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1 Conditional Independence

We’ll be following Pearl’s book Causality (Chapters 1 and 3).

Setup: Discrete random variables

X1, . . . , Xn : (Ω,F , P ) → R

Joint Distribution
p(x1, . . . , xn) := P (X1 = x1, . . . , Xn = xn)

The joint probability distribution is impractical when n is large. For example, computing
the marginal distribution of X1 from the joint distribution

p(x1) =
∑

x2,...,xn

p(x1, x2, . . . , xn)

involves a sum with exponentially many terms (2n−1 terms if X2, . . . , Xn are binary random
variables).

Definition (Independence): X1 and X2 are independent if p(x1, x2) = p(x1)p(x2) for all
x1, x2 ∈ R

While there’s nothing wrong with this definition, it doesn’t always capture how people
reason intuitively about independence.

Example: Consider these two events

A1 = {Tompkins county has a forest fire in 2024}

A2 = {Inflation greater than 5% in 2024}

and let Xi = 1Ai be the corresponding indicator random variables. (Notation: For an event
A, the random variable 1A equals 1 if A occurs and 0 otherwise.)
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Accurately estimating p(x1), or p(x2), or p(x1, x2) in this case might require specialized
knowledge of weather forecasting, or macroeconomics, or both! On the other hand, it
doesn’t take specialized knowledge to reason that X1 and X2 are independent. What’s
going on with this kind of reasoning? Can we make it more precise than a general sense
that “inflation doesn’t have much to do with forest fires”? Whatever this reasoning is doing,
it proceeds by some other method that doesn’t involve computing the joint and marginal
probabilities.

Definition: Random variables X and Y are conditionally independent given Z, if

p(x|y, z) = p(x|z) for all x, y, z ∈ R such that p(y, z) > 0.

Notation: X ⊥⊥ Y |Z.

Intuitively, this means: If we know Z = z, then learning that Y = y does not provide any
additional information about the value of X.

Example (Buses): Let T1 and T2 be arrival times of consecutive buses at a bus stop.
Then T1 and T2 are dependent, but

T2 ⊥⊥ T1 |X2

where X2 is the current location of bus 2: Once we know the location of bus 2, the arrival
time of bus 1 doesn’t provide any additional information about the arrival time of bus 2.

To turn this example into math, let’s add some assumptions: the buses move at constant
speed v = 10 miles per hour, so Ti = Xi/v where Xi is the current distance of bus i
from the bus stop. And the spacing is random: X1 and X2 −X1 are independent random
variables with the exponential distribution with a mean of 5 miles. If we learn that T1 = 1
minute (bus 1 is early) that’s going to decrease our estimate of T2. But if we also learn that
X2 = 100 miles (bus 2 is very far away) then the information about T1 becomes irrelevant
to our estimate of T2.

1.1 Properties of Conditional Independence

(1) Symmetry:
(
X ⊥⊥ Y |Z

)
⇒

(
Y ⊥⊥ X|Z

)
(2) Decomposition:

(
X ⊥⊥ (Y,W )|Z

)
⇒

(
X ⊥⊥ Y |Z

)
(3) Weak union:

(
X ⊥⊥ (Y,W )|Z

)
⇒

(
Y ⊥⊥ X|(Z,W )

)
(4) Contraction:

(
X ⊥⊥ Y |Z

)
&
(
X ⊥⊥ W |(Y, Z)

)
⇒

(
X ⊥⊥ (Y,W )|Z

)
Corresponding Cartoons: There is a sense in which we can think of conditional independence
in terms of blocking paths between sets.
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Pearl observed: In an undirected graph G = (V,E) if we let X,Y,W,X be subsets of V ,
and set (X ⊥⊥ Y |Z)G to mean that every path from X to Y in G passes through Z. Then
properties 1-4 are satisfied. We will come back to this observation. The analogy between
dependence and graph reachability turns out to be much closer when G is a directed graph,
and (X ⊥⊥ Y |Z)G stands for something called d-separation.

We will prove Symmetry and Decomposition.

Proof of 1. Symmetry: We claim the following:

(X ⊥⊥ Y |Z) ⇐⇒ p(x, y|z) = p(x|z)p(y|z)

for all x, y, z ∈ R with p(z) > 0.

proof of claim:

p(x|y, z) = p(x, y, z)

p(y, z)
=

p(x, y, z)

p(y, z)
∗ p(z)

p(z)
= p(x, y|z) ∗ 1

p(y|z)

Now, if (X ⊥⊥ Y |Z) we have
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p(x, y|z) = p(y|z)p(x|y, z) = p(y|z)p(x|z)
.

Proof of 2. Decomposition: Given
(
X ⊥⊥ (Y,W )

)
|Z. We have p(x|y, w, z) = p(x, z)

whenever p(y, w, z) > 0.

We want p(x|y, z) = p(x|z) whenever p(y, z) > 0.

p(x|y, z) = p(x, y, z)

p(y, z)
=

∑
w

p(x, y, w, z)

p(y, z)
=

∑ p(x|y, w, z)p(y, w, z)
p(y, z)

=
p(x|z)
p(y|z)

∑
p(y, w, z) = p(x|z)

Notice that the terms where p(y, w, z) = 0 do not contribute.

Some History

1985: Pearl and Paz conjectured that conditions (1)-(4) are complete. In otherwords, for any
3-place relation ⊥⊥ satisfying (1)-(4) there is a probability measure P such that conditional
independence with respect to P is ⊥⊥.

1992: Studeny disproved the conjecture. Showed:

If X0 ⊥⊥ Xi|Xi+1 for all i = 1, . . . , n− 1,

then X0 ⊥⊥ Xi+1|Xifor all i = 1, . . . , n− 1.

Call this property Sn. It turns out that Sn is not implied by the conjunction of S1, . . . , Sn−1.
In fact, no finite set of axioms is complete for conditional independence!

2006: Simicek and 2007: Sullivant both gave a counterexamples to the conjecture in which
X1, . . . , Xn are jointly Gaussian.

1.2 Unconditional Independence

Notation: X ⊥⊥ Y |∅ means p(x|y) = p(x) for all x, y such that p(y) > 0. Equivalently,
p(x, y) = p(x)p(y) for all x and y.

Question: Which is stronger, conditional independence or unconditional inde-
pendence?
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Example 1:

C

A B

p(a, b, c) = p(c)p(a|c)p(b|c)

Is A ⊥⊥ B|C?

p(a, b|c) = p(a, b, c)

p(c)
= p(a|c)p(b|c)

Is A ⊥⊥ B|∅?... not necessarily

Example 2:

A B

C

p(a, b, c) = p(a)p(b)p(c|a, b)

Is A ⊥⊥ B|C? Not in general

Is A ⊥⊥ B|∅? Yes

Answer: Neither is stronger!

1.3 G-Markov distributions

Next class: we’ll talk about G-Markov distributions where, G is a directed acyclic graph
(generalizing the examples of three-vertex graphs above). These are also called Bayes Nets.
The d-separation theorem of Pearl and Verma will allow us to reason from the graph which
conditional independence conditions hold.
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