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Studying Sequences As If They Were Functions

Why do this?

For fun (sequences are cool!)

To count things (combinatorics, computer science).

To model reality (numerical solution of differential equations).

Some problems about functions are most easily solved by
translating into a problem about sequences (power series,
Fourier series) and vice versa (generating functions).

Shows the power of reasoning by analogy.
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Three Levels of Structure

1. Real numbers: —2,%,\/§,e,n,

2. Functions f :R—R Sequences s: N — R
3. Differential Operators: % Difference Operators: D, E, ...
» Differential operators map functions to functions.

» Difference operators map sequences to sequences.
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Adding and Multiplying Operators

» Addition is term by term: if

A(So,51,52,...) = (ag,al,ag,...)

and
3(50,51,52,. . ) = (bo, bl,bg,. )

then we define

(A+B)(50,S1,52,...) = (ao—i-bo,al—i-bl,az—l—bz,...)

» Multiplication is composition: (AB)(s) = A(B(s))
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The Shift Operator and the Difference Operator

» Shift operator:  E(sp,51,%2,...) = (51,5,53,...).
» Identity Operator: /(sp,s1,%2,...) = (50,51, 52,-..).
» Difference Operator: D =E — /.

D(SQ,Sl,SQ,...) = (51—50,52—51,53—52,...).
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The Fibonacci Sequence

» Let Fp =0, [ =1, and
Foi2o=Fai1+F, for n=0,1,2,....
» This recurrence relates the sequence F to its shifts:

F = (0, 1, 1,
EF (1, 1, 2,
E’F = (1, 2, 3,

.3 8, 13, 21,
, 5, 8, 13, 21, 34,
8, 13, 21, 34, 55,

o

[S2BNCVIN )

)

» Infinitely many equations encoded in one:

E2F=EF+F.
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Factoring An Operator

» The Fibonacci sequence F satisfies
(E2—E-1)F=0.
» Suppose we factor this quadratic:

(E—0)(E-§)F =0,
where

145

1-v5
2 ’

0 0=
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Eigenvectors of the Shift Operator

» How would we solve the simpler equation
(E—0)s=07
» This says Es = ¢s, or
(s1,52,53,-..) = (0s0,ds1, P50, . ..).
» So

s1 = 0so
52 = 051 = 0%

s3= 05 = 035

Sn= 05,1 = ¢"sp.
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The Charm of Commutativity

> Likewise, the general solution to
(E-0)t=0

is t, = tg0".
» The sequences s and t satisfy

(E?—E—-1)s=(E—9)(E—0)s=0.

(E?—E—-1)t=(E—0)(E-0)t=0.
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A Basis For The Solution Space

» The set of all sequences u satisfying the Fibonacci recurrence
(E2~E-1)u=0

is a 2-dimensional vector space.
» The sequences s, = ¢” and t, = ¢" form a basis for this space.

» Let's write the Fibonacci sequence in this basis:

F =as+ bt.
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» Solving for a and b gives the famous formula

Fn:\75(¢"—¢")

> Since ¢ = 1’2—\/5 ~ —0.618, the second term is extremely tiny.

» So F, is the closest integer to (])”/\/5.
Fio =55, ¢'°/v/5=55.0036.

Fi1 =89, ¢'/v/5=288.9978.
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How Fast Do Rabbits Multiply?

» Now we can answer Fibonacci's original question:

i Fri1 " closest integer to ¢"1/\/5
im = lim
n—e Fp  n—e closest integer to 0"/v/5

=0~ 1.618.
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The Fibonacci Recurrence Is Just The Tip of The Iceberg

» How do we solve recurrences like
Snt2 = 2841+ Sp

and
Sn+3 = Sp+42 + Sn+1 +sn ?
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Linear Recurrences

» Definition: A sequence of complex numbers s = (sp,s1,52,...)
obeys a linear recurrence of order k if there exist constants
ag,---,ak—1 € C, with ag # 0, such that

k—1
Sn+k = Za,-sn+,-, n=20,1,2,....
i=0
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The General Method

» Write the recurrence in the form

(P(E))s =0

for some polynomial p.

» Factor the polynomial

p(E)=(E —¢1)...(E — k).

» If the complex numbers ¢1,...,0, are distinct, we say that s
obeys a simple linear recurrence.
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Main Theorem

> A sequence of complex numbers s = (sp,s1,5p,...) obeys a
simple linear recurrence of order k if and only if it can be
written in the form

sp=afd] +...+ ckdy

for some complex numbers ¢1,...,0, and cy, ..., ck.
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The Converse Direction

» According to the Main Theorem, the sequence
s=(0,1,5,19,65,211,...), whose n-th term is

s, =3"-2"

obeys a linear recurrence of order 2.

» How do we find this recurrence?
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The Converse Direction
According to the Main Theorem, the sequence
s=(0,1,5,19,65,211,...), whose n-th term is
s, =3"-2"

obeys a linear recurrence of order 2.

» How do we find this recurrence?
» We have 01 =3 and ¢2 = 2, so the recurrence is (p(E))s =0,

where
p(E) = (E —3)(E—2)=E>-5E+6.

In other words,

Sn+2 — 55n+1 + 65,7 =0.
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What If The Polynomial p(E) Has Multiple Roots?

» Say we want to solve the recurrence
Sn+3 = 3Sp+2 — 3Sp+1+ Sp-
» We can write this as p(E)s =0, where
p(E)=E*-3E>+3E—1=(E—1).
» Our method so far only gives one solution
s, =1.

There should be two more...
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The Difference Operator

» Remember that D = E — 1, so we can write our recurrence as
D3s=0.
» Reasoning by analogy, the differential equation

d3
aalf1=0
has the three solutions f(x) = 1,x,x.

» So let's try out the three sequences

sh=1, s,=n, s,,:nz.
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Polynomial Solutions

» The general solution to D3s =0 has the form
s, = an®+ bn+c.
» More generally, we have
D"s=0

if and only if
sn=q(n)
for some polynomial g of degree < m—1.

» This suggests how to deal with the issue of multiple roots...
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Main Theorem, General Version

» A sequence of complex numbers s = (sp, s1,52,...) obeys the

linear recurrence
k

[T(E—0)™s=0

i=1
if and only if it can be written in the form

sn=q1(n)o7 + ...+ qr(n) oy

where each g; is a polynomial of degree < m; —1.
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Exponential Generating Functions

» The exponential generating function of a sequence
s=(sp,S1,52,...) is
Fs(x) = so+s1x + X2+ X3+ .
= —4+s3—+...FSsp—+....
s\ X S50 T S1X T 52 5 3 6 n
» For example, if s=(1,1,1,1,...), then

2 3 X"

X X
Ts(x):1+x+?+€+...+ﬁ+...:ex.
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Relating £ and %

» Since
d [x" nx"—1 X1
a’x[n!}_ n! (n—1)!
we have
YA d[+ e N ]
— = — |sg+s So— + 53—+ ...+ 5,— +..
dx SV T g [0TSR S8 g "ol
x2 x"
= s51+ Sx+ s3—+...+Spp1—+...
2 n!
:.‘]:ES(X)'
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Recurrences Become Differential Equations

» If the sequence s obeys a linear recurrence (p(E))s =0, then
its exponential generating function obeys the differential
equation

(5. ) 001 = ) = Folx) =0,
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Example: Solving the Differential Equation " = '+ f

» We can write this equation as

d> d
————1f=0.
<d><2 dx > f=0
» Since the Fibonacci sequence obeys the corresponding

recurrence
(E>~E-1)F=0

its exponential generating function

is a solution to " =f'+f.
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Example: Deriving The Power Series for sinx

» Since
2
w[smx] = —sinx
we have
sinx = F5(x)
for a sequence s obeying the recurrence
E?s = —s.
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Example: Deriving The Power Series for sinx

» Since
2
w[smx] = —sinx
we have
sinx = F5(x)
for a sequence s obeying the recurrence
E?s = —s.

> Since sp =sin(0) =0 and s; = d%[sinx]|xzo =cos(0) =1, we
get
s=(0,1,0,-1,0,1,0,—1,...)

SO

x> x5 X'

smx:x—i%—a—ﬁ—l—....
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Example: Deriving The Power Series for sinx

» Since
2
w[smx] = —sinx
we have
sinx = F5(x)
for a sequence s obeying the recurrence
E?s = —s.

Lionel Levine 18.095: Calculus of Finite Differences



Example: Deriving The Power Series for sinx

» Since
2
w[smx] = —sinx
we have
sinx = F5(x)
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Example: Taylor Series

f"(0) -

f(t)=f(0)+f (0)t+ > t+fm(0)

B34+, +

» How would anyone discover this formula?

» If we allow ourselves a few “non-rigorous” steps, we can
derive it from finite differences...
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We Can Shift Functions Too

Differences
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Relating % And E As Operators

» From the definition of the derivative,

df k) ()
dx o h

~ lim <Ehh_1f> (%),
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Relatmg And E As Operators

» From the definition of the derivative,

if_ lim f(x+h)—f(x)
dx o h
EPh—1
=i —f
hﬂ)( h >( )
> ||tho h =limp_o hlnhtfl = ”thOM =Int.
d
> —=InE|
So I n

» How to interpret this??
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Expanding ed As A Series

> If di InE, then E = ed . Let's try expanding this:

t2 3 tn
=14+t
et ML Tk PP
d t2d?> 3d3 t" dn

th 14+ 2 va o4 b
¢ T o T e T T e T

» This is an equation of operators, so we can plug in a function:
tl'l

2
etd%[f]:f—}-tf/—l—%f" 6f///+ +7’f()
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Taylor Series

» But etd is just E?, so:

F(t) = (E*F)(0) = e'&[f](0)

" " (n)
e, MO0p, 70
2 6 n!

=f(0)+f'(0)t+ t" ...

which is what we wanted!
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Further Reading

» Kelley and Peterson, Difference Equations, 1991.
» Jordan, Calculus of Finite Differences, 1965.

» Stanley, Enumerative Combinatorics vol. 1, chapter 4.

» These slides & the homework problems will be posted at
http://math.mit.edu/~levine/18.095
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