1. (Random Series) Fix $\beta \in \mathbb{R}$, and let

$$S_n = \sum_{k=1}^n k^\beta X_k.$$

where X_1, X_2, \ldots are independent with $P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$. For which values of β does S_n converge almost surely? Prove your answer.

2. (Arcsine Laws) Now take $\beta = 0$ so that $S_n = X_1 + \ldots + X_n$ is a simple random walk in \mathbb{Z} . Let

$$T_m = \inf\{n : \#\{1 \le k \le n : S_k = 0\} = m\}$$

be the time of the *m*th return to 0. Find the distribution of T_1 .

3. (Stable Laws) Continuing the last problem, prove that there is an $\alpha > 0$ such that

$$\frac{T_m}{m^{1/\alpha}} \quad \stackrel{d}{\to} \quad Y$$

as $m \to \infty$, where Y is an α -stable random variable. What is α ?

4. (Large Deviations) Continuing with $\beta = 0$, compare the two probabilities

$$P(S_n > \sqrt{n})$$

and

$$P(S_n > 0.01n).$$

Show that one of them (which one?) converges to a positive number as $n \to \infty$ and the other converges to 0. For the one that converges to 0, how fast is the convergence?

5. (Moment Problem) Prove that if a random variable Z satisfies

$$E[Z^{2n}] = 1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)$$

for all $n \ge 1$ and $E[Z^{2n-1}] = 0$ for all $n \ge 1$, then Z has the N(0,1) distribution.