Consider the 2-dimensional random walk defined by $\left(X_{0}, Y_{0}\right)=(0,0)$ and $\left(X_{n+1}, Y_{n+1}\right)=$ $\left(X_{n}, Y_{n}\right)+\xi_{n}$ where ξ_{1}, ξ_{2}, \ldots are independent with

$$
P\left(\xi_{n}=(1,0)\right)=P\left(\xi_{n}=(-1,0)\right)=P\left(\xi_{n}=(0,1)\right)=P\left(\xi_{n}=(0,-1)\right)=\frac{1}{4} .
$$

1. Find a number a such that $M_{n}=X_{n}^{2}+Y_{n}^{2}-a n$ is a martingale.

We'd like to estimate the expected time $E T$ where T is the time it takes to exit a disk of radius r. In other words, $T=\min \left\{n \geq 0: X_{n}^{2}+Y_{n}^{2}>r^{2}\right\}$.

2 Estimate $E\left(X_{T}^{2}+Y_{T}^{2}\right)$ when $r=10$. (Give upper and lower bounds.)

3 Use parts 1 and 2 to estimate $E T$.

4 How does your estimate generalize to (a) general radius r ? (b) higher dimensions?

