Solutions to Assignment 6

Barr 3.2, Page 200: 2, 3, 4.

2.
(a) 10110 ⊕ 01011 = 11101
(b) 101011 ⊕ 101011 = 000000
(c) 010010 ⊕ 010010 = 000000

3. If $y_1 y_2 y_3 y_4 = x_3 x_2 x_4 x_1$, then $x_1 x_2 x_3 x_4 = y_4 y_2 y_1 y_3$. So, $f^{-1}(y_1 y_2 y_3 y_4) = y_4 y_2 y_1 y_3$.

4. D is the inverse of E in the x variable. To find it, let $y_1y_2 = x_2x_1 \oplus k_1k_2$. Then $x_1 + k_2 \equiv y_2 \pmod{2}$ and $x_2 + k_1 \equiv y_1 \pmod{2}$. So $x_1 \equiv y_2 + k_2 \pmod{2}$ and $x_2 \equiv y_1 + k_1 \pmod{2}$. This means $x_1x_2 = y_2y_1 \oplus k_2k_1$. So D(y_1y_2, k_1k_2) = $y_2y_1 \oplus k_2k_1$ satisfies the desired identity: with $y_1y_2 = E(x_1x_2, k_1k_2) = x_2x_1 \oplus k_1k_2$, we get

D(E(x, k), k) =
$$y_2y_1 \oplus k_2k_1$$

= $(x_1x_2 \oplus k_2k_1) \oplus k_2k_1$
= $x_1x_2 = x$.

F1.

 $f(0121012101) = 1(0) + 2(1) + 3(2) + ... + 9(0) = 10(1) = 50 \pmod{11} = 6.$ Plugging an ISBN into f should give you a remainder of 0. F2.

(a) d = 4:

Program 1 takes 2368 seconds.Program 2 takes 0.05 seconds.Program 3 takes 15,000 seconds.

Thus, Program 2 is faster than Program 1 which is faster than Program 3.

(b) d = 100:

Program 1 takes 37 x 10^6 seconds. Program 2 takes 5 x 10^{94} seconds. Program 3 takes 1.5 x 10^{12} seconds.

Thus, Program 1 is faster than Program 3 which is faster than program 2.

F3.

If d = 20, E will take (at most) 0.01082 seconds. If d = 22, E will take (at most) 0.01309 seconds. If d = 40, E will take (at most) 0.04324 seconds.

If d = 20, F will take (at most) 10 seconds. If d = 22, F will take (at most) 100 seconds. If d = 40, F will take (at most) 1 x 10^{11} seconds.

F4.

To try all possible 56 bit keys, D will take $2^{56} / 2^{38} = 2^{18} = 262$, 144 seconds. To try all possible 64 bit keys, D will take $2^{64} / 2^{38} = 2^{26} = 67,108,864$ seconds. To try all possible 128 bit keys, D will take $2^{128} / 2^{38} = 2^{74} = 1.89 \times 10^{22}$ seconds.

F5. The Complexity of Programs 1, 2, 3, D, E, F.

Polynomials O(d ^r) for some r	Program 1				Program E	
Exponential O(r ^d) for some r		Program 2		Program D		Program F
Something bigger than any polynomial but smaller than any exponential			Program 3			
Something bigger than any exponential						