	0
B + C + H	0	0	1	1	0
H + I	1	1	1	0	0

Only row E has 17, so strike it.

		5	7	11	13
-	H + I	1	1	1	0
-	A	1	1	1	0
-	D	1	1	0	1
-	F + G	0	0	1	1
-	B + C + H	0	0	1	1

Relations:

$$A + H + I$$

$$A + D + F + G$$

$$B + C + F + G + H$$

Rational Sieve for N = 5029

Assembling relations:

	a	a + N	2	3	5	7	11	13	17	19
A	11	5040	0	0	1	1	1	0	0	0
H	221	5250	1	1	1	1	0	1	1	0
Ι	275	5304	1	1	0	0	1	1	1	0

Now compute over \mathbf{Z} , not mod 2:

	a/(a+N)	2	3	5	7	11	13	17	19
A	11/5040	-4	-2	-1	-1	1	0	0	0
H	221/5250	-1	-1	-3	-1	0	1	1	0
Ι	275/5304	-3	-1	2	0	1	-1	-1	0
	A + H + I	-8	-4	-2	-2	2	0	0	0

$$11^2 \equiv (2^4 \cdot 3^2 \cdot 5 \cdot 7)^2$$

For x = 11, y = 5040, $x^2 \equiv y^2$ (N).

Alas, N = y - x.

Rational Sieve for N = 5029

Assembling relations:

	a	a + N	2	3	5	7	11	13	17	19
A	11	5040	0	0	1	1	1	0	0	0
D	91	5120	0	0	1	1	0	1	0	0
F	171	5200	0	0	0	0	0	1	0	1
G	196	5225	0	0	0	0	1	0	0	1

Now compute over ${\bf Z},$ not mod 2:

	a/(a+N)	2	3	5	7	11	13	17	19
A	11/5040	-4	-2	-1	-1	1	0	0	0
D	91/5120	-10	0	-1	1	0	1	0	0
F	171/5200	-4	2	-2	0	0	-1	0	1
G	196/5225	2	0	-2	2	-1	0	0	-1
	total	-16	0	-6	2	0	0	0	0

For $x = 7, y = 2^8 5^3 = 32000, x^2 \equiv y^2$ (N).

Hooray! GCD(N, 32007) = 47.

Rational Sieve Performance

How common are smooth numbers?

From a random sample of integers of size $L[v, \lambda]$, the fraction of $L[w, \mu]$ smooth ones is:

$$\Psi(L[v,\lambda],L[w,\mu])/L[v,\lambda].$$

The expected sample size to find one $L[w, \mu]$ smooth ones is:

$$L[v,\lambda]/\Psi(L[v,\lambda],L[w,\mu]) =$$
$$L[v-w,(v-w)\lambda/\mu].$$

The expected sample size to find $L[w, \mu]$ smooth ones is:

$$L[w,\mu]L[v-w,(v-w)\lambda/\mu].$$

Rational Sieve Performance

We choose a small prime bound *B* of size $L[w, \mu]$.

Factor base \mathcal{B} has size $L[w, \mu]$.

Search for smooth pairs a, N + a; a is B-smooth. N + a has size L[1, 1].

Search region size:

$$L[1-w, (1-w)/\mu]L[w, \mu].$$

Linear algebra problem:

$$L[w,\mu]^2 = L[w,2\mu].$$

Rational Sieve Performance

Search region size:

$$L[1 - w, (1 - w)/\mu]L[w, \mu].$$

Minimize max(w, 1 - w): w = 1/2. Search region size is:

$$L[1/2, \mu + 1/2\mu].$$

Minimum at
$$\mu = \sqrt{2}/2$$
.
Search region size is:

$$L[1/2, \sqrt{2}].$$

Linear algebra is also

$$L[1/2, \sqrt{2}].$$