1. Let X_{t} be a continuous time Markov chain with states $0,1,2,3$ and jump rates

$$
q(0,1)=5, q(0,2)=q(0,3)=3, q(1,2)=q(1,3)=q(2,3)=1, q(3,2)=4
$$

(a) Draw a picture. Which states are recurrent?
(b) Find $P_{0}\left(T_{1}<\infty\right)$ and $P_{0}\left(T_{2}<\infty\right)$.
(c) Starting in state 0 what is the total expected amount of time spent in state 1 ?
(d) Starting in state 2 what is the probability of being in state 3 at time $t=10$?
(e) Starting in state 0 what is the long term fraction of time we spend in state 3 ?
2. (a) Uranium has a half-life of 4.5×10^{9} years. This means the time T it takes a uranium atom to decay into a lead atom is exponentially distributed with some rate λ, such that $P\left(T>4.5 \times 10^{9}\right)=\frac{1}{2}$. Find λ.
(b) A gram of uranium contains $X_{0}=2.5 \times 10^{21}$ atoms. Each atom decays into lead independently at rate λ. Let X_{t} be the number of uranium atoms remaining after t years. Convince yourself that X_{t} is a continuous time Markov chain. Find its jump rates.

