18.312: Algebraic Combinatorics

Lionel Levine

Practice Problems for the Final

The questions on the exam on Thursday May 5 will be similar to these, but there will be fewer of them. Explain your reasoning to receive full credit, even for computational questions. If a result was proved in lecture or on the problem sets, you may use it without reproducing the proof.

PF1 Consider the poset $P = \{\widehat{0}, x_1, \dots, x_n, y_1, \dots, y_n, z_1, \dots, z_n, \widehat{1}\}$ with covering relations

$$\widehat{0} < x_i < y_j < z_k < \widehat{1}$$

for all $i, j, k \in [n]$. Find for each $\ell \geq 1$ the number of chains of length ℓ from $\widehat{0}$ to $\widehat{1}$, and use this information to determine $\mu_P(\widehat{0}, \widehat{1})$.

.

PF2 Suppose P is a poset with $\widehat{0}$ and $\widehat{1}$ having $3 \begin{pmatrix} \ell+2 \\ 3 \end{pmatrix} - 2\ell$ multichains $\widehat{0} \le x_0 \le x_1 \le \ldots \le x_\ell = \widehat{1}$ for each $\ell \ge 1$.

- (a) What is the rank of P?
- (b) What is $\mu_P(\widehat{0}, \widehat{1})$?

• • • • •

PF3 Consider the 3-dimensional hyperplane arrangement

$$A = \{x = y, \ x = -y, \ y = z, \ y = -z\}.$$

- (a) Draw the Hasse diagram of the intersection lattice L of \mathcal{A} .
- (b) Find $\mu(X, \widehat{1})$ for all $X \in L$.
- (c) How many points $(x, y, z) \in \mathbb{F}_5^3$ belong to the union of the hyperplanes in \mathcal{A} ?

• • • • •

PF4 Let L be the lattice of linear subspaces of \mathbb{F}_2^3 , ordered by inclusion.

- (a) Draw the Hasse diagram of L.
- (b) Find $\mu_L(0, 1)$.
- (c) Find the number of linear maps $A: \mathbb{F}_2^3 \to \mathbb{F}_2^3$ such that $Av \neq v$ for all $v \in \mathbb{F}_2^3$.

.

PF5 Let $A_1, \ldots, A_n, B_1, \ldots, B_n$ be sets of size 2 with $A_1 \cup \ldots \cup A_n = B_1 \cup \ldots \cup B_n = [2n]$. Prove that there is a permutation $\sigma \in S_n$ such that $A_{\sigma i} \cap B_i \neq \emptyset$ for all $i \in [n]$.

.

PF6 Let G be a finite directed graph, and let $\kappa(G, v)$ be the number of oriented spanning trees of G rooted at v. Prove that if G is balanced (indeg(v)=outdeg(v) for all vertices v), then $\kappa(G, v) = \kappa(G, w)$ for all vertices v and w.

.

PF7 Let $\ell, n \geq 1$. Find the number of closed paths of length ℓ in the complete graph K_n .

• • • • •

PF8 Let G be a 3-regular undirected graph on 10 vertices whose adjacency matrix has eigenvalues -2, -2, -2, -2, 1, 1, 1, 1, 1, 3.

- (a) Find the number of closed paths in G of length ℓ .
- (b) How many spanning trees does G have?
- (c) How many bi-Eulerian tours does G have, up to cyclic equivalence? (A bi-Eulerian tour is a closed path using every edge twice: once in each direction.)

.

PF9 How many sequences (x_1, \ldots, x_{91}) with each $x_k \in [10]$ have the property that $x_1 = x_{91}$ and for every pair of distinct integers $i, j \in [10]$ there is exactly one $k \in [90]$ such that $(x_k, x_{k+1}) = (i, j)$?

.

PF10 Let Y be the set of 3×3 matrices with entries in [n]. For $A, B \in Y$ define an equivalence relation $A \sim B$ if B can be obtained by permuting the rows and columns of A. Find the number of equivalence classes.