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γ(a) MGFs & Decay Interval Optimal Bounds Ex. & θa Optimal Decay Theorem Simulations

Setting

Let X1,X2, . . . be i.i.d., Sn = X1 + . . .+ Xn.

We investigate the rate at which P(Sn ≥ na)→ 0 for
a > µ = E [Xi ] <∞.

We define the moment-generating function φ(θ) = E [eθXi ].

Eventually, we will see that if φ(θ) <∞ for some θ > 0, then
P(Sn ≥ na)→ 0 exponentially fast.

SLLN? CLT? Chebyshev?
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Convergence rate γ(a) - Part I

γ(a) = lim
n→∞

1

n
logP(Sn ≥ na)

We first need to show that γ exists. Let πn = P(Sn ≥ na). Then,

πm+n = P(Sn+m ≥ (n+m)a) ≥ P(Sm ≥ ma, Sn+m−Sm ≥ na) = πmπn,

where the inequality holds, because

Sm ≥ ma, Sn+m − Sm ≥ na

=⇒ Sn+m = Sm + Sn+m − Sm ≥ ma + na = a(m + n)

and the equality because Sm = X1 + . . .Xm and
Sn+m − Sm = Xm+1 + . . .Xn+m are independent.
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Convergence rate γ(a) - Part II

Set τn = log(πn).

Lemma: τm+n ≥ τm + τn =⇒ τn
n → supm

τm
m as n→∞.

Proof: lim sup τn
n ≤ sup τm

m gives ≤.

If ∀m : lim inf τnn ≥
τm
m , then ≥ holds as well.

Write n = km + l , where 0 ≤ l < m. Then

τn = τkm+l ≥ τm + τ(k−1)m+l ≥ . . . ≥ kτm + τl .

If we now divide both sides by n = km + l , we find that

τn
n
≥
(

k

km + l

)
τm +

τl
n

=

(
km

km + l

)
τm
m

+
τl
n
→ τm

m
.
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Convergence rate γ(a) - Part III

We have now seen that πn+m ≥ πmπn, implying that

τn+m = log(πn+m) ≥ log(πmπn) = log(πm) + log(πn) = τm + τn

But we have also seen that τn+m ≥ τm + τn implies that
τn
n → supm

τm
m . Since τn

n = 1
n logP(Sn ≥ na),

γ(a) = lim
n→∞

1

n
logP(Sn ≥ na) = sup

m

log(P(Sm ≥ ma))

m
≤ 0 exists.

Then, since logP(Sn≥na)
n ≤ supm

log(P(Sm≥ma))
m = γ(a),

P(Sn ≥ na) ≤ eγ(a)n.
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Understanding γ(a) better

γ(a) = −∞⇔ P(X1 ≥ a) = 0⇔ P(Sn ≥ na) = 0 ∀n

γ(a) = −∞ =⇒ P(Sn ≥ na) = 0 ∀n: note that

γ(a) ≥ log(P(Sn≥na))
n ∀n, so log(P(Sn ≥ na)) = −∞

P(Sn ≥ na) = 0 ∀n =⇒ P(Xi ≥ a) = 0:
set n = 1, Xi are i.i.d.

P(Xi ≥ a) = 0 =⇒ γ(a) = −∞:

P(Xi ≥ a) = 0, so ∀n : P(Sn ≥ na) = 0, so limn→∞
log(0)

n = −∞.
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Bound for γ(a)

We seek to bound γ(a). By Chebyshev’s inequality:

eθnaP(Sn ≥ na) ≤ EeθSn

= E

(
n∏

i=1

eθXi

)
=

n∏
i=1

EeθXi = (φ(θ))n

Rearranging,

eθnaP(Sn ≥ na) ≤ (φ(θ))n =⇒ P(Sn ≥ na) ≤ exp [−n(aθ − κ(θ))]

for κ(θ) = log φ(θ). Hence,

γ(a) ≤ −{aθ − κ(θ)}

for some fixed θ. We want aθ − κ(θ) > 0.
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Moment Generating Functions

Definition
The moment generating function (MGF) for a random variable X
is defined to be φ(θ) = EeθX .

MGFs vs. Characteristic Functions

• Characteristic functions can be thought of as the MGF of iX

• Characteristic functions always exist and is complex valued.

• MGFs does not necessarily exist for all θ and is real valued.

Generating Moments with MGFs(
d

dθ

∫ ∞
−∞

eθx dF (x)

) ∣∣∣∣
θ=0

=

(∫ ∞
−∞

xneθx dF (x)

) ∣∣∣∣
θ=0

= EXN .
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Generating Moments with MGFs

Example: X ∼ Unif(0, 1)

φ(θ) = EeθX =

∫ 1

0
eθx dx =

eθ − 1

θ
.

We obtain moments by differentiating and evaluating at θ = 0:

EX =
d

dθ

(
eθ − 1

θ

) ∣∣∣∣
0

=
eθ(θ − 1) + 1

θ2

∣∣∣∣
0

=
1

2
,

EX 2 =
d2

dθ2

(
eθ − 1

θ

) ∣∣∣∣
0

=
eθ(θ2 − 2θ + 2)− 2

θ3

∣∣∣∣
0

=
1

3
,

EX n =
dn

dθn

(
eθ − 1

θ

) ∣∣∣∣
0

=
1

n + 1
.
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We obtain moments by differentiating and evaluating at θ = 0:

EX =
d

dθ

(
eθ − 1

θ

) ∣∣∣∣
0

=
eθ(θ − 1) + 1

θ2

∣∣∣∣
0

=
1

2
,

EX 2 =
d2

dθ2

(
eθ − 1

θ

) ∣∣∣∣
0

=
eθ(θ2 − 2θ + 2)− 2

θ3

∣∣∣∣
0

=
1

3
,

EX n =
dn

dθn

(
eθ − 1

θ

) ∣∣∣∣
0

=
1

n + 1
.
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Restriction on the Distribution of Xi

Assumption H1

The moment generating function φ(θ) = EeθXi <∞ for some
θ > 0.

Note that φ(0) = 1 for any distribution and let

θ− = inf{θ : φ(θ) <∞}

≤ 0,

θ+ = sup{θ : φ(θ) <∞}

> 0.

Remarks
If θ− < 0, then

• moments of all orders are finite, and

• the tails of the distributions of Xi are exponentially bounded.
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(H1) Implies µ = EXi 6=∞

Proof.
Let F (x) = P(Xi ≤ x) and fix θ from (H1). If θ ≥ 1

e , (H1) directly
bounds µ. Else, then x ≥ eθx in the interval (r1, r2). Hence:

EXi ≤ EX+
i =

∫ ∞
0

x dF (x),

≤
∫ r2

r1

x dF (x) +

∫ ∞
0

eθx dF (x),

≤ r2 + φ(θ),

<∞.

Good check that a > µ is sound.
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Decay Bound

Lemma (Exponential Decay Bound)

If a > µ and θ > 0 is small, then aθ − κ(θ) > 0.

Motivation
aθ − κ(θ) =

∫ θ
0 (a− κ′(x)) dx and κ(0) = log φ(0) = 0.

(1) κ(θ) is continuous at θ = 0.

(2) κ is differentiable over (0, θ+).

(3) κ′(θ)→ µ as θ → 0.

So there exists some θ0 > 0 such that aθ−κ(θ) > 0 for θ ∈ (0, θ0).



γ(a) MGFs & Decay Interval Optimal Bounds Ex. & θa Optimal Decay Theorem Simulations

Decay Bound Proof - Part I

Condition (1)

Let F (x) = P(Xi ≤ x). For 0 < θ < θ0 < θ+, then we can
dominate eθx ≤ 1 + eθ0x . By the DCT:

lim
θ→0

∫
eθx dF (x) =

∫
dF (x) = 1.

This implies that φ(θ) is continuous at θ = 0 hence κ(θ) is
continuous at θ = 0.
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Decay Bound Proof - Part II

Condition (2)

For |h| < h0, then
∣∣ehx − 1

∣∣ =
∣∣∣∫ hx

0 ey dy
∣∣∣ ≤ |hx |eh0x . Consider,

φ′(θ) = lim
h→0

φ(θ + h)− φ(θ)

h
,

= lim
h→0

∫
ehx − 1

h
· eθx dF (x),

=

∫
xeθx dF (x), for θ ∈ (0, θ+).

Hence, κ′(θ) = φ′(θ)
φ(θ) exists for θ ∈ (0, θ+).
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Decay Bound Proof - Part III

Condition (3)

Note that we will use the DCT with the inequality:

eθx ≤ 1 + eθ0x .

Hence,

φ(0) = lim
θ→0

∫
eθx dF (x) =

∫ (
lim
θ→0

eθx
)

dF (x) =

∫
dF (x) = 1,

φ′(0) = lim
θ→0

∫
xeθx dF (x) =

∫
x

(
lim
θ→0

eθx
)

dF (x) =

∫
x dF (x) = µ.

So, κ′(θ)→ µ as θ → 0.
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An Upper Bound

We just showed there exists θ0 ∈ (0, θ+) such that

a θ − κ(θ) > 0 for θ ∈ (0, θ0)

Earlier we have shown that for any θ ∈ (0, θ+),

P(Sn ≥ na) ≤ exp(−n{a θ − κ(θ)})

where κ(θ) = log φ(θ).

=⇒ lim
n→∞

1

n
logP(Sn ≥ na) ≤ −{a θ − κ(θ)}

The expression in the braces gives an upper bound on the rate of
the exponential decay whenever it is positive.
Each feasible θ gives such a bound, so it is natural to find out the
best bound by maximizing a θ − κ(θ) over (0, θ+).
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When Things Are Nice

We find the maximum of θa− κ(θ) at its critical point

d

dθ
{a θ − log φ(θ)} = a− φ′(θ)

φ(θ)

The maximum occurs when a = φ′(θ)/φ(θ).

Assumptions we need to make:

• There exists exactly one critical point.

• The critical point is a maximum.
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Justify the Assumptions

For any φ(θ) <∞, define

Fθ(x) =
1

φ(θ)

∫ x

−∞
eθy dF (y)

Claim: Fθ is a distribution function for θ ∈ (θ−, θ+).
Proof:

Fθ(x) =
1

φ(θ)

∫
1(−∞,x](y) eθy dF (y)

By Dominated Convergence Theorem, Fθ(−∞) = 0 and Fθ(∞) = 1. It is
non-decreasing because eθy is non-negative. It is right-continuous
because

|Fθ(x + ε)− Fθ(x)| =
1

φ(θ)

∫
1(x,x+ε](y) eθy dF (y) ↓ 0

again by Dominated Convergence Theorem.
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Distribution Fθ

We can compute the mean of distribution function Fθ we just
defined.

∫
x dFθ(x) =

1

φ(θ)

∫ ∞
−∞

x eθx dF (x) =
φ′(θ)

φ(θ)
= κ′(θ)

Outline of proof:
The second equality was proven in the previous section.
Let µ be the (Lebesgue-Stieltjes) measure induced by Fθ, we have
µ((a, b]) = 1

φ(θ)

∫
1(a,b](y) eθy dF (y) from definition.

(1) The collection of sets with the property
µ(E ) = 1

φ(θ)

∫
1E (y) eθy dF (y)

forms a σ-algebra, so it includes the Borel sets.
(2) For general measurable function g ,∫

g(x) dFθ(x) = 1
φ(θ)

∫
g(y) eθydF (y).

In particular, we can let g(x) = x .
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φ′′(θ)

φ′′(θ) = lim
h→0

φ′(θ + h)− φ′(θ)

h

= lim
h→0

∫
ehx − 1

h
x eθx dF (x)

DCT
=

∫
x2 eθx dF (x) = φ(θ)

∫
x2 dFθ(x)

To apply the dominated convergence theorem, we fix small h0
and ε. For h < h0∣∣∣ehx − 1

h
x eθx

∣∣∣ ≤ |x2|e(θ+h0)x ≤ 2

ε2
eε|x|e(θ+h0)x

≤ 2

ε2
(e(θ+h0+ε)x + e(θ+h0−ε)x)
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Second Derivative Test

Recall that the function we are trying to maximize is a θ − κ(θ).

Its derivative is d
dθ{a θ − log φ(θ)} = a− φ′(θ)

φ(θ) .

Its second derivative is − d
dθ

φ′(θ)
φ(θ) .

d

dθ

φ′(θ)

φ(θ)
=
φ′′(θ)

φ(θ)
−
(φ′(θ)

φ(θ)

)2
=

∫
x2 dFθ(x)−

(∫
x dFθ(x)

)2
≥ 0

because the last expression is the variance of Fθ.

Assumption H2

X1 is not a point mass at µ
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X1 = µ = E X1

Why we need it

In this case, F is a jump function from 0 to 1 at µ. So is Fθ for all

θ ∈ (θ−, θ+). d
dθ{aθ − log φ(θ)} = a− φ′(θ)

φ(θ) = a− µ, so either
there are infinitely many critical points or none at all.

Why we can assume it

The conclusion we want is actually trivial, since P(Sn ≥ na) = 0
for all a > µ.

We can assume F is not a point mass for the interesting cases. Fθ
is not a point mass either, so variance of Fθ > 0.
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Conclusion

We have d2

dθ2
{a θ − log φ(θ)} = − d

dθ
φ′(θ)
φ(θ) < 0.

φ′(θ)
φ(θ) is strictly increasing, and φ′(0)

φ(0) = µ < a, we have at most one

critical point that a = φ′(θa)
φ(θa)

.

Note that the existence is not guaranteed.

a θ − log φ(θ) is concave, so θa maximize a θ − log φ(θ), which
means it gives the best bound on the rate of exponential decay.
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Preview

Before discussing the existence of θa, We will:

• examine the moment generating functions φ(θ) of some
familiar distributions,

• derive the form of κ′(θ) = φ′(θ)/φ(θ), which is used to
optimize our upper bound on the probability of a large
deviation for a particular a > µ,

• discuss some properties of moment generating functions
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Ex 1. Normal Distribution

For X ∼ N (0, 1),

φ(θ) = E exp(θX ) =

∫
eθx(2π)−1/2 exp(−x2/2)dx

= exp(θ2/2)

∫
(2π)−1/2 exp(−(x − θ)2/2)dx .

The integrand is the density of a normal distribution with mean θ
and variance 1, so φ(θ) = exp(θ2/2), θ ∈ (−∞,∞).

Thus φ′(θ)/φ(θ) = θ, and

Fθ(x) = e−θ
2/2

∫ x

−∞
eθy (2π)−1/2e−y

2/2dy ,

is a normal distribution with mean θ and variance 1.
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Ex 2. Exponential Distribution with parameter λ

If θ < λ,

φ(θ) = E exp(θX ) =

∫ ∞
0

eθxλe−λxdx

= λ/(λ− θ).

Thus φ′(θ)/φ(θ) = 1/(λ− θ), and

Fθ(x) =
λ− θ
λ

∫ x

0
eθyλe−λydy

=

∫ x

0
(λ− θ)e−(λ−θ)ydy

is an exponential distribution with parameter λ− θ.
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Ex 3. Perverted Exponential

Let g(x) = Cx−3e−x for x ≥ 1, g(x) = 0 otherwise, and choose C
so that g is a probability density. Then

φ(θ) = E exp(θX ) =

∫
eθxg(x)dx

= C

∫
x−3e(θ−1)xdx

is finite if and only if θ ≤ 1.

When θ ≤ 1,

φ′(θ)

φ(θ)
≤ φ′(1)

φ(1)
=

∫ ∞
1

Cx−2dx

/∫ ∞
1

Cx−3dx = 2.
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Properties of Moment Generating Functions

Let x0 = sup{x : F (x) < 1}. If x0 <∞, then:

• φ(θ) <∞ for all θ > 0,

• φ′(θ)/φ(θ)→ x0 as θ ↑ ∞.

Outline of proof

If x0 <∞, then P(X > x0) = 0.
Then φ(θ) =

∫
eθxdF (x) =

∫ x0
−∞ eθxdF (x) <∞ for all θ.

Furthermore,
φ′(θ)

φ(θ)
=

∫ x0
−∞ xeθxdF (x)∫ x0
−∞ eθxdF (x)

,

with F putting nonzero weight near x0. As θ →∞, the tail is
growing faster than the rest, with the numerator scaled by x0.
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Interpretations

For the normal and exponential distributions,
sup{x : F (x) < 1} =∞.

• Thus we have φ′(θ)/φ(θ)→∞ as θ → θ+, and

• we can solve a = φ′(θ)/φ(θ) for any a > µ.

In Example 3, we cannot solve a = φ′(θ)/φ(θ) for a > 2

(H3) there is a θa ∈ (0, θ+) so that
a = φ′(θa)/φ(θa).
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Optimal exponential decay

Theorem
Suppose that (H1), (H2) and (H3) hold. Then,

γ(a) = lim
n→∞

n−1 logP(Sn ≥ na) = −aθa + log φ(θa).

Informally, the theorem states that if a = φ′(θa)/φ(θa), then
(asymptotically) the probability of a large deviation decays as
exponentially fast as possible.
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Proof of Theorem

(lim sup). Earlier using Chebyshev’s inequality we observed that
P(Sn ≥ na) ≤ exp(−n{aθ − log φ(θ)}), for θ ∈ (0, θ+), and in
particular for θa. This implies

lim sup
n→∞

n−1 logP(Sn ≥ na) ≤ −aθa + log φ(θa).

(lim inf). The other direction requires a bit more work. Fix
λ ∈ (θa, θ+) and let Xλ

1 ,X
λ
2 , . . . be i.i.d. with distribution Fλ

(well-defined by H1); set Sλn = Xλ
1 + · · ·+ Xλ

n . Before we proceed,
a short digression on...
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Abs. Cts. Measures & Radon-Nikodym Derivative

Let (X ,F) be a measure space equipped with two measures, µ and
ν. By definition, we say that ν is absolutely continuous with
respect to µ if µ(A) = 0 implies ν(A) = 0 for all A ∈ F , and we
write ν � µ. If we simply say µ is absolutely continuous then we
mean with respect to the Lebesgue measure.

Example

• Any measure is (trivially) absolutely continuous with respect
to itself.

• A finite measure µ is absolutely continuous iff the function
F (x) = µ((−∞, x ])) is absolutely continuous as a function.

• Hence the Gaussian measure is absolutely continuous, but the
“Devil’s staircase” measure is not (because it assigns positive
measure to the Cantor set).
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Abs. Cts. Measures & Radon-Nikodym Derivative

Key result (Radon-Nikodym, 1930): if ν and µ are σ-finite, and ν
is absolutely continuous w.r.t µ, then there exists a measurable
function f : X → [0,∞) such that for measurable subsets A ⊂ X ,

ν(A) =

∫
A
fdµ

The function f is called the Radon-Nikodym derivative and we
write f = dν/dµ. It represents a sort of “rate of change of
measure”, which is why it’s called a derivative.

Example

• Application to probability: Any distribution that admits a
density is absolutely continuous, and the Radon-Nikodym
derivative is the density function.
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Application to Current Theorem

Recall that,

Fλ(x) =
1

φ(λ)

∫ x

−∞
eλydF (y).

It follows that dFλ/dF = eλx/φ(λ). In our case, since dF � dFλ
and dFλ � dF , we may write dF/dFλ = e−λxφ(λ). Let F n

λ and
F n denote the distributions of Sλn and Sn respectively. We claim
that the following is true:

dF n
λ

dF n
(x) = e−λxφ(λ)n.

The above arguments show that this holds when n = 1 so
naturally...
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Proof of Lemma

We will induct on n.

F n(z) = F n−1 ∗ F (z) =

∫ ∞
−∞

F (z − x)dF n−1(x)

=

∫ ∞
−∞

(∫ z−x

−∞
dF (y)

)
dF n−1(x)

=

∫ ∞
−∞

∫ z−x

−∞
e−λ(x+y)φ(λ)ndFλ(y)dF n−1

λ (x)

= E
(

1{Sλ
n−1+Xλ

n ≤z}e
−λ(Sλ

n−1+Xλ
n )φ(λ)n

)
=

∫ z

−∞
e−λuφ(λ)ndF n

λ (u)
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Proof of Theorem

Let b > a. Using the lemma, we observe that

P(Sn ≥ na) ≥
∫ nb

na
e−λxφ(λ)ndF n

λ (x) ≥ φ(λ)ne−λnb(F n
λ (nb)−F n

λ (na)).

By construction Fλ has mean φ(λ)′/φ(λ). So we choose b such
that a < φ(λ)′/φ(λ) < b. Then, by the SLLN, it follows that
F n
λ (nb)− F n

λ (na)→ 1 as n→∞. Therefore,

lim inf
n→∞

n−1 log(P(Sn ≥ na)) ≥ −λb + log φ(λ).

Now take λ > θa to be arbitrary, and then b > a to be arbitrary to
finish the proof.
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Sans H3

In the case when H3 cannot be assumed we suppose the following:

Assumption

(H4). If aθ − log φ(θ) cannot be maximized then assume x0 =∞,
θ+ <∞ and φ′(θ)/φ(θ) ↑ a0 <∞ as θ ↑ θ+.

Theorem
Assuming H1, H2 and H4, if a0 ≤ a <∞ then,
γ(a) = −aθ+ + log φ(θ+). That is, γ(a) is linear for a ≥ a0.

It can be shown that if EX1 = 0 and φ(θ) =∞ for all θ > 0 then
n−1 logP(Sn ≥ na)→ 0 for all a > 0. This shows that H1 is the
correct assumption to make.
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Recap

To get a feel for what the answers look like, we revisit our
examples. Recall the notation

κ(θ) = log φ(θ) κ′(θ) = φ′(θ)/φ(θ) θa solves κ′(θa) = a

γ(a) = lim
n→∞

(1/n) logP(Sn ≥ na) = −aθa + κ(θa),

that is,
P(Sn ≥ na) ≤ enγ(a).
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Normal distribution

φ(θ) = exp(θ2/2), so

κ(θ) = θ2/2 κ′(θ) = θ θa = a

γ(a) = −aθa + κ(θa) = −a2/2.
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Exponential distribution with λ = 1

φ(θ) = λ/(λ− θ), so

κ(θ) = − log(1− θ) κ′(θ) = 1/(1− θ) θa = 1− 1/a

γ(a) = −aθa + κ(θa) = −a + 1 + log a.
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