
18.312: Algebraic Combinatorics Lionel Levine

Lecture 1
Lecture date: February 1, 2011 Notes by: Lou Odette

1 Names, places, times:

• Office hours (in 2-335): Tuesdays 12:00-13:00 & Wednesdays 13:00-14:00.

• Course info: math.mit.edu/~levine/18.312 (levine at math dot mit dot edu)

• Grader: Aldo Pacchiano Camacho (pacchian at mit dot edu)

• Grading:

– weekly PSET worth roughly 50 “points” throughout the term; turn in your best 30 “points”
to count for 30% of final grade,

– midterm on March 10 worth 20% of final grade,

– final on May 5 worth 30% of final grade, and

– write-up of notes (1-2 lectures) worth 20% of final grade.

2 Algebraic Combinatorics

While the term combinatorics frequently is used to refer to counting problems (Enumerative Combi-
natorics), some combinatorics is non-enumerative and in particular Algebraic Combinatorics treats
the relationships between discrete structures and algebraic objects, e.g.

Discrete Structures Algebraic Objects
graphs groups

partially ordered sets L99 monoids
lattices vector spaces

matroids 99K rings
simplicial complexes algebras

While the connection with algebraic objects can provide more structure to the combinatorial objects,
the connection can go the other way, with combinatorial objects providing concrete instances of the
algebraic objects. The next section is an example of a combinatorial object helping to make an
algebraic idea concrete.
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3 Fermat’s “little” Theorem

Fermat’s “little” theorem states that if p is a prime number, then for any n ∈ N, np−n will be
evenly divisible by p. To make this concrete, consider the problem of making a necklace of p beads,
choosing the beads from n distinct colors. Let [n] ≡ {1, 2, . . . , n}, and denote the cardinality of a
set S by #S (alternatively, by |S|).

The set of all necklaces of p beads from n colors has cardinality

# {f : [p]→ [n]} = np

and so there are np − n necklaces that aren’t all one color (constant). Let the color of bead i be
f(i) = ai and denote a necklace by a p-vector of the colors starting with the bead at 12 o’clock and
proceeding clockwise. For example, the necklace a = (a1, a2, . . . , a9) can also be represented by the
following picture
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Denote a counterclockwise rotation of the necklace by i beads by

ri (a1, a2, . . . .ap) = (ai+1, . . . .ap, a1, . . . , ai)

so for example r4 (a1, a2, . . . .a9) = (a5, . . . .a9, a1, . . . , a4) and the necklaces a and r4 (a) are illus-
trated below
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a r4@aD

Proposition 1 If a is a non-constant necklace, then the necklaces a, r1 (a) , . . . , rp−1 (a) are all
distinct.
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Proof:

If ri (a) = rj (a) then (ai+1, . . . .ap, a1, . . . , ai) = (aj+1, . . . .ap, a1, . . . , aj) and so for all k, ai+k =
aj+k (mod k). Now let l = j − i, then ai+k = aj+k ⇒ ak = ak+l, and it follows that al = a2l =
a3l = · · · . However, if i 6= j then l 6= 0 and al, a2l, a3l, · · · are all distinct (mod p). Thus in this
case the necklace a must be constant, so ri (a) = rj (a) only if i = j. Thus there are exactly p
rotational classes on non constant necklaces, and the number of distinct non-constant necklaces is
evenly divisible by p.

2

4 Review of group action.

Let G be a group and X a non-empty set, with g, h ∈ G and x ∈ X.

Definition 2 The action of G on X is a map

G×X → X; (g, x) 7→ gx

such that (i) 1x = x, ∀x ∈ X and (ii) ∀g, h ∈ G, ∀x ∈ X, g (hx) = (gh)x.

For each g ∈ G we also get an invertible map σ(g) from the action of g on x

σ (g) : X → X, x 7→ gx

and we can check that σ (g) is invertible

σ
(
g−1

)
(σ (g)x) = g−1 (gx) =

(
g−1g

)
x = 1x = x

and that the map σ(·) is a group homomorphism σ : G → SymX (i.e. σ(gh) = σ(g)σ(h)) where
SymX is the symmetric group of all invertible maps.

Definition 3 Let G be a group that acts on the set X. If x ∈ X the orbit of x is the set Orb (x) =
{y ∈ X|y = gx, for some g ∈ G}. The stabilizer of x is the set Stab (x) = {g ∈ G|gx = x}. Notice
that Stab (x) is a subgroup of G

g, h ∈ Stab (x)⇒ gh (x) = g (hx) = g (x) = x⇒ gh ∈ Stab (x)

Definition 4 If S ⊂ G, then let 〈S〉 denote the subgroup generated by S, the smallest subgroup of
G containing every element of S. If G = 〈S〉 then S generates G and the elements in S are called
generators.

Definition 5 A group G is cyclic if there exists an element g ∈ G such that G = 〈g〉 ≡ {gn|n ∈ N}.

Theorem 6 The Orbit-Stabilizer Theorem states that ∀x ∈ X

|Orb (x)| × |Stab (x)| = |G|
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5 A generalization of Fermat’s “little” theorem.

We can generalize Fermat’s “little” theorem if p is not prime as follows.

• In general, nk − n is not evenly divisible by k. For example, consider a necklace of four beads
from 2 colors (n = 2, k = 4). Clearly

nk − n
k

=
24 − 2

4
=

14

4
/∈ N

and if we count the non-constant necklaces, the fourteen necklaces are

a, r1 (a) , r2 (a) , r3 (a) , b, r1 (b) , r2 (b) , r3 (b) , c, r1 (c) , r2 (c) , r3 (c) , d, r1 (d)

based on the necklaces a, b, c, d shown below
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• For general k, consider the set of k-necklaces from n colors,

Nk = {(a0, a1, . . . , ak−1) |ai ∈ [n]} .

Clearly |Nk| = nk, and the cyclic group Ck of order k acts on members of the set Nk by
rotation. With ri (a1, a2, . . . .ap) = (ai+1, . . . .ap, a1, . . . , ai), taking the indices mod k, interpret
ri as the group element acting on the necklace a. Then for the k-necklace problem Ck = 〈r〉 ={
1, r, r2, · · · , rk−1

}
with rk = 1 and X ≡ Nk. Thus

ri
(
rj (a)

)
= ri+j (a) ; rk (a) = a

represents two actions: rotate by j, then rotate by i.

• It is apparent then that the generators of a, b, c are the cyclic group C1 = 〈r〉, while the
generator of d is the cyclic group C2 =

〈
r2
〉
. The two constant necklaces have generator

C4 =
〈
r4
〉
.

• The necklaces a, b, c each have the same stabilizer, with Stab (a) =
〈
r4
〉
= C1, while the

stabilizer of the necklace d is Stab (d) =
〈
r2
〉
= C2. The necklaces a, b, c each have the

same orbit, with Orb (a) =
{
a, ra, r2a, r3a

}
, while the orbit of the necklace d is Orb (d) ={

d, r1d
}
. An application of the Orbit-Stabilizer Theorem gives |Orb (x)| × |Stab (x)| = k for

each necklace.

Definition 7 A necklace is primitive if it has no stabilizer, i.e. Stab (a) = C1.
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Example 8 Consider the case k = pq, where p, q are distinct primes. The goal is to count the
number of primitive necklaces. Here Ck = Cpq which has four subgroups, shown below with their
corresponding generators

subgroup: Cpq Cp Cq C1

| | | |
generator:

〈
r1
〉
〈rq〉 〈rp〉 〈rpq〉

Let the set of necklaces Eα = {necklaces a|Stab (a) ⊇ Cα}, with α ∈ {1, p, q, pq}. Then the set of
primitive necklaces is the set difference

Nk − Ep − Eq

and so the number of primitive necklaces is

|Nk| − |Ep| − |Eq|+ |Ep ∩ Eq|

but since p and q are primes, Ep ∩ Eq = Epq, the number of constant necklaces. So we have

|Nk| = npq

|Ep| = nq

|Eq| = np

|Ep ∩ Eq| = n

and thus the number of primitive necklaces is npq − nq − np + n.
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