
18.312: Algebraic Combinatorics Lionel Levine

Lecture 20

Lecture date: Apr 26, 2011 Notes by: Josh Alman

1 Plan for the Remainder of the Course

Today: Applications of the Matrix-Tree Theorem

• Hamming Cube

• Eulerian Tours

Next Class: De Bruijn sequences, Polya Theory

In-class final on Thurs, May 5th

Last week: Abelian Sandpile Group

2 Hamming Cube

Our first application of the Matrix-Tree Thorem will be to find the number of spanning
trees in the Hamming Cube.

Definition 1 The Hamming Cube of dimension n is the undirected graph Hn = (V,E),
where V = {0, 1}n is the set of binary strings of length n, and x, y ∈ V are adjacent iff
xi = yi for all but one index i ∈ [n].

Example 2 For n = 3, we have that H3 looks like:

000

001

010

011

100

101

110

111

Figure 1: The Hamming Cube of dimension 3.

20-1

Question 3 How many spanning trees are there in Hn?

Answer: By the Matrix-Tree Theorem, the number of spanning trees is given by:

κ(Hn) =
λ1 · λ2 · · ·λN−1

N
, (1)

where N = |V | = 2n is the number of vertices, and λ1, ...λN−1 are the non-zero eigenvalues
of the Laplacian matrix:

L = nI −An,

where An is the adjacency matrix for Hn. Indeed, each vertex has degree n since it is
adjacent to the vertex which differs from it only in the ith position for all i ∈ [n].

Now, we are going to find the eigenvalues of An by finding the eigenvalues of A1 and writing
the eigenvalues of An as sums of these. Notice that:

Hn = H1 ×H1 × · · · ×H1 (n times).

This gives us exactly that two vertices in Hn are adjacent if they differ in exactly one
position, as we want. Thus, we get that:

An = A1 ⊗ I ⊗ I ⊗ · · · ⊗ I + I ⊗A1 ⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ I ⊗ I ⊗ · · · ⊗ I ⊗An. (2)

One might think that we actually get An = A1 ⊗A1 ⊗ · · · ⊗A1 (n times), but this would
actually correspond to the graph where two binary strings are adjacent if they differ in
every position. We can see that (2) is correct.

Now, H1 looks like:

0 1

Figure 2: The Hamming Cube of dimension 1.

This has adjacency matrix:

A1 =

(
0 1
1 0

)
.

Letting v1 =

(
1
1

)
and v2 =

(
1
−1

)
, we can see that:

A1v1 = v1, and A1v2 = −v2,

so A1 has eigenvectors v1 and v2 with eigenvalues 1 and −1, respectively. Thus, by (2), we
get that the eigenvectors of An are the vectors of the form:

v = vi1 ⊗ vi2 ⊗ · · · ⊗ vin , where ir ∈ {1, 2} ∀r ∈ [n].

20-2

The corresponding eigenvalue for this eigenvector of An is simply the sum of the eigenvalues
of the ’vir ’s, which is:

λv =
∑
ir=1

1 +
∑
ir=2

(−1)

= n− 2 ·#{r | ir = 2}.

Thus, since there are
(
n
k

)
ways to pick k of the n ’ir’s to equal 2, we have that An has the

eigenvalue n− 2k with multiplicity
(
n
k

)
for each k = 0, 1, ..., n; this is all the 2n eigenvalues

of An. Recalling that:
Ln = nI −An,

we get that Ln has eigenvalue n−(n−2k) = 2k with multiplicity
(
n
m

)
for each k = 0, 1, ..., n.

We can finally evaluate (1), keeping in mind that we do not include zero eigenvalues in our
product:

κ(Hn) =

∏n
k=1(2k)(

n
k)

N
=

∏n
k=1(2k)(

n
k)

2(n1)
=

n∏
k=2

(2k)(
n
k) (3)

Thus, the number of spanning trees in Hn is
∏n

k=2(2k)(
n
k).

Surprisingly, despite the form of this answer, finding a combinatorial proof of it is an
open problem. One promising approach involves corresponding spanning trees in Hn to
phototropic trees in Hn - trees where the sun is placed at the origin, and edges ”grow
toward the light.” More formally:

Definition 4 A directed spanning tree Tn of Hn, rooted at the origin, 0n, is called pho-
totropic if whenever the arc (x, y) ∈ Tn, we have that xi ≥ yi ∀i ∈ [n].

Example 5 Here are directed spanning trees in H2:

0001

1011

Figure 3: A phototropic tree in H2

20-3

0001

1011

Figure 4: A tree in H2 that is not phototropic, since there is an arc between 10 and 11 in
the wrong direction.

Counting phototrpphic trees is simple: we can construct them by choosing an outward arc
for each vertex other than the origin. The arc from a vertex x must go to a vertex identical
to x except that it has a zero in one position where x has a one, and so if there are ax ones
in x, then there are ax choices for that arc. The number of phototropic trees in Hn is thus:

#{phototropic trees in Hn} =
∏

x∈{0,1}n\0n
ax =

∏
x∈{0,1}n\0n

(
n∑

i=1

xn

)
=

n∏
k=1

k(nk)

The similarity of this answer to (3) leads to the idea of corresponding phototropic trees to
spanning trees to produce a combinatorial proof of our earlier result.

3 Eulerian Tours

3.1 Introducing the problem

In this section, we will use a tricky application spanning trees to find the number of Eulerian
tours in a directed graph.

Definition 6 If G = (V,E) is a finite directed graph, with n = |V |,m = |E|, then a
(directed) Eulerian tour of G is a path t0, t1, ..., tm = t0 with each ti ∈ V , such that each
directed edge is used exactly once, meaning, {(ti, ti+1)}m−1i=0 = E.

Example 7 Here are some Eulerian tours on
←→
K3:

20-4

0 1

2

Figure 5: The complete directed graph on 3 vertices.

0 1

2

Figure 6: The Eulerian Tour 021012

0 1

2

Figure 7: The Eulerian Tour 020121

Question 8 Which directed graphs have Eulerian tours?

One might recall that an undirected graph has an Eulerian tour if every vertex has even
degree. However, here, we are dealing with directed graphs, so the condition will require
that our graph be balanced.

Definition 9 In a directed graph G = (V,E), a vertex v ∈ V is said to be balanced if it
has equal indegree and outdegree;

indeg(v) = outdeg(v).

Definition 10 A directed graph G = (V,E) is said to be balanced if each of its vertices is
balanced.

20-5

We can then state our condition on a directed graph having an Eulerian tour:

Answer 11 A directed graph G=(V,E) has an Eulerian tour iff it is balanced.

It is clear that a directed graph needs to be balanced to have an Eulerian tour. The
converse ends up being true as well. We will see this, but we also want to count the number
of Eulerian tours in a directed graph that has any.

Definition 12 If G = (V,E) is a directed graph, with e ∈ E an arc in the graph, then we
write:

τ(G, e) := #{Eulerian tours of G starting with the edge e}.

Since an Eulerian tour goes over all arcs in a graph, and we can cycle our tours to start at
any edge we want, we can see that τ(G, e) is actually independent of e, so we can similarly
define τ(G) := τ(G, e) for any e ∈ E. Recalling that κ(G, v0) is the number of oriented
spanning trees in directed graph G rooted at vertex v0, we can then state our theorem for
counting Eulerian tours in directed graphs:

Theorem 13 If G = (V,E) is a directed graph, then G has an Eulerian tour iff it is
balanced. If it is balanced, then for any e = (v0, v1) ∈ E,

τ(G) = τ(G, e) = κ(G, v0) ·
∏
v∈V

(deg(v)− 1)!. (4)

We quickly introduce some new notation:

Definition 14 If e ∈ E is an arc in directed graph G = (V,E), and e = (v, w), then we
write:

e− := v,

e+ := w.

Then, for a vertex x ∈ V , we write Ex for the set of arcs coming out of x:

Ex := {f ∈ E|f− = x}.

We want to interpret the (deg(v) − 1)! terms in (4) as cyclic permutations of the edges in
Ev. We thus define the following:

20-6

Definition 15 Given an Eulerian tour γ = (t0, t1, ..., tm−1) in directed graph G = (V,E),
for any vertex v ∈ V , let i1, ..., id be the indices such that tir = v, r = 1, ..., d = outdeg(v).
Then, for each r, write er = (v, tir+1); the ’er’ are the edges in Ev in the order that they
are crossed in γ. Then, we can define the cyclic permutation cv : Ev → Ev as:

cv(er) =

{
er+1 if 1 ≤ r < d

e1 if r = d

To use this new cyclic permutation, we are going to use some properties of Rotor Walks.

3.2 Rotor Walks

Definition 16 A rotor configuration on a directed graph G = (V,E) is a map ρ : V → E
such that ρ(v) ∈ Ev ∀v ∈ v; it assigns an outgoing edge to each vertex.

Definition 17 Given a directed graph G = (V,E) and associated ρ and a cv for each v ∈ V ,
and a starting vertex V0, define a rotor walk as a sequence of vertices in V , v0, v1, v2, ..., as
follows: let ρ0 = ρ, then for each i = 1, 2, ..., let:

ρi(w) =

{
ρi−1(w) if w 6= vi−1

cvi−1(ρi−1(vi−1)) if w = vi−1.

Then, let vi = ρi(vi−1)
+.

Basically, at each step, the rotor of the vertex we are looking at goes to the next edge
coming out of that vertex in its cyclic permutation of edegs, and we move along that new

edge. We illustrate this with an example on
←→
K3:

20-7

Example 18 We give the initial conditions in ρ0; at each step, the arcs in the current ρ
are shown:

− −

v0

Figure 8: ρ0

− v1

v0

Figure 9: ρ1

− v1

v0 = v2

Figure 10: ρ2

v3 v1

v0 = v2

Figure 11: ρ3

20-8

v3 v1 = v4

v0 = v2

Figure 12: ρ4

v3 = v5 v1 = v4

v0 = v2

Figure 13: ρ5

v3 = v5 v1 = v4

v0 = v2 = v6

Figure 14: ρ6

Since ρ0 = ρ6 and v0 = v6, we are now going to repeat; rotor walking is deterministic.
Notice that the vertices traversed on the path, (v0, v1, v2, v3, v4, v5) = (2, 1, 2, 0, 2, 1), form
an Eulerian path of the graph! It turns out that the reason for this is that ρ0 formed a
spanning tree of the graph.

3.3 Finding the number of directed Eulerian tours

Lemma 19 If directed graph G = (V,E) is balanced, and the graph T = (V, ρ(V −{v0})) is
a tree, then there exists an Eulerian tour t0, t1, ..., tm−1 such that the rotor walk v0, v1, v2, ...
induced by ρ travels around the tour, namely:

v0 = t0, . . . , vm−1 = tm−1

vm = t0, . . . , v2m−1 = tm−1

. . .

vi = ti+m ∀i ≥ 0.

20-9

Proof: Let e = (vi, vi+1) be the first edge travelled twice by the rotor walk; i is the smallest
index such that ∃j < i such that vj = vi and vj+1 = vi+1. This is well-defined since there
are finitely many edges and the path is infinite. Let d = deg(vi). Since each outgoing edge
of vi had to be traversed before e could be traversed a second time, as the rotor goes over
all these edges, after step i, there have been d + 1 exits from vi. This means there were
d + 1 entrances to vi. But, since v is balanced, there are only d edges coming into it, so
one of these edges were already traversed twice, a contradiction, unless vi = v0, as we start
there. Thus, the first edge travelled twice started from v0.

Now, we call a vertex w full if all its incoming edges have been used before time i, meaning,
for each edge e such that e+ = w, there exists a j < i such that e = (vj , vj+1). Note that
v0 is full, since it had d entrances other than at the beginning, and d incoming edges, and
none of these were traversed twice.

Notice that if a vertex w is full, and (u,w) is an edge of our initial spanning tree T , then u
is also full if it is not v0. Indeed, (u,w) ∈ T means that ρ0(u) = (u,w), meaning (u, v) is
the last edge traveled out of u in the rotor walk. But, since w is full, (u,w) was used, so
all the edges out of u were used. Thus, there were deg(u) entrances to u, and since u is not
v0, all incoming edges were used, so u is full.

We have that the root of the spanning tree is full, and every non-root vertex adjacent to a
full vertex in the tree is full. Since T is a spanning tree, all the vertices are full. Thus, each
edge was used exactly once. 2

We can now prove our theorem! We recall what we wanted to show:

Theorem 20 If G = (V,E) is a directed graph, then G has an Eulerian tour iff it is
balanced. If it is balanced, then for any e = (v0, v1) ∈ E,

τ(G) = τ(G, e) = κ(G, v0) ·
∏
v∈V

(deg(v)− 1)!. (5)

Proof: We define a bijection:

f : {Eulerian tours of G starting with edge e = (v0, v1)} →

→ {oriented spanning trees of G rooted at v0}×
∏
v∈V
{cyclic permutations of Ev},

where the products in the right hand side are cartesian products of sets. Proving this will
clearly imply (5).

We can define f−1 as: f−1(ρ, (cv)v∈V) → rotor walk (v0, v1, ...), where the rotor walk is
exactly what we defined in the lemma. Notiice that an oriented spanning tree does not
actually give us a value for ρ(v0), but we can define it as ρ(v0) = c−1v0 (v0, v1).

20-10

We can define f as: f(t0, t1, ..., tm−1) = (ρ, (cv)v∈V), where the ’cv’ are the orders of the
edges taken in the tour, and ρ(u) is the last edge travelled out of u in the tour; ρ(u) =
(u,w), where w = vM+1, where M = max{i < m|vi = u}. With ρ defined in this way,
(V, ρ(V − {v0})) is a tree because given S ⊂ V − {v}, letting N = max{i < m|vi ∈ S}, we
have that (vN , vN+1) is an edge of T and vN+1 /∈ S. Thus, S does not form an oriented
cycle, and so T is a tree.

It is clear that these are inverses. 2

It is worth noting that it is not clear that the number of oriented spanning trees rooted at
v is independent of v; this is problem PF6 on the practice final.

20-11

