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Lecture 4

Lecture date: Feb 10, 2011 Notes by: Minseon Shin

1 Stirling Numbers

In the previous lecture, the “signless Stirling number of the first kind” c(n, k) was defined
to be the number of permutations π ∈ Sn with exactly k cycles. c(n, k) satisfies the linear
recurrence c(n, k) = (n− 1)c(n− 1, k) + c(n− 1, k − 1).

Lemma 1
n∑
k=1

c(n, k)xk = x(x+ 1) · · · (x+ n− 1).

Proof: Induction on n. Check that c(1, 1)x = x. Then

x(x+ 1) · · · (x+ n− 1) =
n−1∑
k=1

c(n− 1, k)xk(x+ n− 1)

=
n−1∑
k=1

c(n− 1, k)xk+1 +
n−1∑
k=1

c(n− 1, k)(n− 1)xk

=

n−1∑
k=1

(c(n− 1, k) + (n− 1)c(n− 1, k))xk+1

=

n∑
k=1

c(n, k)xk.

2

Corollary 2

#{π ∈ Sn | π has an even number of cycles} = #{π ∈ Sn | π has an odd number of cycles}.

Proof: Plugging in x = −1 into Lemma 1, we obtain
∑n

k=1 c(n, k)(−1)k = 0; on the LHS,
the sum of terms with positive coefficient is equal to the number of permutations with an
even number of cycles, and the sum of terms with negative coefficient is equal to the number
of permutations with an odd number of cycles. 2
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(−1)n−(# of cycles in π) = sgn π and the set {π ∈ Sn | sgn π = 1} is called the alternating
group An. By Corollary 2, |An| = n!/2.

Corollary 3 The total number of cycles in all permutations in Sn is equal to
n!
(
1
1 + 1

2 + . . .+ 1
n

)
.

Proof: The total number of cycles in all permutations in Sn is equal to
∑n

k=1 k · c(n, k),
which is equal to C ′n(1), where Cn(x) =

∑n
k=1 c(n, k)xk. By Lemma 1, Cn(x) = x(x +

1) · · · (x + n − 1) so C ′n(x) can also be written C ′n(x) = Cn(x)
(

1
x + . . .+ 1

x+n−1

)
, which

evaluated at x = 1 is n!
(
1
1 + 1

2 + . . .+ 1
n

)
. 2

From Corollary 3 it follows that the average number of cycles in all permutations in Sn is
1
1 + 1

2 + . . .+ 1
n ≈ lnn.

Corollary 4 If p is prime, then c(p, k) is divisible by p for 1 < k < p.

Proof: The polynomial x(x+1) · · · (x+n−1), considered modulo p, has {0, 1, . . . , p−1} as
roots. By Fermat’s little theorem, xp − x has these same roots; therefore, their coefficients
must be equal modulo p, from which it follows that [xk](x(x+1) · · · (x+n−1)) = [xk](xp−x)
for all k. 2

Definition 5 S(n, k), the Stirling number of the second kind, is defined to be the number
of partitions of [n] into exactly k nonempty subsets.

We have S(n, 1) = 1, S(n, 2) = 2n−2
2 , S(n, n− 1) =

(
n
2

)
, and S(n, n) = 1.

Lemma 6 S(n, k) satisfies the recurrence

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1).

Proof: Given a partition of [n− 1], there are 2 ways to construct a partition of [n] with k
subsets: either by adding n into a part of a partition of [n− 1] with k subsets or by adding
the set {n} as a new part into a partition of [n− 1] with k − 1 subsets. 2

If f : [n]→ [k] is a surjective function, then the preimages f−1(1), . . . , f−1(k) partition [n].
There are k! bijective mappings from parts of a partition with k parts to [k]. Thus k!S(n, k)
equals the number of surjective functions f : [n]→ [k].
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Using inclusion-exclusion, we find another formula for S(n, k): let S be the set of all map-
pings f : [n] → [k], and Ei = {f | i 6∈ im(f)}. Then S(n, k) = |S − ∪iEi| /k!. If I ⊂ [n]
with |I| = r, then |∩iEi| = (k − r)n, so (using the notation in Lecture 2)

nr =
∑

I⊂[n],|I|=r

(k − r)n =

(
k

r

)
(k − r)n

and

S(n, k) =
1

k!

n∑
i=0

(
k

i

)
(k − i)n(−1)i.

Convention: for all k 6∈ [n] we let S(n, k) = 0.

Lemma 7
n∑
k=1

S(n, k) · x(x− 1) · · · (x− k + 1) = xn.

Proof: It suffices to check the identity for all x ∈ N.

xn = #{all maps f : [n]→ [x]}

=
n∑
k=1

#{all maps f : [n]→ [x] such that |im(f)| = k}

=
n∑
k=1

(
x

k

)
#{surjective maps f : [n]→ [k]}

=

n∑
k=1

(
x

k

)
k!S(n, k)

=

n∑
k=1

x(x− 1) · · · (x− k + 1)S(n, k).

2

Theorem 8 Let s(n, k) = (−1)n−kc(n, k) and δmn =

{
1 if m = n

0 else
. Then

m∑
k=n

S(m, k)s(k, n) = δmn.
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Proof: We prove an alternative formulation of Theorem 8. Define the n × n matrices
M = {s(j, i)} and N = {S(j, i)}. Since s(j, i) = S(j, i) = 0 if j < i, M and N are
upper-triangular. Our goal is to prove that

M ×N =


s(1, 1) s(2, 1) · · · s(n, 1)

s(2, 2) · · · s(n, 2)
. . .

...
s(n, n)

×

S(1, 1) S(2, 1) · · · S(n, 1)

S(2, 2) · · · S(n, 2)
. . .

...
S(n, n)

 = In.

We prove that M and N are change-of-basis matrices between two particular bases E,F of
the vector space Vn = {polynomials in x of degree at most n with constant term 0}, where

E = (e1, e2, . . . , en) with ei = xi

F = (f1, f2, . . . , fn) with fi = x(x− 1) · · · (x− i+ 1).

In Lemma 1 we substitute −x for x and multiply both sides of the equation by (−1)n to
obtain

fi =
i∑

k=1

eks(i, k) for all i =⇒ F = EM

thus M is the change-of-basis matrix from E to F . By Lemma 7, we have

ei =

i∑
k=1

fkS(i, k) for all i =⇒ E = FN

so N is the change-of-basis matrix from F to E. This concludes the proof. 2

2 Linear Recurrences

Linear operators such as the derivative operator d
dt on the set of differentiable functions

{f : R → R} have discrete analogues. Let V be the set of sequences s of all real numbers.
Then the identity I : V → V maps I(s0, s1, s2, . . .) = (s0, s1, s2, . . .); the shift operator
E : V → V maps E(s0, s1, s2, . . .) = (s1, s2, s3, . . .); the difference operator is D = E − I
(“discrete derivative”).

The Fibonacci sequence F (n) is defined by F1 = F2 = 1 and Fn+2 = Fn+1+Fn for n ≥ 1. Fn
is equal to the number of domino tiliings of a 2×(n−1) rectangle and also to the number of
sequences (a1, . . . , an−2) ∈ {0, 1}n−2 with no two consecutive zeros. The sequence F satisfies

(E2 − E − I)F = (E − φ)(E − φ)F = 0 where φ = 1+
√
5

2 . The solutions to (E − φ)s = 0

include {cφn} and the solutions to (E − φ)s = 0 include {cφn}; since the linear operators
E and I commute, the solutions to (E2 − E − I)F = 0 include all linear combinations
c1φ

n + c2φ
n
. The space of all solutions is a 2-dimensional vector space because there are 2

degrees of freedom in choosing the first 2 terms of the sequence. Thus c1φ
n+c2φ

n
constitute

all the solutions to (E2 − E − I)F = 0.
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