

Large Deviations

Kun Dong, Daniel Freund, Matt Hin, Andrew Loeb, and Aditya Vaidyanathan

Cornell University

November 18, 2014

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Εx. & θa	Optimal Decay Theorem	Simulations
Overview					

The Existence of $\gamma(a)$

Moment Generating Functions and the Decay Interval

Optimal Bounds for Exponential Decay

Examples & the Necessity of H3

Optimal Decay Theorem

Simulations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $X_1, X_2, ...$ be i.i.d., $S_n = X_1 + ... + X_n$.

We investigate the rate at which $P(S_n \ge na) \rightarrow 0$ for $a > \mu = E[X_i] < \infty$.

Let $X_1, X_2, ...$ be i.i.d., $S_n = X_1 + ... + X_n$.

We investigate the rate at which $P(S_n \ge na) \rightarrow 0$ for $a > \mu = E[X_i] < \infty$.

We define the moment-generating function $\phi(\theta) = E[e^{\theta X_i}]$.

Let $X_1, X_2, ...$ be i.i.d., $S_n = X_1 + ... + X_n$.

We investigate the rate at which $P(S_n \ge na) \rightarrow 0$ for $a > \mu = E[X_i] < \infty$.

We define the moment-generating function $\phi(\theta) = E[e^{\theta X_i}]$.

Eventually, we will see that if $\phi(\theta) < \infty$ for some $\theta > 0$, then $P(S_n \ge na) \rightarrow 0$ exponentially fast.

Let $X_1, X_2, ...$ be i.i.d., $S_n = X_1 + ... + X_n$.

We investigate the rate at which $P(S_n \ge na) \rightarrow 0$ for $a > \mu = E[X_i] < \infty$.

We define the moment-generating function $\phi(\theta) = E[e^{\theta X_i}]$.

Eventually, we will see that if $\phi(\theta) < \infty$ for some $\theta > 0$, then $P(S_n \ge na) \rightarrow 0$ exponentially fast.

SLLN? CLT? Chebyshev?

Convergence rate $\gamma(a)$ - Part I

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Convergence rate $\gamma(a)$ - Part I

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na)$$

We first need to show that γ exists. Let $\pi_n = P(S_n \ge na)$.

Convergence rate $\gamma(a)$ - Part I

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na)$$

We first need to show that γ exists. Let $\pi_n = P(S_n \ge na)$. Then,

 $\pi_{m+n} = P(S_{n+m} \ge (n+m)a) \ge P(S_m \ge ma, S_{n+m} - S_m \ge na) = \pi_m \pi_n,$

Convergence rate $\gamma(a)$ - Part I

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na)$$

We first need to show that γ exists. Let $\pi_n = P(S_n \ge na)$. Then,

$$\pi_{m+n} = P(S_{n+m} \ge (n+m)a) \ge P(S_m \ge ma, S_{n+m}-S_m \ge na) = \pi_m \pi_n,$$

where the inequality holds, because

Convergence rate $\gamma(a)$ - Part I

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na)$$

We first need to show that γ exists. Let $\pi_n = P(S_n \ge na)$. Then,

$$\pi_{m+n} = P(S_{n+m} \ge (n+m)a) \ge P(S_m \ge ma, S_{n+m} - S_m \ge na) = \pi_m \pi_n,$$

where the inequality holds, because

and the equality because $S_m = X_1 + ... X_m$ and $S_{n+m} - S_m = X_{m+1} + ... X_{n+m}$ are independent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Convergence rate $\gamma(a)$ - Part II

Set $\tau_n = \log(\pi_n)$.

Convergence rate $\gamma(a)$ - Part II

Set $\tau_n = \log(\pi_n)$.

Lemma: $\tau_{m+n} \ge \tau_m + \tau_n \implies \frac{\tau_n}{n} \to \sup_m \frac{\tau_m}{m}$ as $n \to \infty$.

Convergence rate $\gamma(a)$ - Part II

Set $\tau_n = \log(\pi_n)$.

 $\text{Lemma: } \tau_{m+n} \geq \tau_m + \tau_n \implies \frac{\tau_n}{n} \rightarrow \sup_m \frac{\tau_m}{m} \text{ as } n \rightarrow \infty.$

Proof: $\limsup \frac{\tau_n}{n} \le \sup \frac{\tau_m}{m}$ gives \le .

Convergence rate $\gamma(a)$ - Part II

Set $\tau_n = \log(\pi_n)$.

Lemma: $\tau_{m+n} \ge \tau_m + \tau_n \implies \frac{\tau_n}{n} \to \sup_m \frac{\tau_m}{m}$ as $n \to \infty$.

Proof: $\limsup \frac{\tau_n}{n} \le \sup \frac{\tau_m}{m}$ gives \le .

If $\forall m$: lim inf $\frac{\tau_n}{n} \geq \frac{\tau_m}{m}$, then \geq holds as well.

Convergence rate $\gamma(a)$ - Part II

Set $\tau_n = \log(\pi_n)$.

 $\text{Lemma: } \tau_{m+n} \geq \tau_m + \tau_n \implies \frac{\tau_n}{n} \to \sup_m \frac{\tau_m}{m} \text{ as } n \to \infty.$

Proof: $\limsup \frac{\tau_n}{n} \le \sup \frac{\tau_m}{m}$ gives \le .

If $\forall m : \liminf \frac{\tau_n}{n} \ge \frac{\tau_m}{m}$, then \ge holds as well.

Write n = km + l, where $0 \le l < m$. Then

$$\tau_n = \tau_{km+l} \ge \tau_m + \tau_{(k-1)m+l} \ge \ldots \ge k\tau_m + \tau_l.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Convergence rate $\gamma(a)$ - Part II

Set $\tau_n = \log(\pi_n)$.

Lemma: $\tau_{m+n} \ge \tau_m + \tau_n \implies \frac{\tau_n}{n} \to \sup_m \frac{\tau_m}{m}$ as $n \to \infty$.

Proof: $\limsup \frac{\tau_n}{n} \le \sup \frac{\tau_m}{m}$ gives \le .

If $\forall m : \liminf \frac{\tau_n}{n} \ge \frac{\tau_m}{m}$, then \ge holds as well.

Write n = km + l, where $0 \le l < m$. Then

$$\tau_n = \tau_{km+l} \ge \tau_m + \tau_{(k-1)m+l} \ge \ldots \ge k\tau_m + \tau_l.$$

If we now divide both sides by n = km + l, we find that

$$\frac{\tau_n}{n} \ge \left(\frac{k}{km+l}\right)\tau_m + \frac{\tau_l}{n} = \left(\frac{km}{km+l}\right)\frac{\tau_m}{m} + \frac{\tau_l}{n} \to \frac{\tau_m}{m}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Convergence rate $\gamma(a)$ - Part III

We have now seen that $\pi_{n+m} \geq \pi_m \pi_n$, implying that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Convergence rate $\gamma(a)$ - Part III

We have now seen that $\pi_{n+m} \ge \pi_m \pi_n$, implying that

$$\tau_{n+m} = \log(\pi_{n+m}) \geq \log(\pi_m \pi_n) = \log(\pi_m) + \log(\pi_n) = \tau_m + \tau_n$$

Convergence rate $\gamma(a)$ - Part III

We have now seen that $\pi_{n+m} \ge \pi_m \pi_n$, implying that

$$\tau_{n+m} = \log(\pi_{n+m}) \ge \log(\pi_m \pi_n) = \log(\pi_m) + \log(\pi_n) = \tau_m + \tau_n$$

But we have also seen that $\tau_{n+m} \ge \tau_m + \tau_n$ implies that $\frac{\tau_n}{n} \to \sup_m \frac{\tau_m}{m}$. Since $\frac{\tau_n}{n} = \frac{1}{n} \log P(S_n \ge na)$,

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) = \sup_m \frac{\log(P(S_m \ge ma))}{m} \le 0 \text{ exists.}$$

Convergence rate $\gamma(a)$ - Part III

We have now seen that $\pi_{n+m} \ge \pi_m \pi_n$, implying that

$$\tau_{n+m} = \log(\pi_{n+m}) \ge \log(\pi_m \pi_n) = \log(\pi_m) + \log(\pi_n) = \tau_m + \tau_n$$

But we have also seen that $\tau_{n+m} \ge \tau_m + \tau_n$ implies that $\frac{\tau_n}{n} \to \sup_m \frac{\tau_m}{m}$. Since $\frac{\tau_n}{n} = \frac{1}{n} \log P(S_n \ge na)$,

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) = \sup_m \frac{\log(P(S_m \ge ma))}{m} \le 0 \text{ exists.}$$

Then, since $\frac{\log P(S_n \ge na)}{n} \le \sup_m \frac{\log(P(S_m \ge ma))}{m} = \gamma(a)$, $P(S_n \ge na) \le e^{\gamma(a)n}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Understanding $\gamma(a)$ better

$$\gamma(a) = -\infty \Leftrightarrow P(X_1 \ge a) = 0 \Leftrightarrow P(S_n \ge na) = 0 \ \forall n$$

Understanding $\gamma(a)$ better

$$\gamma(a) = -\infty \Leftrightarrow P(X_1 \ge a) = 0 \Leftrightarrow P(S_n \ge na) = 0 \forall n$$

$$\gamma(a) = -\infty \implies P(S_n \ge na) = 0 \forall n: \text{ note that}$$

$$\gamma(a) \ge \frac{\log(P(S_n \ge na))}{n} \forall n, \text{ so } \log(P(S_n \ge na)) = -\infty$$

$$P(S_n \ge na) = 0 \forall n \implies P(X_i \ge a) = 0:$$

set $n = 1, X_i \text{ are i.i.d.}$

$$P(X_i \ge a) = 0 \implies \gamma(a) = -\infty:$$

 $P(X_i \ge a) = 0$, so $\forall n : P(S_n \ge na) = 0$, so $\lim_{n \to \infty} \frac{\log(0)}{n} = -\infty$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We seek to bound $\gamma(a)$. By Chebyshev's inequality:

$$e^{ heta na} P(S_n \ge na) \le E e^{ heta S_n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We seek to bound $\gamma(a)$. By Chebyshev's inequality:

$$e^{ heta na} \mathcal{P}(S_n \geq na) \leq E e^{ heta S_n} = E\left(\prod_{i=1}^n e^{ heta X_i}
ight)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We seek to bound $\gamma(a)$. By Chebyshev's inequality:

$$e^{ heta na} P(S_n \ge na) \le E e^{ heta S_n} = E\left(\prod_{i=1}^n e^{ heta X_i}
ight) = \prod_{i=1}^n E e^{ heta X_i}$$

We seek to bound $\gamma(a)$. By Chebyshev's inequality:

$$e^{ heta na} \mathcal{P}(S_n \ge na) \le E e^{ heta S_n} = E\left(\prod_{i=1}^n e^{ heta X_i}
ight) = \prod_{i=1}^n E e^{ heta X_i} = (\phi(heta))^n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We seek to bound $\gamma(a)$. By Chebyshev's inequality:

$$e^{ heta na} \mathcal{P}(S_n \ge na) \le E e^{ heta S_n} = E\left(\prod_{i=1}^n e^{ heta X_i}
ight) = \prod_{i=1}^n E e^{ heta X_i} = (\phi(heta))^n$$

Rearranging,

 $e^{\theta n a} P(S_n \ge n a) \le (\phi(\theta))^n \implies P(S_n \ge n a) \le \exp\left[-n(a\theta - \kappa(\theta))\right]$ for $\kappa(\theta) = \log \phi(\theta)$.

We seek to bound $\gamma(a)$. By Chebyshev's inequality:

$$e^{ heta na} \mathcal{P}(S_n \ge na) \le E e^{ heta S_n} = E\left(\prod_{i=1}^n e^{ heta X_i}
ight) = \prod_{i=1}^n E e^{ heta X_i} = (\phi(heta))^n$$

Rearranging,

 $e^{\theta na}P(S_n \ge na) \le (\phi(\theta))^n \implies P(S_n \ge na) \le \exp\left[-n(a\theta - \kappa(\theta))\right]$

for $\kappa(\theta) = \log \phi(\theta)$. Hence,

$$\gamma(\mathsf{a}) \leq -\left\{\mathsf{a} heta - \kappa(heta)
ight\}$$

for some fixed θ . We want $a\theta - \kappa(\theta) > 0$.

Moment Generating Functions

Definition

The moment generating function (MGF) for a random variable X is defined to be $\phi(\theta) = Ee^{\theta X}$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Moment Generating Functions

Definition

The moment generating function (MGF) for a random variable X is defined to be $\phi(\theta) = Ee^{\theta X}$.

MGFs vs. Characteristic Functions

- Characteristic functions can be thought of as the MGF of *iX*
- Characteristic functions always exist and is complex valued.
- MGFs does not necessarily exist for all θ and is real valued.

Moment Generating Functions

Definition

The moment generating function (MGF) for a random variable X is defined to be $\phi(\theta) = Ee^{\theta X}$.

MGFs vs. Characteristic Functions

- Characteristic functions can be thought of as the MGF of *iX*
- Characteristic functions always exist and is complex valued.
- MGFs does not necessarily exist for all θ and is real valued.

Generating Moments with MGFs $\left(\frac{d}{d\theta}\int_{-\infty}^{\infty}e^{\theta x} dF(x)\right)\Big|_{\theta=0} = \left(\int_{-\infty}^{\infty}x^{n}e^{\theta x} dF(x)\right)\Big|_{\theta=0} = EX^{N}.$

Generating Moments with MGFs

Example: $X \sim \text{Unif}(0, 1)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Generating Moments with MGFs

Example: $X \sim \text{Unif}(0, 1)$

$$\phi(heta) = E e^{ heta X} = \int_0^1 e^{ heta x} \, dx = rac{e^{ heta} - 1}{ heta}.$$

Generating Moments with MGFs

Example: $X \sim \text{Unif}(0, 1)$

$$\phi(heta) = E e^{ heta X} = \int_0^1 e^{ heta x} \, dx = rac{e^ heta - 1}{ heta}.$$

We obtain moments by differentiating and evaluating at $\theta = 0$:

$$EX = \frac{d}{d\theta} \left(\frac{e^{\theta} - 1}{\theta} \right) \Big|_{0} = \frac{e^{\theta}(\theta - 1) + 1}{\theta^{2}} \Big|_{0} = \frac{1}{2},$$

Generating Moments with MGFs

Example: $X \sim \text{Unif}(0, 1)$

$$\phi(heta) = E e^{ heta X} = \int_0^1 e^{ heta x} \, dx = rac{e^ heta - 1}{ heta}.$$

We obtain moments by differentiating and evaluating at $\theta = 0$:

$$\begin{split} EX &= \frac{d}{d\theta} \left(\frac{e^{\theta} - 1}{\theta} \right) \Big|_{0} = \frac{e^{\theta} (\theta - 1) + 1}{\theta^{2}} \Big|_{0} = \frac{1}{2}, \\ EX^{2} &= \frac{d^{2}}{d\theta^{2}} \left(\frac{e^{\theta} - 1}{\theta} \right) \Big|_{0} = \frac{e^{\theta} (\theta^{2} - 2\theta + 2) - 2}{\theta^{3}} \Big|_{0} = \frac{1}{3}, \end{split}$$

Generating Moments with MGFs

Example: $X \sim \text{Unif}(0, 1)$

$$\phi(heta) = E e^{ heta X} = \int_0^1 e^{ heta x} dx = rac{e^{ heta} - 1}{ heta}.$$

We obtain moments by differentiating and evaluating at $\theta = 0$:

$$\begin{split} EX &= \frac{d}{d\theta} \left(\frac{e^{\theta} - 1}{\theta} \right) \Big|_{0} = \frac{e^{\theta} (\theta - 1) + 1}{\theta^{2}} \Big|_{0} = \frac{1}{2}, \\ EX^{2} &= \frac{d^{2}}{d\theta^{2}} \left(\frac{e^{\theta} - 1}{\theta} \right) \Big|_{0} = \frac{e^{\theta} (\theta^{2} - 2\theta + 2) - 2}{\theta^{3}} \Big|_{0} = \frac{1}{3}, \\ EX^{n} &= \frac{d^{n}}{d\theta^{n}} \left(\frac{e^{\theta} - 1}{\theta} \right) \Big|_{0} = \frac{1}{n+1}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Restriction on the Distribution of X_i

Assumption H1

The moment generating function $\phi(\theta) = Ee^{\theta X_i} < \infty$ for some $\theta > 0$.

Restriction on the Distribution of X_i

Assumption H1

The moment generating function $\phi(\theta) = Ee^{\theta X_i} < \infty$ for some $\theta > 0$.

Note that $\phi(0) = 1$ for any distribution and let

$$\theta_{-} = \inf\{\theta : \phi(\theta) < \infty\}$$

$$\theta_{+} = \sup\{\theta : \phi(\theta) < \infty\}$$

Restriction on the Distribution of X_i

Assumption H1

The moment generating function $\phi(\theta) = Ee^{\theta X_i} < \infty$ for some $\theta > 0$.

Note that $\phi(0) = 1$ for any distribution and let

$$\begin{aligned} \theta_{-} &= \inf\{\theta : \phi(\theta) < \infty\} \leq 0, \\ \theta_{+} &= \sup\{\theta : \phi(\theta) < \infty\} > 0. \end{aligned}$$

Restriction on the Distribution of X_i

Assumption H1

The moment generating function $\phi(\theta) = Ee^{\theta X_i} < \infty$ for some $\theta > 0$.

Note that $\phi(0) = 1$ for any distribution and let

$$\begin{aligned} \theta_{-} &= \inf\{\theta : \phi(\theta) < \infty\} \leq 0, \\ \theta_{+} &= \sup\{\theta : \phi(\theta) < \infty\} > 0. \end{aligned}$$

Remarks

If $\theta_- < 0$, then

- moments of all orders are finite, and
- the tails of the distributions of X_i are exponentially bounded.

(H1) Implies $\mu = EX_i \neq \infty$

Proof.

Let $F(x) = P(X_i \le x)$ and fix θ from (H1). If $\theta \ge \frac{1}{e}$, (H1) directly bounds μ . Else, then $x \ge e^{\theta x}$ in the interval (r_1, r_2) . Hence:

$$EX_{i} \leq EX_{i}^{+} = \int_{0}^{\infty} x \, dF(x),$$

$$\leq \int_{r_{1}}^{r_{2}} x \, dF(x) + \int_{0}^{\infty} e^{\theta x} \, dF(x),$$

$$\leq r_{2} + \phi(\theta),$$

$$< \infty.$$

Good check that $a > \mu$ is sound.

Decay Bound

Lemma (Exponential Decay Bound) If $a > \mu$ and $\theta > 0$ is small, then $a\theta - \kappa(\theta) > 0$.

Motivation $a\theta - \kappa(\theta) = \int_0^{\theta} (a - \kappa'(x)) dx$ and $\kappa(0) = \log \phi(0) = 0.$ (1) $\kappa(\theta)$ is continuous at $\theta = 0.$ (2) κ is differentiable over $(0, \theta_+).$ (3) $\kappa'(\theta) \to \mu$ as $\theta \to 0.$ So there exists some $\theta_0 > 0$ such that $a\theta - \kappa(\theta) > 0$ for $\theta \in (0, \theta_0).$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Decay Bound Proof - Part I

Condition (1)

Let $F(x) = P(X_i \le x)$. For $0 < \theta < \theta_0 < \theta_+$, then we can dominate $e^{\theta x} \le 1 + e^{\theta_0 x}$. By the DCT:

$$\lim_{\theta\to 0}\int e^{\theta x}\,dF(x)=\int dF(x)=1.$$

This implies that $\phi(\theta)$ is continuous at $\theta = 0$ hence $\kappa(\theta)$ is continuous at $\theta = 0$.

Decay Bound Proof - Part II

Condition (2) For $|h| < h_0$, then $|e^{hx} - 1| = \left| \int_0^{hx} e^y \, dy \right| \le |hx| e^{h_0 x}$. Consider, $\phi'(\theta) = \lim_{h \to 0} \frac{\phi(\theta + h) - \phi(\theta)}{h},$ $= \lim_{h \to 0} \int \frac{e^{hx} - 1}{h} \cdot e^{\theta x} \, dF(x),$ $= \int x e^{\theta x} \, dF(x), \quad \text{for } \theta \in (0, \theta_+).$

Hence, $\kappa'(\theta) = \frac{\phi'(\theta)}{\phi(\theta)}$ exists for $\theta \in (0, \theta_+)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Decay Bound Proof - Part III

Condition (3)

Note that we will use the DCT with the inequality:

$$e^{ heta x} \leq 1 + e^{ heta_0 x}$$

Hence,

$$\phi(0) = \lim_{\theta \to 0} \int e^{\theta x} dF(x) = \int \left(\lim_{\theta \to 0} e^{\theta x}\right) dF(x) = \int dF(x) = 1,$$

$$\phi'(0) = \lim_{\theta \to 0} \int x e^{\theta x} dF(x) = \int x \left(\lim_{\theta \to 0} e^{\theta x}\right) dF(x) = \int x dF(x) = \mu.$$

So, $\kappa'(\theta) \to \mu$ as $\theta \to 0$.

We just showed there exists $heta_0 \in (0, heta_+)$ such that

$$a heta - \kappa(heta) > 0$$
 for $heta \in (0, heta_0)$

Earlier we have shown that for any $heta \in (0, heta_+)$,

$$\mathsf{P}(\mathsf{S}_{\mathsf{n}} \geq \mathsf{n}\mathsf{a}) \leq \mathsf{exp}(-\mathsf{n}\{\mathsf{a}\, heta - \kappa(heta)\})$$

where $\kappa(\theta) = \log \phi(\theta)$.

We just showed there exists $heta_0 \in (0, heta_+)$ such that

$$a heta - \kappa(heta) > 0$$
 for $heta \in (0, heta_0)$

Earlier we have shown that for any $heta \in (0, heta_+)$,

$$\mathsf{P}(\mathsf{S}_{\mathsf{n}} \geq \mathsf{n}\mathsf{a}) \leq \mathsf{exp}(-\mathsf{n}\{\mathsf{a}\, heta - \kappa(heta)\})$$

where $\kappa(\theta) = \log \phi(\theta)$.

We just showed there exists $heta_0 \in (0, heta_+)$ such that

$$a \, heta - \kappa(heta) > 0$$
 for $heta \in (0, heta_0)$

Earlier we have shown that for any $\theta \in (0, \theta_+)$,

$$P(S_n \ge na) \le exp(-n\{a\,\theta - \kappa(\theta)\})$$

where $\kappa(\theta) = \log \phi(\theta)$.

$$\implies \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) \le -\{a\theta - \kappa(\theta)\}$$

We just showed there exists $heta_0 \in (0, heta_+)$ such that

$$a \theta - \kappa(\theta) > 0$$
 for $\theta \in (0, \theta_0)$

Earlier we have shown that for any $\theta \in (0, \theta_+)$,

$$P(S_n \ge na) \le exp(-n\{a\, heta - \kappa(heta)\})$$

where $\kappa(\theta) = \log \phi(\theta)$.

$$\implies \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) \le -\{a\theta - \kappa(\theta)\}$$

The expression in the braces gives an upper bound on the rate of the exponential decay whenever it is positive.

We just showed there exists $heta_0 \in (0, heta_+)$ such that

$$a \theta - \kappa(\theta) > 0$$
 for $\theta \in (0, \theta_0)$

Earlier we have shown that for any $\theta \in (0, \theta_+)$,

$$\mathsf{P}(\mathsf{S}_{\mathsf{n}} \geq \mathsf{n}\mathsf{a}) \leq \mathsf{exp}(-\mathsf{n}\{\mathsf{a}\, heta - \kappa(heta)\})$$

where $\kappa(\theta) = \log \phi(\theta)$.

$$\implies \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) \le -\{a\theta - \kappa(\theta)\}$$

The expression in the braces gives an upper bound on the rate of the exponential decay whenever it is positive. Each feasible θ gives such a bound, so it is natural to find out the best bound by maximizing $a\theta - \kappa(\theta)$ over $(0, \theta_+)$.

When Things Are Nice

We find the maximum of $\theta a - \kappa(\theta)$ at its critical point

$$rac{d}{d heta} \{ {m a}\, heta - \log \phi(heta) \} = {m a} - rac{\phi'(heta)}{\phi(heta)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The maximum occurs when $a = \phi'(\theta)/\phi(\theta)$.

When Things Are Nice

We find the maximum of $\theta a - \kappa(\theta)$ at its critical point

$$rac{d}{d heta} \{ {f a}\, heta - \log \phi(heta) \} = {f a} - rac{\phi'(heta)}{\phi(heta)}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The maximum occurs when $a = \phi'(\theta)/\phi(\theta)$. Assumptions we need to make:

- There exists exactly one critical point.
- The critical point is a maximum.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Justify the Assumptions

For any $\phi(\theta) < \infty$, define

$$F_{ heta}(x) = rac{1}{\phi(heta)} \int_{-\infty}^{x} e^{ heta y} \, dF(y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Justify the Assumptions

For any $\phi(\theta) < \infty$, define

$$F_{ heta}(x) = rac{1}{\phi(heta)} \int_{-\infty}^{x} e^{ heta y} \, dF(y)$$

Claim: F_{θ} is a distribution function for $\theta \in (\theta_{-}, \theta_{+})$.

Simulations

For any $\phi(\theta) < \infty$, define

$$F_{\theta}(x) = rac{1}{\phi(\theta)} \int_{-\infty}^{x} e^{\theta y} dF(y)$$

Claim: F_{θ} is a distribution function for $\theta \in (\theta_{-}, \theta_{+})$. Proof:

$$F_{\theta}(x) = \frac{1}{\phi(\theta)} \int \mathbb{1}_{(-\infty,x]}(y) \, e^{\theta y} \, dF(y)$$

By Dominated Convergence Theorem, $F_{\theta}(-\infty) = 0$ and $F_{\theta}(\infty) = 1$. It is non-decreasing because $e^{\theta y}$ is non-negative. It is right-continuous because

$$|F_{ heta}(x+\epsilon) - F_{ heta}(x)| = rac{1}{\phi(heta)} \int \mathbb{1}_{(x,x+\epsilon]}(y) \, e^{ heta y} \, dF(y) \downarrow 0$$

again by Dominated Convergence Theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Distribution F_{θ}

We can compute the mean of distribution function F_{θ} we just defined.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Distribution F_{θ}

We can compute the mean of distribution function F_{θ} we just defined.

$$\int x \, dF_{\theta}(x) = \frac{1}{\phi(\theta)} \int_{-\infty}^{\infty} x \, e^{\theta x} \, dF(x) = \frac{\phi'(\theta)}{\phi(\theta)} = \kappa'(\theta)$$

Distribution F_{θ}

We can compute the mean of distribution function F_{θ} we just defined.

$$\int x \, dF_{\theta}(x) = \frac{1}{\phi(\theta)} \int_{-\infty}^{\infty} x \, e^{\theta x} \, dF(x) = \frac{\phi'(\theta)}{\phi(\theta)} = \kappa'(\theta)$$

Outline of proof:

The second equality was proven in the previous section.

Let μ be the (Lebesgue-Stieltjes) measure induced by F_{θ} , we have $\mu((a, b]) = \frac{1}{\phi(\theta)} \int \mathbb{1}_{(a,b]}(y) e^{\theta y} dF(y)$ from definition.

(1) The collection of sets with the property

$$\mu(E) = \frac{1}{\phi(\theta)} \int 1_E(y) \, e^{\theta y} \, dF(y)$$

forms a σ -algebra, so it includes the Borel sets. (2) For general measurable function g, $\int g(x) dF_{\theta}(x) = \frac{1}{\phi(\theta)} \int g(y) e^{\theta y} dF(y).$ In particular, we can let g(x) = x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\phi''(\theta)$

$$\phi''(\theta) = \lim_{h \to 0} \frac{\phi'(\theta + h) - \phi'(\theta)}{h}$$
$$= \lim_{h \to 0} \int \frac{e^{hx} - 1}{h} x e^{\theta x} dF(x)$$
$$\stackrel{DCT}{=} \int x^2 e^{\theta x} dF(x) = \phi(\theta) \int x^2 dF_{\theta}(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\phi''(\theta)$

$$\phi''(\theta) = \lim_{h \to 0} \frac{\phi'(\theta + h) - \phi'(\theta)}{h}$$
$$= \lim_{h \to 0} \int \frac{e^{hx} - 1}{h} x e^{\theta x} dF(x)$$
$$\stackrel{DCT}{=} \int x^2 e^{\theta x} dF(x) = \phi(\theta) \int x^2 dF_{\theta}(x)$$

To apply the dominated convergence theorem, we fix small h_0 and ϵ . For $h < h_0$

$$\begin{split} \left| \frac{e^{hx} - 1}{h} x \, e^{\theta x} \right| &\leq |x^2| e^{(\theta + h_0)x} \leq \frac{2}{\epsilon^2} e^{\epsilon |x|} e^{(\theta + h_0)x} \\ &\leq \frac{2}{\epsilon^2} (e^{(\theta + h_0 + \epsilon)x} + e^{(\theta + h_0 - \epsilon)x}) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Second Derivative Test

Recall that the function we are trying to maximize is $a\theta - \kappa(\theta)$.

Second Derivative Test

Recall that the function we are trying to maximize is $a\theta - \kappa(\theta)$. Its derivative is $\frac{d}{d\theta} \{ a\theta - \log \phi(\theta) \} = a - \frac{\phi'(\theta)}{\phi(\theta)}$.

Second Derivative Test

Recall that the function we are trying to maximize is $a\theta - \kappa(\theta)$. Its derivative is $\frac{d}{d\theta} \{a\theta - \log \phi(\theta)\} = a - \frac{\phi'(\theta)}{\phi(\theta)}$. Its second derivative is $-\frac{d}{d\theta} \frac{\phi'(\theta)}{\phi(\theta)}$.

Second Derivative Test

Recall that the function we are trying to maximize is $a\theta - \kappa(\theta)$. Its derivative is $\frac{d}{d\theta} \{ a\theta - \log \phi(\theta) \} = a - \frac{\phi'(\theta)}{\phi(\theta)}$. Its second derivative is $-\frac{d}{d\theta} \frac{\phi'(\theta)}{\phi(\theta)}$.

$$\frac{d}{d\theta}\frac{\phi'(\theta)}{\phi(\theta)} = \frac{\phi''(\theta)}{\phi(\theta)} - \left(\frac{\phi'(\theta)}{\phi(\theta)}\right)^2$$
$$= \int x^2 dF_{\theta}(x) - \left(\int x dF_{\theta}(x)\right)^2 \ge 0$$

Second Derivative Test

Recall that the function we are trying to maximize is $a\theta - \kappa(\theta)$. Its derivative is $\frac{d}{d\theta} \{ a\theta - \log \phi(\theta) \} = a - \frac{\phi'(\theta)}{\phi(\theta)}$. Its second derivative is $-\frac{d}{d\theta} \frac{\phi'(\theta)}{\phi(\theta)}$.

$$\frac{d}{d\theta}\frac{\phi'(\theta)}{\phi(\theta)} = \frac{\phi''(\theta)}{\phi(\theta)} - \left(\frac{\phi'(\theta)}{\phi(\theta)}\right)^2 \\ = \int x^2 dF_{\theta}(x) - \left(\int x dF_{\theta}(x)\right)^2 \ge 0$$

because the last expression is the variance of F_{θ} .

Second Derivative Test

Recall that the function we are trying to maximize is $a\theta - \kappa(\theta)$. Its derivative is $\frac{d}{d\theta} \{ a\theta - \log \phi(\theta) \} = a - \frac{\phi'(\theta)}{\phi(\theta)}$. Its second derivative is $-\frac{d}{d\theta} \frac{\phi'(\theta)}{\phi(\theta)}$.

$$\frac{d}{d\theta}\frac{\phi'(\theta)}{\phi(\theta)} = \frac{\phi''(\theta)}{\phi(\theta)} - \left(\frac{\phi'(\theta)}{\phi(\theta)}\right)^2 \\ = \int x^2 dF_{\theta}(x) - \left(\int x dF_{\theta}(x)\right)^2 \ge 0$$

because the last expression is the variance of F_{θ} .

Assumption H2

 X_1 is not a point mass at μ

 $X_1 = \mu = E X_1$

Why we need it

In this case, F is a jump function from 0 to 1 at μ . So is F_{θ} for all $\theta \in (\theta_{-}, \theta_{+})$. $\frac{d}{d\theta} \{ a\theta - \log \phi(\theta) \} = a - \frac{\phi'(\theta)}{\phi(\theta)} = a - \mu$, so either there are infinitely many critical points or none at all.

 $X_1 = \mu = E X_1$

Why we need it

In this case, F is a jump function from 0 to 1 at μ . So is F_{θ} for all $\theta \in (\theta_{-}, \theta_{+})$. $\frac{d}{d\theta} \{ a\theta - \log \phi(\theta) \} = a - \frac{\phi'(\theta)}{\phi(\theta)} = a - \mu$, so either there are infinitely many critical points or none at all.

Why we can assume it

The conclusion we want is actually trivial, since $P(S_n \ge na) = 0$ for all $a > \mu$.

We can assume F is not a point mass for the interesting cases. F_{θ} is not a point mass either, so variance of $F_{\theta} > 0$.

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Εx. & θa	Optimal Decay Theorem	Simulations

Conclusion

We have
$$\frac{d^2}{d\theta^2} \{ a\theta - \log \phi(\theta) \} = -\frac{d}{d\theta} \frac{\phi'(\theta)}{\phi(\theta)} < 0.$$

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Ex. & θ _a	Optimal Decay Theorem	Simulations
		6			

Conclusion

We have $\frac{d^2}{d\theta^2} \{ a \theta - \log \phi(\theta) \} = -\frac{d}{d\theta} \frac{\phi'(\theta)}{\phi(\theta)} < 0.$ $\frac{\phi'(\theta)}{\phi(\theta)}$ is strictly increasing, and $\frac{\phi'(0)}{\phi(0)} = \mu < a$, we have at most one critical point that $a = \frac{\phi'(\theta_a)}{\phi(\theta_a)}.$

- ロ ト - 4 回 ト - 4 □ - 4

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Εx. & θa	Optimal Decay Theorem	Simulations
		C			

Conclusion

We have $\frac{d^2}{d\theta^2} \{ a \theta - \log \phi(\theta) \} = -\frac{d}{d\theta} \frac{\phi'(\theta)}{\phi(\theta)} < 0.$ $\frac{\phi'(\theta)}{\phi(\theta)}$ is strictly increasing, and $\frac{\phi'(0)}{\phi(0)} = \mu < a$, we have at most one critical point that $a = \frac{\phi'(\theta_a)}{\phi(\theta_a)}$. Note that the existence is not guaranteed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusion

We have $\frac{d^2}{d\theta^2} \{ a \theta - \log \phi(\theta) \} = -\frac{d}{d\theta} \frac{\phi'(\theta)}{\phi(\theta)} < 0.$ $\frac{\phi'(\theta)}{\phi(\theta)}$ is strictly increasing, and $\frac{\phi'(0)}{\phi(0)} = \mu < a$, we have at most one critical point that $a = \frac{\phi'(\theta_a)}{\phi(\theta_a)}$. Note that the existence is not guaranteed. $a \theta - \log \phi(\theta)$ is concave, so θ_a maximize $a \theta - \log \phi(\theta)$, which means it gives the best bound on the rate of exponential decay.

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Εx. & θ _a	Optimal Decay Theorem	Simulations
		_			
		Pre	view		

• examine the moment generating functions $\phi(\theta)$ of some familiar distributions,

(ロ)、(型)、(E)、(E)、 E) の(の)

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Εx. & θ _a	Optimal Decay Theorem	Simulations		
Preview							

- examine the moment generating functions $\phi(\theta)$ of some familiar distributions,
- derive the form of κ'(θ) = φ'(θ)/φ(θ), which is used to optimize our upper bound on the probability of a large deviation for a particular a > μ,

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Ex. & θ _a	Optimal Decay Theorem	Simulations		
Preview							

- examine the moment generating functions $\phi(\theta)$ of some familiar distributions,
- derive the form of κ'(θ) = φ'(θ)/φ(θ), which is used to optimize our upper bound on the probability of a large deviation for a particular a > μ,
- discuss some properties of moment generating functions

Ex 1. Normal Distribution

For
$$X \sim \mathcal{N}(0, 1)$$
,

$$\phi(\theta) = E \exp(\theta X) = \int e^{\theta x} (2\pi)^{-1/2} \exp(-x^2/2) dx$$

$$= \exp(\theta^2/2) \int (2\pi)^{-1/2} \exp(-(x-\theta)^2/2) dx.$$

The integrand is the density of a normal distribution with mean θ and variance 1, so $\phi(\theta) = \exp(\theta^2/2), \theta \in (-\infty, \infty)$.

Ex 1. Normal Distribution

For
$$X \sim \mathcal{N}(0, 1)$$
,
 $\phi(\theta) = E \exp(\theta X) = \int e^{\theta x} (2\pi)^{-1/2} \exp(-x^2/2) dx$
 $= \exp(\theta^2/2) \int (2\pi)^{-1/2} \exp(-(x-\theta)^2/2) dx.$

The integrand is the density of a normal distribution with mean θ and variance 1, so $\phi(\theta) = \exp(\theta^2/2), \theta \in (-\infty, \infty)$. Thus $\phi'(\theta)/\phi(\theta) = \theta$, and

$$F_{\theta}(x) = e^{-\theta^2/2} \int_{-\infty}^{x} e^{\theta y} (2\pi)^{-1/2} e^{-y^2/2} dy,$$

is a normal distribution with mean θ and variance 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ex 2. Exponential Distribution with parameter λ

If $\theta < \lambda$,

$$\phi(heta) = E \exp(heta X) = \int_0^\infty e^{ heta x} \lambda e^{-\lambda x} dx$$

= $\lambda/(\lambda - \theta).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ex 2. Exponential Distribution with parameter λ

If $\theta < \lambda$,

$$\phi(heta) = E \exp(heta X) = \int_0^\infty e^{ heta x} \lambda e^{-\lambda x} dx$$

= $\lambda/(\lambda - \theta).$

Thus $\phi'(\theta)/\phi(\theta) = 1/(\lambda - \theta)$, and

Ex 2. Exponential Distribution with parameter λ

If $\theta < \lambda$,

$$\phi(heta) = E \exp(heta X) = \int_0^\infty e^{ heta x} \lambda e^{-\lambda x} dx$$

= $\lambda/(\lambda - heta).$

Thus $\phi'(heta)/\phi(heta) = 1/(\lambda - heta)$, and

$$F_{\theta}(x) = \frac{\lambda - \theta}{\lambda} \int_{0}^{x} e^{\theta y} \lambda e^{-\lambda y} dy$$
$$= \int_{0}^{x} (\lambda - \theta) e^{-(\lambda - \theta)y} dy$$

is an exponential distribution with parameter $\lambda - \theta$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Ex 3. Perverted Exponential

Let $g(x) = Cx^{-3}e^{-x}$ for $x \ge 1$, g(x) = 0 otherwise, and choose C so that g is a probability density. Then

$$\phi(\theta) = E \exp(\theta X) = \int e^{\theta x} g(x) dx$$
$$= C \int x^{-3} e^{(\theta - 1)x} dx$$

is finite if and only if $\theta \leq 1$.

Ex 3. Perverted Exponential

Let $g(x) = Cx^{-3}e^{-x}$ for $x \ge 1$, g(x) = 0 otherwise, and choose C so that g is a probability density. Then

$$\phi(\theta) = E \exp(\theta X) = \int e^{\theta x} g(x) dx$$
$$= C \int x^{-3} e^{(\theta - 1)x} dx$$

is finite if and only if $\theta \leq 1$. When $\theta \leq 1$,

$$\frac{\phi'(\theta)}{\phi(\theta)} \leq \frac{\phi'(1)}{\phi(1)} = \int_1^\infty Cx^{-2} dx \bigg/ \int_1^\infty Cx^{-3} dx = 2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Properties of Moment Generating Functions

Let $x_0 = \sup\{x : F(x) < 1\}$. If $x_0 < \infty$, then:

- $\phi(\theta) < \infty$ for all $\theta > 0$,
- $\phi'(\theta)/\phi(\theta) \to x_0$ as $\theta \uparrow \infty$.

Properties of Moment Generating Functions

Let
$$x_0 = \sup\{x : F(x) < 1\}$$
. If $x_0 < \infty$, then:

- $\phi(\theta) < \infty$ for all $\theta > 0$,
- $\phi'(\theta)/\phi(\theta) \to x_0$ as $\theta \uparrow \infty$.

Outline of proof

If $x_0 < \infty$, then $P(X > x_0) = 0$. Then $\phi(\theta) = \int e^{\theta x} dF(x) = \int_{-\infty}^{x_0} e^{\theta x} dF(x) < \infty$ for all θ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Properties of Moment Generating Functions

Let
$$x_0 = \sup\{x : F(x) < 1\}$$
. If $x_0 < \infty$, then:

- $\phi(\theta) < \infty$ for all $\theta > 0$,
- $\phi'(\theta)/\phi(\theta) \to x_0$ as $\theta \uparrow \infty$.

Outline of proof

If $x_0 < \infty$, then $P(X > x_0) = 0$. Then $\phi(\theta) = \int e^{\theta x} dF(x) = \int_{-\infty}^{x_0} e^{\theta x} dF(x) < \infty$ for all θ . Furthermore,

$$\frac{\phi'(\theta)}{\phi(\theta)} = \frac{\int_{-\infty}^{x_0} x e^{\theta x} dF(x)}{\int_{-\infty}^{x_0} e^{\theta x} dF(x)},$$

with *F* putting nonzero weight near x_0 . As $\theta \to \infty$, the tail is growing faster than the rest, with the numerator scaled by x_0 .

・ロト・日本・日本・日本・日本・日本

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Εx. & θa	Optimal Decay Theorem	Simulations			
Interpretations								

For the normal and exponential distributions, $\sup\{x : F(x) < 1\} = \infty.$

- Thus we have $\phi'(heta)/\phi(heta) o \infty$ as $heta o heta_+$, and
- we can solve $a = \phi'(\theta)/\phi(\theta)$ for any $a > \mu$.

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Εx. & θ _a	Optimal Decay Theorem	Simulations			
			_					
Interpretations								

For the normal and exponential distributions, $\sup\{x : F(x) < 1\} = \infty.$

- Thus we have $\phi'(heta)/\phi(heta) o \infty$ as $heta o heta_+$, and
- we can solve $a = \phi'(\theta)/\phi(\theta)$ for any $a > \mu$.

In Example 3, we cannot solve $a = \phi'(\theta)/\phi(\theta)$ for a > 2

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Ε×. & θ _a	Optimal Decay Theorem	Simulations			
Interpretations								

For the normal and exponential distributions, $\sup\{x : F(x) < 1\} = \infty.$

- Thus we have $\phi'(heta)/\phi(heta) o \infty$ as $heta o heta_+$, and
- we can solve $a = \phi'(\theta)/\phi(\theta)$ for any $a > \mu$.

In Example 3, we cannot solve $a = \phi'(\theta)/\phi(\theta)$ for a > 2

(H3) there is a
$$\theta_a \in (0, \theta_+)$$
 so that
 $a = \phi'(\theta_a)/\phi(\theta_a).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Optimal exponential decay

Optimal exponential decay

Theorem

Suppose that (H1), (H2) and (H3) hold. Then,

$$\gamma(a) = \lim_{n \to \infty} n^{-1} \log P(S_n \ge na) = -a\theta_a + \log \phi(\theta_a).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Optimal exponential decay

Theorem

Suppose that (H1), (H2) and (H3) hold. Then,

$$\gamma(a) = \lim_{n \to \infty} n^{-1} \log P(S_n \ge na) = -a\theta_a + \log \phi(\theta_a).$$

Informally, the theorem states that if $a = \phi'(\theta_a)/\phi(\theta_a)$, then (asymptotically) the probability of a large deviation decays as exponentially fast as possible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(lim sup). Earlier using Chebyshev's inequality we observed that $P(S_n \ge na) \le \exp(-n\{a\theta - \log \phi(\theta)\})$, for $\theta \in (0, \theta_+)$, and in particular for θ_a . This implies

$$\limsup_{n\to\infty} n^{-1}\log P(S_n\geq na)\leq -a\theta_a+\log\phi(\theta_a).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(lim sup). Earlier using Chebyshev's inequality we observed that $P(S_n \ge na) \le \exp(-n\{a\theta - \log \phi(\theta)\})$, for $\theta \in (0, \theta_+)$, and in particular for θ_a . This implies

$$\limsup_{n\to\infty} n^{-1}\log P(S_n\geq na)\leq -a\theta_a+\log\phi(\theta_a).$$

(lim inf). The other direction requires a bit more work. Fix $\lambda \in (\theta_a, \theta_+)$ and let $X_1^{\lambda}, X_2^{\lambda}, \ldots$ be i.i.d. with distribution F_{λ} (well-defined by H1); set $S_n^{\lambda} = X_1^{\lambda} + \cdots + X_n^{\lambda}$.

(lim sup). Earlier using Chebyshev's inequality we observed that $P(S_n \ge na) \le \exp(-n\{a\theta - \log \phi(\theta)\})$, for $\theta \in (0, \theta_+)$, and in particular for θ_a . This implies

$$\limsup_{n\to\infty} n^{-1}\log P(S_n\geq na)\leq -a\theta_a+\log\phi(\theta_a).$$

(lim inf). The other direction requires a bit more work. Fix $\lambda \in (\theta_a, \theta_+)$ and let $X_1^{\lambda}, X_2^{\lambda}, \ldots$ be i.i.d. with distribution F_{λ} (well-defined by H1); set $S_n^{\lambda} = X_1^{\lambda} + \cdots + X_n^{\lambda}$. Before we proceed, a short digression on...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Abs. Cts. Measures & Radon-Nikodym Derivative

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Abs. Cts. Measures & Radon-Nikodym Derivative

Let (X, \mathcal{F}) be a measure space equipped with two measures, μ and ν . By definition, we say that ν is *absolutely continuous with* respect to μ if $\mu(A) = 0$ implies $\nu(A) = 0$ for all $A \in \mathcal{F}$, and we write $\nu \ll \mu$.

Abs. Cts. Measures & Radon-Nikodym Derivative

Let (X, \mathcal{F}) be a measure space equipped with two measures, μ and ν . By definition, we say that ν is *absolutely continuous with* respect to μ if $\mu(A) = 0$ implies $\nu(A) = 0$ for all $A \in \mathcal{F}$, and we write $\nu \ll \mu$. If we simply say μ is *absolutely continuous* then we mean with respect to the Lebesgue measure.

Example

• Any measure is (trivially) absolutely continuous with respect to itself.

Abs. Cts. Measures & Radon-Nikodym Derivative

Let (X, \mathcal{F}) be a measure space equipped with two measures, μ and ν . By definition, we say that ν is *absolutely continuous with* respect to μ if $\mu(A) = 0$ implies $\nu(A) = 0$ for all $A \in \mathcal{F}$, and we write $\nu \ll \mu$. If we simply say μ is *absolutely continuous* then we mean with respect to the Lebesgue measure.

Example

- Any measure is (trivially) absolutely continuous with respect to itself.
- A finite measure μ is absolutely continuous iff the function $F(x) = \mu((-\infty, x]))$ is absolutely continuous as a function.

Abs. Cts. Measures & Radon-Nikodym Derivative

Let (X, \mathcal{F}) be a measure space equipped with two measures, μ and ν . By definition, we say that ν is *absolutely continuous with* respect to μ if $\mu(A) = 0$ implies $\nu(A) = 0$ for all $A \in \mathcal{F}$, and we write $\nu \ll \mu$. If we simply say μ is *absolutely continuous* then we mean with respect to the Lebesgue measure.

Example

- Any measure is (trivially) absolutely continuous with respect to itself.
- A finite measure μ is absolutely continuous iff the function $F(x) = \mu((-\infty, x]))$ is absolutely continuous as a function.
- Hence the Gaussian measure is absolutely continuous, but the "Devil's staircase" measure is not (because it assigns positive measure to the Cantor set).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Abs. Cts. Measures & Radon-Nikodym Derivative

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Abs. Cts. Measures & Radon-Nikodym Derivative

Key result (Radon-Nikodym, 1930): if ν and μ are σ -finite, and ν is absolutely continuous w.r.t μ , then there exists a measurable function $f: X \to [0, \infty)$ such that for measurable subsets $A \subset X$,

$$u(A) = \int_A \mathit{fd}\mu$$

Abs. Cts. Measures & Radon-Nikodym Derivative

Key result (Radon-Nikodym, 1930): if ν and μ are σ -finite, and ν is absolutely continuous w.r.t μ , then there exists a measurable function $f: X \to [0, \infty)$ such that for measurable subsets $A \subset X$,

$$u(A) = \int_A f d\mu$$

The function f is called the *Radon-Nikodym derivative* and we write $f = d\nu/d\mu$. It represents a sort of "rate of change of measure", which is why it's called a derivative.

Example

• Application to probability: Any distribution that admits a density is absolutely continuous, and the Radon-Nikodym derivative is the density function.

Application to Current Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Application to Current Theorem

Recall that,

$$F_{\lambda}(x) = rac{1}{\phi(\lambda)} \int_{-\infty}^{x} e^{\lambda y} dF(y).$$

It follows that $dF_{\lambda}/dF = e^{\lambda x}/\phi(\lambda)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Application to Current Theorem

Recall that,

$$F_{\lambda}(x) = rac{1}{\phi(\lambda)} \int_{-\infty}^{x} e^{\lambda y} dF(y).$$

It follows that $dF_{\lambda}/dF = e^{\lambda x}/\phi(\lambda)$. In our case, since $dF \ll dF_{\lambda}$ and $dF_{\lambda} \ll dF$, we may write $dF/dF_{\lambda} = e^{-\lambda x}\phi(\lambda)$.

Application to Current Theorem

Recall that,

$$F_{\lambda}(x) = rac{1}{\phi(\lambda)} \int_{-\infty}^{x} e^{\lambda y} dF(y).$$

It follows that $dF_{\lambda}/dF = e^{\lambda x}/\phi(\lambda)$. In our case, since $dF \ll dF_{\lambda}$ and $dF_{\lambda} \ll dF$, we may write $dF/dF_{\lambda} = e^{-\lambda x}\phi(\lambda)$. Let F_{λ}^{n} and F^{n} denote the distributions of S_{n}^{λ} and S_{n} respectively. We claim that the following is true:

$$\frac{dF_{\lambda}^{n}}{dF^{n}}(x) = e^{-\lambda x}\phi(\lambda)^{n}.$$

Application to Current Theorem

Recall that,

$$F_{\lambda}(x) = rac{1}{\phi(\lambda)} \int_{-\infty}^{x} e^{\lambda y} dF(y).$$

It follows that $dF_{\lambda}/dF = e^{\lambda x}/\phi(\lambda)$. In our case, since $dF \ll dF_{\lambda}$ and $dF_{\lambda} \ll dF$, we may write $dF/dF_{\lambda} = e^{-\lambda x}\phi(\lambda)$. Let F_{λ}^{n} and F^{n} denote the distributions of S_{n}^{λ} and S_{n} respectively. We claim that the following is true:

$$\frac{dF_{\lambda}^{n}}{dF^{n}}(x) = e^{-\lambda x}\phi(\lambda)^{n}.$$

The above arguments show that this holds when n = 1 so naturally...

We will induct on n.

We will induct on n.

$$F^{n}(z) = F^{n-1} * F(z) = \int_{-\infty}^{\infty} F(z-x) dF^{n-1}(x)$$

We will induct on n.

$$F^{n}(z) = F^{n-1} * F(z) = \int_{-\infty}^{\infty} F(z-x) dF^{n-1}(x)$$
$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z-x} dF(y) \right) dF^{n-1}(x)$$

We will induct on n.

$$F^{n}(z) = F^{n-1} * F(z) = \int_{-\infty}^{\infty} F(z-x) dF^{n-1}(x)$$
$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z-x} dF(y) \right) dF^{n-1}(x)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} e^{-\lambda(x+y)} \phi(\lambda)^{n} dF_{\lambda}(y) dF_{\lambda}^{n-1}(x)$$

We will induct on n.

$$F^{n}(z) = F^{n-1} * F(z) = \int_{-\infty}^{\infty} F(z-x) dF^{n-1}(x)$$
$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z-x} dF(y) \right) dF^{n-1}(x)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} e^{-\lambda(x+y)} \phi(\lambda)^{n} dF_{\lambda}(y) dF_{\lambda}^{n-1}(x)$$
$$= E \left(\mathbb{1}_{\{S_{n-1}^{\lambda} + X_{n}^{\lambda} \le z\}} e^{-\lambda(S_{n-1}^{\lambda} + X_{n}^{\lambda})} \phi(\lambda)^{n} \right)$$

We will induct on n.

$$F^{n}(z) = F^{n-1} * F(z) = \int_{-\infty}^{\infty} F(z-x) dF^{n-1}(x)$$

=
$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{z-x} dF(y) \right) dF^{n-1}(x)$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} e^{-\lambda(x+y)} \phi(\lambda)^{n} dF_{\lambda}(y) dF_{\lambda}^{n-1}(x)$$

=
$$E \left(\mathbb{1}_{\{S_{n-1}^{\lambda} + X_{n}^{\lambda} \le z\}} e^{-\lambda(S_{n-1}^{\lambda} + X_{n}^{\lambda})} \phi(\lambda)^{n} \right)$$

=
$$\int_{-\infty}^{z} e^{-\lambda u} \phi(\lambda)^{n} dF_{\lambda}^{n}(u)$$

Proof of Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of Theorem

Let b > a. Using the lemma, we observe that

$$P(S_n \ge na) \ge \int_{na}^{nb} e^{-\lambda x} \phi(\lambda)^n dF_{\lambda}^n(x) \ge \phi(\lambda)^n e^{-\lambda nb} (F_{\lambda}^n(nb) - F_{\lambda}^n(na)).$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof of Theorem

Let b > a. Using the lemma, we observe that

$$P(S_n \ge na) \ge \int_{na}^{nb} e^{-\lambda x} \phi(\lambda)^n dF_{\lambda}^n(x) \ge \phi(\lambda)^n e^{-\lambda nb} (F_{\lambda}^n(nb) - F_{\lambda}^n(na)).$$

By construction F_{λ} has mean $\phi(\lambda)'/\phi(\lambda)$. So we choose *b* such that $a < \phi(\lambda)'/\phi(\lambda) < b$. Then, by the SLLN, it follows that $F_{\lambda}^{n}(nb) - F_{\lambda}^{n}(na) \to 1$ as $n \to \infty$.

Proof of Theorem

Let b > a. Using the lemma, we observe that

$$P(S_n \ge na) \ge \int_{na}^{nb} e^{-\lambda x} \phi(\lambda)^n dF_{\lambda}^n(x) \ge \phi(\lambda)^n e^{-\lambda nb} (F_{\lambda}^n(nb) - F_{\lambda}^n(na)).$$

By construction F_{λ} has mean $\phi(\lambda)'/\phi(\lambda)$. So we choose *b* such that $a < \phi(\lambda)'/\phi(\lambda) < b$. Then, by the SLLN, it follows that $F_{\lambda}^{n}(nb) - F_{\lambda}^{n}(na) \to 1$ as $n \to \infty$. Therefore,

 $\liminf_{n\to\infty} n^{-1}\log(P(S_n\geq na))\geq -\lambda b+\log\phi(\lambda).$

Proof of Theorem

Let b > a. Using the lemma, we observe that

$$P(S_n \ge na) \ge \int_{na}^{nb} e^{-\lambda x} \phi(\lambda)^n dF_{\lambda}^n(x) \ge \phi(\lambda)^n e^{-\lambda nb} (F_{\lambda}^n(nb) - F_{\lambda}^n(na)).$$

By construction F_{λ} has mean $\phi(\lambda)'/\phi(\lambda)$. So we choose *b* such that $a < \phi(\lambda)'/\phi(\lambda) < b$. Then, by the SLLN, it follows that $F_{\lambda}^{n}(nb) - F_{\lambda}^{n}(na) \to 1$ as $n \to \infty$. Therefore,

$$\liminf_{n\to\infty} n^{-1}\log(P(S_n\geq na))\geq -\lambda b+\log\phi(\lambda).$$

Now take $\lambda > \theta_a$ to be arbitrary, and then b > a to be arbitrary to finish the proof.

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Εx. & θa	Optimal Decay Theorem	Simulations

Sans H3

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

 $\gamma(a)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Sans H3

In the case when H3 cannot be assumed we suppose the following:

Assumption

(H4). If $a\theta - \log \phi(\theta)$ cannot be maximized then assume $x_0 = \infty$, $\theta_+ < \infty$ and $\phi'(\theta)/\phi(\theta) \uparrow a_0 < \infty$ as $\theta \uparrow \theta_+$.

Sans H3

Ex. & θ_a

In the case when H3 cannot be assumed we suppose the following:

Assumption

(H4). If $a\theta - \log \phi(\theta)$ cannot be maximized then assume $x_0 = \infty$, $\theta_+ < \infty$ and $\phi'(\theta)/\phi(\theta) \uparrow a_0 < \infty$ as $\theta \uparrow \theta_+$.

Theorem

Assuming H1, H2 and H4, if $a_0 < a < \infty$ then, $\gamma(a) = -a\theta_+ + \log \phi(\theta_+)$. That is, $\gamma(a)$ is linear for $a \ge a_0$.

Sans H3

In the case when H3 cannot be assumed we suppose the following:

Assumption

(H4). If $a\theta - \log \phi(\theta)$ cannot be maximized then assume $x_0 = \infty$, $\theta_+ < \infty$ and $\phi'(\theta)/\phi(\theta) \uparrow a_0 < \infty$ as $\theta \uparrow \theta_+$.

Theorem

Assuming H1, H2 and H4, if $a_0 \le a < \infty$ then, $\gamma(a) = -a\theta_+ + \log \phi(\theta_+)$. That is, $\gamma(a)$ is linear for $a \ge a_0$.

It can be shown that if $EX_1 = 0$ and $\phi(\theta) = \infty$ for all $\theta > 0$ then $n^{-1} \log P(S_n \ge na) \to 0$ for all a > 0.

Sans H3

In the case when H3 cannot be assumed we suppose the following:

Assumption

(H4). If $a\theta - \log \phi(\theta)$ cannot be maximized then assume $x_0 = \infty$, $\theta_+ < \infty$ and $\phi'(\theta)/\phi(\theta) \uparrow a_0 < \infty$ as $\theta \uparrow \theta_+$.

Theorem

Assuming H1, H2 and H4, if $a_0 \le a < \infty$ then, $\gamma(a) = -a\theta_+ + \log \phi(\theta_+)$. That is, $\gamma(a)$ is linear for $a \ge a_0$.

It can be shown that if $EX_1 = 0$ and $\phi(\theta) = \infty$ for all $\theta > 0$ then $n^{-1} \log P(S_n \ge na) \to 0$ for all a > 0. This shows that H1 is the correct assumption to make.

$\gamma(a)$	MGFs & Decay Interval	Optimal Bounds	Εx. & θa	Optimal Decay Theorem	Simulations					
	Recap									

To get a feel for what the answers look like, we revisit our examples. Recall the notation

$$\kappa(\theta) = \log \phi(\theta) \qquad \kappa'(\theta) = \phi'(\theta)/\phi(\theta) \qquad \theta_a \text{ solves } \kappa'(\theta_a) = a$$
$$\gamma(a) = \lim_{n \to \infty} (1/n) \log P(S_n \ge na) = -a\theta_a + \kappa(\theta_a),$$

that is,

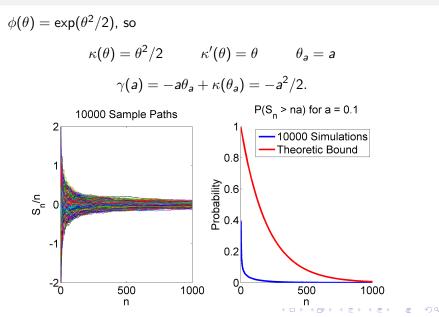
$$P(S_n \ge na) \le e^{n\gamma(a)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

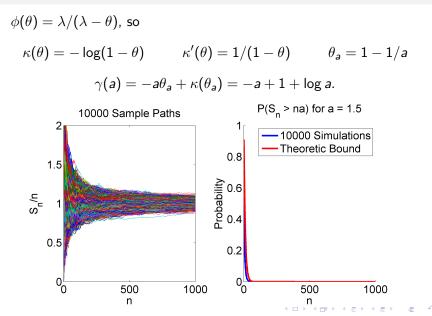
Normal distribution

$$\phi(\theta) = \exp(\theta^2/2)$$
, so
 $\kappa(\theta) = \theta^2/2 \qquad \kappa'(\theta) = \theta \qquad \theta_a = a$
 $\gamma(a) = -a\theta_a + \kappa(\theta_a) = -a^2/2.$

Normal distribution



Exponential distribution with $\lambda = 1$



References

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Richard Durrett.

"Large Deviations." *Probability Theory and Examples.* Cambridge: Cambridge UP, 2010. 86-93. Print.