Barr 2.1, p.66, #3 a, c, f

3. In each of the following, find q and r such that b = qm + r, according to the division principle.

(a)
$$b = 127$$
, $m = 7$
 $127 = (18)7 + 1$,
(c) $b = 1024$, $m = 16$.
 $1024 = (64)16 + 0$,
(f) $b = -123$, $m = 124$
 $-123 = (-1)124 + 1$.

Barr 2.2, p.81, #4.

4. Solve the following pairs of congruences for a and b.

(a)
$$4a + b \equiv 11 \pmod{26}$$

 $a + b \equiv 6 \pmod{26}$
It is easy to see $a = 19, b = 13$.

$$(b) 22a + b \equiv 1 \pmod{26}$$

 $13a + b \equiv 5 \pmod{26}$

It is easy to see a = 14, b = 5.

C1.

(a) Compute $5^{-1} \pmod{23}$

Recall that the multiplicative inverse of an integer a modulo m is an integer b such that $ab \equiv 1 \pmod{m}$. We define a^{-1} by $a^{-1} = b \pmod{m}$.

By Trial and Error we quickly see that $(5)(14) = 70 = 3 \times 23 + 1 \equiv 1 \pmod{23}$. So, $5^{-1} \pmod{23} = 14$.

(b) Compute $5^{-1} \pmod{27}$ (5)(11) = 55 = 2 x 27 + 1 = 1 (mod 27) So, $5^{-1} \pmod{27} = 11$.

C2.

(a) Find the two solutions X between 0 and 7 to $X^2 \equiv 2 \pmod{7}$. By Trial and Error we quickly see $3^2 = 9 \equiv 2 \pmod{7}$, and $4^2 = 16 \equiv 2 \pmod{7}$. Thus the two solutions are X = 3 and X = 4.

(b) Find the four solutions Y between 0 and 15 to $Y^2 \equiv 4 \pmod{15}$. The four solutions are Y = 2, 7, 8 or 13.

(c) Find all solutions Z between 0 and 27 to $Z^2 \equiv 4 \pmod{27}$. Testing all values from 0 to 27 we see that the only solutions to $Z^2 \equiv 4 \pmod{27}$ are 2 and 25. C3.*

(a) Find a positive integer A which solves all three of:

 $A \equiv 1 \pmod{3}$, $A \equiv 3 \pmod{5}$, and $A \equiv 5 \pmod{7}$.

Brute Force Method:

 $A \equiv 1 \pmod{3} \Rightarrow A = 3x + 1$ for some integer x. So, the possible values of A are 1, 4, 7, 10, 13...

 $A \equiv 3 \pmod{5} \Rightarrow A = 5y + 3$ for some integer y. So, the possible values of A are 3, 8, 13, 18,...

 $A \equiv 5 \pmod{7} \Rightarrow A = 7z + 5$ for some integer z. So, the possible values of A are 5, 12, 19, 26,...

Keep writing out terms until you see a term that satisfies all 3 equations.

Following this procedure eventually yields A = 103 as a solution.

Alternative Method:

First, solve $A \equiv 1 \pmod{3}$ and $A \equiv 3 \pmod{5}$ using the brute force method but write up terms only upto the lowest common multiple (l.c.m) of 3 and 5 = 15

So $A \equiv 1 \pmod{3}$ yields A = 1, 4, 7, 10, 13, and $A \equiv 3 \pmod{5}$ yields A = 3, 8, 13.

We see A = 13 solves both A = 1 (mod 3) and A = 3 (mod 5). Next, writing more terms we see the next A that solves both A = 1 (mod 3) and A = 3 (mod 5) is A = 28 = 15(1) + 13. Continuing, we see A = 43 = 15(2) + 13 is the next solution. Thus, we see A = 13 (mod 15) solves both A = 1 (mod 3) and A = 3 (mod 5).

In general, the following is always true:

if $x \equiv a_1 \pmod{m_1}$ and $x \equiv a_2 \pmod{m_2}$, and if x = b is a solution for both $x \equiv a_1 \pmod{m_1}$ and $x \equiv a_2 \pmod{m_2}$, then the general solution to $x \equiv a_1 \pmod{m_1}$ and $x \equiv a_2 \pmod{m_2}$ is $x \equiv b \pmod{[m_1, m_2]}$ where $[m_1, m_2]$

denotes the lowest common multiple of m_1 and m_2 .

So, since A = 13 is a solution for both A \equiv 1 (mod 3) and A \equiv 3 (mod 5), the general solution to A \equiv 1 (mod 3) and A \equiv 3 (mod 5) is A = 13 (mod 15), since the lowest common multiple of 3 and 5 is 15.

Now, we solve $A \equiv 13 \pmod{15}$ and $A \equiv 5 \pmod{7}$. Again writing out terms upto the lowest common multiple of 7 and 15 = 105, we see 103 is a solution. Thus, the general solution to $A \equiv 1 \pmod{3}$, $A \equiv 3 \pmod{5}$, and $A \equiv 5 \pmod{7}$ is $A \equiv 103 \pmod{105}$.

(b) Find a positive integer B which solves all of

 $B \equiv 5 \pmod{6}, B \equiv 7 \pmod{10}, B \equiv 2 \pmod{15}.$

 $B \equiv 5 \pmod{6} \Longrightarrow B = 6x + 5 \text{ for some integer x. So, the possible values of B are}$ 5, 11, 17,... $B \equiv 7 \pmod{10} \Longrightarrow B = 10y + 7 \text{ for some integer y. So, the possible values of B are}$ 7, 17, 27,... $B \equiv 2 \pmod{15} \Longrightarrow B = 15z + 2 \text{ for some integer z. So, the possible values of B are}$

2, 17, 32,...

We see that B = 17 satisfies all 3 equations so we're done.

(c) Why are there no integers C which solve both $C \equiv 7 \pmod{10}$ and $C \equiv 8 \pmod{16}$?

 $C \equiv 7 \pmod{10} \Longrightarrow C = 7 + 10x$ for some integer x. $C \equiv 8 \pmod{16} \Longrightarrow C = 8 + 16y$ for some integer y.

Note that C = 7 + 10x only yields odd values for C, and C = 8 + 16y only yields even values for C. Since C cannot be both odd and even, we conclude there is no integer C which solves both $C \equiv 7 \pmod{10}$ and $C \equiv 8 \pmod{16}$.

C4.*

(a) Use Euclid's Algorithm to determine the G.C.D. (greatest common divisor) of 98944 and 184747.

184747 = 94944(1) + 85803 98944 = 85803(1) + 13141 85803 = 13141(6) + 6957 13141 = 6957(1) + 6184 6957 = 6184(1) + 773 6184 = 773(8) + 0

Since 773 is the last non-zero remainder, we conclude that the G.C.D of 98944 and 184747 is 773.

(b) Compute 98945² (mod 184747)

Recall that asking to compute $98945^2 \pmod{184747}$ is equivalent to calculating the remainder when 98945^2 is divided by 184747.

Using a calculator, we see $98945^2 / 184747 \approx 52992.00001$

Thus, the Remainder = $98945^2 - (184747)(52992) = 1$

Thus, $98945^2 \pmod{184747} = 1$.