1. Let X_n be a sequence of random variables with $EX_n \to \infty$. We say that X_n is concentrated around its mean (or just concentrated, for short) if

$$\frac{X_n}{EX_n} \to 1 \qquad \text{in probability.}$$

For example, in class we showed that the time it takes the coupon collector to collect all n coupons is concentrated.

- (a) Show that if $(\operatorname{Var} X_n)/(EX_n)^2 \to 0$ then X_n is concentrated. Does the converse hold?
- (b) Which of the following are concentrated? Prove your answers!
 - (i) $B_n \sim Bin(n, 1/2)$ (binomial distribution)
 - (ii) $U_n \sim \text{Unif}(0, n)$ (uniform distirbution on the interval (0, n))
 - (iii) $G_n \sim \text{Geom}(1/n)$ (geometric distribution with mean n)
- 2. Let X_1, X_2, \ldots be independent Unif(0, 1) random variables on a probability space (Ω, \mathcal{F}, P) .
 - (a) Prove that

$$P\{\omega \in \Omega : \{X_1(\omega), X_2(\omega), \ldots\} \text{ is dense in } (0,1)\} = 1.$$

(b) Using part (a) or otherwise, prove that

$$P\left(\bigcap_{(n_1,n_2,\ldots)} \{\omega \in \Omega : \lim_{k \to \infty} \frac{X_{n_1}(\omega) + \dots + X_{n_k}(\omega)}{k} = \frac{1}{2}\}\right) = 0$$

where the intersection is over all increasing sequences $(n_1, n_2, \ldots) \in \mathbb{N}^{\mathbb{N}}$.

- (c) Did you just disprove the strong law of large numbers?
- 3. Let (Ω, \mathcal{F}, P) be a probability space. Show that for any sequence of events $A_n \in \mathcal{F}$
 - (a) $P\{A_n \text{ i.o.}\} \ge \limsup P(A_n).$
 - (b) $P\{A_n \text{ eventually}\} \leq \liminf P(A_n).$
 - (c) Give an example to show that one of these (which one?) fails if P is only assumed to be σ -finite.
- 4. Show that $X_n \to X$ a.s. if and only if $P(|X_n X| > \epsilon \text{ i.o.}) = 0 \quad \forall \epsilon > 0.$
- 5. Exercises 2.3.11 and 2.3.14 in Durrett (*Probability: Theory and Examples*, 4th edition).