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Studying Sequences As If They Were Functions

I Why do this?

I For fun (sequences are cool!)

I To count things (combinatorics, computer science).

I To model reality (numerical solution of differential equations).

I Some problems about functions are most easily solved by
translating into a problem about sequences (power series,
Fourier series) and vice versa (generating functions).

I Shows the power of reasoning by analogy.
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Three Levels of Structure

1. Real numbers: −2, 7
3 ,
√

5,e,π, . . .
2. Functions f : R→ R Sequences s : N→ R
3. Differential Operators: d

dt Difference Operators: D,E , . . .

I Differential operators map functions to functions.

I Difference operators map sequences to sequences.
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Adding and Multiplying Operators

I Addition is term by term: if

A(s0,s1,s2, . . .) = (a0,a1,a2, . . .)

and
B(s0,s1,s2, . . .) = (b0,b1,b2, . . .)

then we define

(A + B)(s0,s1,s2, . . .) = (a0 + b0,a1 + b1,a2 + b2, . . .)

I Multiplication is composition: (AB)(s) = A(B(s))
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The Shift Operator and the Difference Operator

I Shift operator: E (s0,s1,s2, . . .) = (s1,s2,s3, . . .).

I Identity Operator: I (s0,s1,s2, . . .) = (s0,s1,s2, . . .).

I Difference Operator: D = E − I .

D(s0,s1,s2, . . .) = (s1− s0,s2− s1,s3− s2, . . .).
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The Fibonacci Sequence

I Let F0 = 0, F1 = 1, and

Fn+2 = Fn+1 + Fn for n = 0,1,2, . . . .

I This recurrence relates the sequence F to its shifts:

F = (0, 1, 1, 2, 3, 5, 8, 13, 21, . . .)
E F = (1, 1, 2, 3, 5, 8, 13, 21, 34, . . .)

E 2F = (1, 2, 3, 5, 8, 13, 21, 34, 55, . . .)

I Infinitely many equations encoded in one:

E 2F = E F + F .
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Factoring An Operator

I The Fibonacci sequence F satisfies

(E 2−E −1)F = 0.

I Suppose we factor this quadratic:

(E −φ)(E − φ̄)F = 0,

where

φ =
1 +
√

5

2
, φ̄ =

1−
√

5

2
.
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Eigenvectors of the Shift Operator

I How would we solve the simpler equation

(E −φ)s = 0?

I This says Es = φs, or

(s1,s2,s3, . . .) = (φs0,φs1,φs2, . . .).

I So

s1 = φs0

s2 = φs1 = φ
2s0

s3 = φs2 = φ
3s0

. . .

sn = φsn−1 = φ
ns0.
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The Charm of Commutativity

I Likewise, the general solution to

(E − φ̄)t = 0

is tn = t0φ̄n.

I The sequences s and t satisfy

(E 2−E −1)s = (E − φ̄)(E −φ)s = 0.

(E 2−E −1)t = (E −φ)(E − φ̄)t = 0.
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A Basis For The Solution Space

I The set of all sequences u satisfying the Fibonacci recurrence

(E 2−E −1)u = 0

is a 2-dimensional vector space.

I The sequences sn = φn and tn = φ̄n form a basis for this space.

I Let’s write the Fibonacci sequence in this basis:

F = as + bt.
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I Solving for a and b gives the famous formula

Fn =
1√
5

(
φ

n− φ̄
n
)

I Since φ̄ = 1−
√

5
2 ≈−0.618, the second term is extremely tiny.

I So Fn is the closest integer to φn/
√

5.

F10 = 55, φ
10/
√

5 = 55.0036.

F11 = 89, φ
11/
√

5 = 88.9978.
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How Fast Do Rabbits Multiply?

I Now we can answer Fibonacci’s original question:

lim
n→∞

Fn+1

Fn
= lim

n→∞

closest integer to φn+1/
√

5

closest integer to φn/
√

5
= φ≈ 1.618.
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The Fibonacci Recurrence Is Just The Tip of The Iceberg

I How do we solve recurrences like

sn+2 = 2sn+1 + sn

and
sn+3 = sn+2 + sn+1 + sn ?

Lionel Levine 18.095: Calculus of Finite Differences



Linear Recurrences

I Definition: A sequence of complex numbers s = (s0,s1,s2, . . .)
obeys a linear recurrence of order k if there exist constants
a0, . . . ,ak−1 ∈ C, with a0 6= 0, such that

sn+k =
k−1

∑
i=0

ai sn+i , n = 0,1,2, . . . .
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The General Method

I Write the recurrence in the form

(p(E ))s = 0

for some polynomial p.

I Factor the polynomial

p(E ) = (E −φ1) . . .(E −φk).

I If the complex numbers φ1, . . . ,φk are distinct, we say that s
obeys a simple linear recurrence.
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Main Theorem

I A sequence of complex numbers s = (s0,s1,s2, . . .) obeys a
simple linear recurrence of order k if and only if it can be
written in the form

sn = c1φ
n
1 + . . .+ ckφ

n
k

for some complex numbers φ1, . . . ,φk and c1, . . . ,ck .
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The Converse Direction

I According to the Main Theorem, the sequence
s = (0,1,5,19,65,211, . . .), whose n-th term is

sn = 3n−2n

obeys a linear recurrence of order 2.

I How do we find this recurrence?

I We have φ1 = 3 and φ2 = 2, so the recurrence is (p(E ))s = 0,
where

p(E ) = (E −3)(E −2) = E 2−5E + 6.

I In other words,

sn+2−5sn+1 + 6sn = 0.

Lionel Levine 18.095: Calculus of Finite Differences



The Converse Direction

I According to the Main Theorem, the sequence
s = (0,1,5,19,65,211, . . .), whose n-th term is

sn = 3n−2n

obeys a linear recurrence of order 2.

I How do we find this recurrence?

I We have φ1 = 3 and φ2 = 2, so the recurrence is (p(E ))s = 0,
where

p(E ) = (E −3)(E −2) = E 2−5E + 6.

I In other words,

sn+2−5sn+1 + 6sn = 0.

Lionel Levine 18.095: Calculus of Finite Differences



What If The Polynomial p(E ) Has Multiple Roots?

I Say we want to solve the recurrence

sn+3 = 3sn+2−3sn+1 + sn.

I We can write this as p(E )s = 0, where

p(E ) = E 3−3E 2 + 3E −1 = (E −1)3.

I Our method so far only gives one solution

sn = 1.

There should be two more...

Lionel Levine 18.095: Calculus of Finite Differences



The Difference Operator

I Remember that D = E −1, so we can write our recurrence as

D3s = 0.

I Reasoning by analogy, the differential equation

d3

dx3
[f ] = 0

has the three solutions f (x) = 1,x ,x2.

I So let’s try out the three sequences

sn = 1, sn = n, sn = n2.
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Polynomial Solutions

I The general solution to D3s = 0 has the form

sn = an2 + bn + c .

I More generally, we have

Dms = 0

if and only if
sn = q(n)

for some polynomial q of degree ≤m−1.

I This suggests how to deal with the issue of multiple roots...
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Main Theorem, General Version

I A sequence of complex numbers s = (s0,s1,s2, . . .) obeys the
linear recurrence

k

∏
i=1

(E −φi )
mi s = 0

if and only if it can be written in the form

sn = q1(n)φ
n
1 + . . .+ qk(n)φ

n
k

where each qi is a polynomial of degree ≤mi −1.

Lionel Levine 18.095: Calculus of Finite Differences



Exponential Generating Functions

I The exponential generating function of a sequence
s = (s0,s1,s2, . . .) is

Fs(x) = s0 + s1x + s2
x2

2
+ s3

x3

6
+ . . .+ sn

xn

n!
+ . . . .

I For example, if s = (1,1,1,1, . . .), then

Fs(x) = 1 + x +
x2

2
+

x3

6
+ . . .+

xn

n!
+ . . . = ex .
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Relating E and d
dx

I Since
d

dx

[
xn

n!

]
=

nxn−1

n!
=

xn−1

(n−1)!

we have

d

dx
[Fs(x)] =

d

dx

[
s0+s1x + s2

x2

2
+ s3

x3

6
+ . . .+ sn

xn

n!
+ . . .

]
= s1 + s2x + s3

x2

2
+ . . .+ sn+1

xn

n!
+ . . .

= FEs(x).
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Recurrences Become Differential Equations

I If the sequence s obeys a linear recurrence (p(E ))s = 0, then
its exponential generating function obeys the differential
equation

p

(
d

dx

)
[Fs(x)] = F(p(E))s(x) = F0(x) = 0.
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Example: Solving the Differential Equation f ′′ = f ′+ f

I We can write this equation as(
d2

dx2
− d

dx
−1

)
f = 0.

I Since the Fibonacci sequence obeys the corresponding
recurrence

(E 2−E −1)F = 0

its exponential generating function

f (x) =
∞

∑
n=1

Fn
xn

n!

is a solution to f ′′ = f ′+ f .
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Example: Deriving The Power Series for sinx

I Since
d2

dx2
[sinx ] =−sinx

we have
sinx = Fs(x)

for a sequence s obeying the recurrence

E 2s =−s.

I Since s0 = sin(0) = 0 and s1 = d
dx [sinx ]|x=0 = cos(0) = 1, we

get
s = (0,1,0,−1,0,1,0,−1, ...)

so

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . .
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Example: Taylor Series

f (t) = f (0) + f ′(0)t +
f ′′(0)

2
t2 +

f ′′′(0)

6
t3 + . . .+

f (n)(0)

n!
tn + . . .

I How would anyone discover this formula?

I If we allow ourselves a few “non-rigorous” steps, we can
derive it from finite differences...
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We Can Shift Functions Too

I (E f )(x) = f (x + 1)

I (E 2f )(x) = E (E (f ))(x) = (E (f ))(x + 1) = f (x + 2)

I (E 3f )(x) = f (x + 3)

I (Ehf )(x) = f (x + h).
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Relating d
dx And E As Operators

I From the definition of the derivative,

df

dx
= lim

h→0

f (x + h)− f (x)

h

= lim
h→0

(
Eh−1

h
f

)
(x).

I limh→0
th−1

h = limh→0
eh lnt−1

h = limh→0
(lnt)eh

1 = ln t.

I So
d

dx
= lnE .

I How to interpret this??
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Expanding e
d
dx As A Series

I If d
dx = lnE , then E = e

d
dx . Let’s try expanding this:

et = 1 + t +
t2

2
+

t3

6
+ . . .+

tn

n!
+ . . . .

et d
dx = 1 + t

d

dx
+

t2

2

d2

dx2
+

t3

6

d3

dx3
+ . . .+

tn

n!

dn

dxn
+ . . .

I This is an equation of operators, so we can plug in a function:

et d
dx [f ] = f + tf ′+

t2

2
f ′′+

t3

6
f ′′′+ . . .+

tn

n!
f (n) + . . .
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Taylor Series

I But et d
dx is just E t , so:

f (t) = (E t f )(0) = et d
dx [f ](0)

= f (0) + f ′(0)t +
f ′′(0)

2
t2 +

f ′′′(0)

6
t3 + . . .+

f (n)(0)

n!
tn + . . .

which is what we wanted!
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Further Reading

I Kelley and Peterson, Difference Equations, 1991.

I Jordan, Calculus of Finite Differences, 1965.

I Stanley, Enumerative Combinatorics vol. 1, chapter 4.

I These slides & the homework problems will be posted at
http://math.mit.edu/∼levine/18.095
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