Barr 3.2, Page 200: 8.

8.

- (a) $\ln (5) \approx 1.60944$. So, $\ln (5^{10000}) = 10,000 \ln (5) = 160,944$. (b) $\log 2 (3) \approx 1.58496$. So, $\log_2 (3^{-84371}) = -84371 \cdot (1.58496) = -133,725$.
- (c) $2^x < 10^7 \Rightarrow x \ln 2 < 7 \ln 10 \Rightarrow x < (7 \ln 10) / (\ln 2) = 23.2535$. Therefore, the largest possible integer value of x is 23.
- (d) $3^{13} \le 4^x \Rightarrow 13 \ln 3 \le x \ln 4 \Rightarrow x \ge (13 \ln 3) / (\ln 4) = 10.3023$. Therefore, the smallest possible integer value of x is 11.
- Barr 3.3, Pages 208: 2*, 5, 6.
- 2.* Explain why O($\log_b(n)$) = O($\ln(n)$) for all b > 1.

Using the logarithm base conversion formula, $\log_a x = (\log_b x) / (\log_b a)$ for any b > 0. So, O($\log_b(n) = O((\log_e n) / (\log_e b)) = O(\ln(n) / \ln(b))$. Notice, ln (b) is a constant $\neq 0$ since b > 1, and thus, O($\log_b(n) = O(\ln(n) / \ln(b)) = O(\ln(n))$.

5.

$$\begin{split} O(\ 10^{100}) &\subset O(\ ln\ (n)\) = O(\ \log_{10}(n)\) \subset O(\ n^3) = O(\ n^3 + n^2) \subset O(\ n^{100}) \subset O(\ 1.1^n) \\ &\subset O(\ n2^n) \subset O(\ 3^n) \subset O(n!). \end{split}$$

- 6. If μ∈O(aⁿ), then there are constants M and N such that |μ(n)| ≤ Maⁿ < Mbⁿ for all n ≥ N. Thus, if μ∈O(aⁿ), μ∈O(bⁿ).
 Example: μ(n) = bⁿ is not in O(aⁿ) : if it were, there would be M and N such that
 - bⁿ \leq Maⁿ for all $n \geq$ N. This would mean that $(b/a)^n \leq$ M for all $n \geq$ N, which is impossible since (b/a) > 1 and the sequence $(b/a)^n$ goes to ∞ as $n \rightarrow \infty$.

Barr 3.4, Page 220: 3(b)*.

 $3(b)^*$. $b_4 \leftarrow b_3 + b_2 + b_1$, Initial Condition 1000. Using the procedure described on Pages 213-215, we get:

t	b ₄	b ₃	b ₂	b ₁
0	1	0	0	0
1	0	1	0	0
2	1	0	1	0
3	1	1	0	1
4	0	1	1	0
5	0	0	1	1
6	0	0	0	1
7	1	0	0	0

Notice that the shift register bits have returned to their initial values at t = 7, so the pattern of b_1 starts to repeat. Thus, the output is 0001011.

G1.* Given register contents DCBA, output = $(A+C) \mod 2$, C' = D, B' = C, A' = B, and D' = $(A+B) \mod 2$.

t	D	С	В	А	Output
0	1	0	1	1	1
1	0	1	0	1	0
2	1	0	1	0	0
3	1	1	0	1	0
4	1	1	1	0	1
5	1	1	1	1	0
6	0	1	1	1	0
7	0	0	1	1	1
8	0	0	0	1	1
9	1	0	0	0	0
10	0	1	0	0	1
11	0	0	1	0	0
12	1	0	0	1	1
13	1	1	0	0	1
14	0	1	1	0	1
15	1	0	1	1	1

(a) Starting with DCBA = 1011, we obtain the following:

Notice that the bits return to their initial value at t = 15. So, the output is 100010011010111.

(b) Recall that an *ordinary* four bit shift register is the following (Page 213):

If b_k , ..., b_4 , b_3 , b_2 , b_1 are the bits in the register at a given time and b_k ', ..., b_4 ', b_3 ', b_2 ', b_1 ' are the bits at the next time, then

$$\begin{array}{l} b_{1}' \leftarrow b_{2} \\ b_{2}' \leftarrow b_{3} \\ b_{3}' \leftarrow b_{4} \\ \vdots \\ \\ b_{k}' \leftarrow (c_{k} \cdot b_{k} + c_{k-1} \cdot b_{k-1} + \ldots + c_{3} \cdot b_{3} + c_{2} \cdot b_{2} + c_{1} \cdot b_{1}) \bmod 2. \end{array}$$

So, given DCBA we get A' = B, B' = C, C' = D, and letting $D' = (A + B) \mod 2$ with starting value 0001, we get:

t	D	С	В	А
0	0	0	0	1
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	1	0	0	1
5	1	1	0	0
6	0	1	1	0
7	1	0	1	1
8	0	1	0	1
9	1	0	1	0
10	1	1	0	1
11	1	1	1	0
12	1	1	1	1

13	0	1	1	1
14	0	0	1	1
15	0	0	0	1

Notice that the bits return to their initial value at t = 15. So, the output (given by A) is 100010011010111 which is the same output we got in (a).

G2.*

 $x_{n+1} = Ax_n + b \pmod{M}$ $A = 3, B = 2, M = 17, x_0 = 2.$ So, $x_1 = 3x_0 + 2 \pmod{17} = 3(2) + 2 = 8.$ Repeating this procedure we get: $x_2 = 9, x_3 = 12, x_4 = 4, x_5 = 14, x_6 = 10, x_7 = 15, x_8 = 13, x_9 = 7, x_{10} = 6, x_{11} = 3, x_{12} = 11,$

 $x_{12} = 0$, $x_{3} = 12$, $x_{4} = 4$, $x_{5} = 14$, $x_{6} = 10$, $x_{7} = 13$, $x_{8} = 13$, $x_{9} = 7$, $x_{10} = 0$, $x_{11} = 5$, $x_{12} = 11$, $x_{13} = 1$, $x_{14} = 5$, $x_{15} = 0$ and $x_{16} = 2$. Notice that $x_{16} = 2 = x_{0}$, so $x_{17} = x_{1}$, $x_{18} = x_{2}$, and so on. Thus, the length of the cycle is 16.