
Solutions to Assignment 3 

 

Barr 2.1, p.66, #3 a, c, f 

 

3. In each of the following, find q and r such that b = qm + r, according to the division 

principle.  

(a) b = 127, m = 7 

127 = (18)7 +1, 

(c) b = 1024, m = 16. 

1024 = (64)16 + 0,  

(f) b = -123, m = 124 

-123 = (-1)124 + 1.  

 

Barr 2.2, p.81, #4.  

 

4. Solve the following pairs of congruences for a and b. 

 

(a) 4a + b ≡ 11 (mod 26) 

     a + b ≡ 6 (mod 26) 

     It is easy to see a = 19, b = 13. 

 

(b) 22a + b ≡ 1 (mod 26) 

     13a + b ≡ 5 (mod 26) 

     It is easy to see a = 14, b = 5. 

 

 

 

 

 

 



C1. 

(a) Compute 5-1 (mod 23) 

Recall that the multiplicative inverse of an integer a modulo m is an integer b such 

that ab ≡ 1 (mod m). We define a-1 by a-1 = b MOD m.  

By Trial and Error we quickly see that (5)(14) = 70= 3 x 23 + 1 ≡ 1 (mod 23).  

So, 5-1 (mod 23) = 14. 

 

(b) Compute 5-1 (mod 27) 

(5)(11) = 55 = 2 x 27 + 1 ≡ 1 (mod 27) 

So, 5-1 (mod 27) = 11.  

 

C2.  

(a) Find the two solutions X between 0 and 7 to X2 ≡ 2 (mod 7). 

By Trial and Error we quickly see 32 = 9 ≡ 2 (mod 7), and 42 = 16 ≡ 2 (mod 7). 

Thus the two solutions are X = 3 and X = 4. 

 

(b) Find the four solutions Y between 0 and 15 to Y2 ≡ 4 (mod 15). 

The four solutions are Y = 2, 7, 8 or 13.  

 

(c) Find all solutions Z between 0 and 27 to Z2 ≡ 4 (mod 27).  

Testing all values from 0 to 27 we see that the only solutions to Z2 ≡ 4 (mod 27) 

are 2 and 25. 

 

 

 

 

 

 

 



C3.*  

(a) Find a positive integer A which solves all three of: 

A ≡ 1 (mod 3), A ≡ 3 (mod 5), and A ≡ 5 (mod 7).  

 

Brute Force Method: 

A ≡ 1 (mod 3) => A = 3x + 1 for some integer x. So, the possible values of A are 

1, 4, 7, 10, 13… 

A ≡ 3 (mod 5) => A = 5y +3 for some integer y. So, the possible values of A are  

3, 8, 13, 18,… 

A ≡ 5 (mod 7) => A = 7z + 5 for some integer z. So, the possible values of A are 

5, 12, 19, 26,… 

Keep writing out terms until you see a term that satisfies all 3 equations. 

Following this procedure eventually yields A = 103 as a solution. 

 

Alternative Method: 

First, solve A ≡ 1 (mod 3) and A ≡ 3 (mod 5) using the brute force method but 
write up terms only upto the lowest common multiple (l.c.m) of 3 and 5 = 15 
 
So A ≡ 1 (mod 3) yields A = 1,4, 7, 10, 13, and 
     A ≡ 3 (mod 5) yields A = 3, 8 ,13.  
 
We see A = 13 solves both A ≡ 1 (mod 3) and A ≡ 3 (mod 5). 
Next, writing more terms we see the next A that solves both  
A ≡ 1 (mod 3) and A ≡ 3 (mod 5) is A = 28 = 15(1) + 13. Continuing, we see  
A = 43 = 15(2) + 13 is the next solution. Thus, we see A ≡ 13 (mod 15) solves 
both A ≡ 1 (mod 3) and A ≡ 3 (mod 5). 
 
In general, the following is always true: 

 if x ≡ a1 (mod m1) and x ≡ a2 (mod m2), and if x = b is a solution for both  

x ≡ a1 (mod m1) and x ≡ a2 (mod m2), then the general solution to  

x ≡ a1 (mod m1) and x ≡ a2 (mod m2) is x ≡ b (mod [m1, m2] ) where [m1,m2] 

denotes the lowest common multiple of m1 and m2. 

 



So, since A = 13 is a solution for both A ≡ 1 (mod 3) and A ≡ 3 (mod 5), the 

general solution to A ≡ 1 (mod 3) and A ≡ 3 (mod 5) is A = 13 (mod 15), since the 

lowest common multiple of 3 and 5 is 15. 

 

Now, we solve A ≡ 13 (mod 15) and A ≡ 5 (mod 7). Again writing out terms upto 

the lowest common multiple of 7 and 15 = 105, we see 103 is a solution. Thus, the 

general solution to A ≡ 1 (mod 3), A ≡ 3 (mod 5), and A ≡ 5 (mod 7) is  

A ≡ 103 (mod 105).  

 

(b) Find a positive integer B which solves all of  

B ≡ 5 (mod 6), B ≡ 7 (mod 10), B ≡ 2 (mod 15).    

 

B ≡ 5 (mod 6) => B = 6x + 5 for some integer x. So, the possible values of B are 

5, 11, 17,… 

B ≡ 7 (mod 10) => B = 10y +7 for some integer y. So, the possible values of B are  

7 , 17, 27,… 

B ≡ 2 (mod 15) => B = 15z + 2 for some integer z. So, the possible values of B are 

2, 17, 32,…  

 

We see that B = 17 satisfies all 3 equations so we’re done. 

 

(c) Why are there no integers C which solve both  

C ≡ 7 (mod 10) and C ≡ 8 (mod 16)?  

 

C ≡ 7 (mod 10) => C = 7 + 10x for some integer x. 

C ≡ 8 (mod 16) => C = 8 + 16y for some integer y.  

 

Note that C = 7 + 10x only yields odd values for C, and  

     C = 8 + 16y only yields even values for C. 



Since C cannot be both odd and even, we conclude there is no integer C which 

solves both C ≡ 7 (mod 10) and C ≡ 8 (mod 16). 

 

C4.* 

(a) Use Euclid’s Algorithm to determine the G.C.D. (greatest common divisor) of 

98944 and 184747. 

 

184747 = 94944(1) + 85803 

98944  = 85803(1) + 13141 

85803  = 13141(6) + 6957 

13141  = 6957(1)  + 6184 

6957   = 6184(1)  + 773 

6184   = 773(8)   + 0 

 

Since 773 is the last non-zero remainder, we conclude that the G.C.D of 98944 

and 184747 is 773. 

 

 

(b) Compute 989452 (mod 184747) 

 

Recall that asking to compute 989452 (mod 184747) is equivalent to calculating 

the remainder when 989452 is divided by 184747.  

 

Using a calculator, we see 989452 / 184747 ≈ 52992.00001 

 

Thus, the Remainder = 989452 – (184747)(52992) = 1 

 

Thus, 989452 (mod 184747) = 1. 


