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1 Directed Acyclic Graph (DAG)

In order to represent causal relationships and conditional independence, we will use the
”Directed Acyclic Graph” (DAG). The Directed Acyclic Graph is made of Vertices: V =
{1, . . . , n} (sometimes {X1, . . . , Xn}) and Edges: E ⊆ V ×V , where Vertices are connected
by Edges, with the condition that there are no self-loops: (V, V ) /∈ E,∀v ∈ V . Edges/Paths
can either be directed or undirected.

Definition 1 A directed path v → w is a sequence v = v0, v1, . . . , vk = w such that
(vi, vi+1) ∈ E for all i.

Definition 2 A path v-w is a sequence such that ∀i, either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E.

Example 3 In this example there are 2 directed paths from a to e: 1) a,b,d,e and 2)a,c,d,e.
Note: There are 2 paths from b to c: 1) b,a,c and 2) b,d,c but neither is directed.

The next few definitions provide some terminology for whether nodes are up-stream or
down-stream from one another.

Definition 4 Parents: par(v) = {w ∈ V |(w, v) ∈ E}.

Definition 5 Children: chi(v) = {w ∈ V |(v, w) ∈ E}

Definition 6 Ancestors: anc(v) = {w ∈ V |∃ directed path w → v}

Definition 7 Descendants: des(v) = {w ∈ V |∃ directed path v → w}

Example 8 Utilizing the structure from Example 1, we observe the following:

1. par(d) = {b, c}
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2. chi(d) = {e} = des(d)

3. anc(d) = {a, b, c}

Definition 9 G is Acyclic (”DAG”) if ∀v ∈ V ∄ directed path v → v.

Definition 10 Skeleton: skel(G) is the undirected graph: (v, Ẽ).

Ẽ ⊆
(
V
2

)
and Ẽ = {{v, w}|(v, w) ⊆ E or (w, v) ⊆ E}.

From here on, we will fix a DAG, G, on {1, . . . , n} with all edges of the form (i,j) for i < j.

Definition 11 Random variables X1, . . . , Xn are G-Markov if their joint distribution sat-
isfies

p(x1, . . . , xn) =

n∏
j=1

p(xj |(xi)i∈par(j)).

Here, as usual p(x1, . . . , xn) is shorthand for P(X1 = x1, . . . , Xn = xn). Informally, what
this definition says is that the joint distribution of G-Markov random variables can be

Figure 1: Directed Acyclic Graph: G
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decomposed into a product of conditional probabilities where each node is conditioned only
on its parents.

Figure 2: Directed Acyclic Graph: G

Example 12 Utilizing the structure from Example 1, the joint distribution of G can be
written as: p(a, b, c, d, e) = p(a)p(b|a)p(c|a)p(d|b, c)p(e|d).

Note: Any X1, . . . , Xn will be Kn −Markov where Kn = ({1, . . . , n}, {(i, j)|i < j})
is the complete directed graph on n vertices. This just says that p(x1, . . . , xn) =
p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x1, . . . , xn−1)
Goal: Reduce the number of variables we’re conditioning on.
Aside: Other Direction Given X = (X1, . . . , Xn), find a (small) DAG G such that X is
G-Markov. This is called causal discovery.
Greedy causal discovery: For fixed ordering of X1, . . . , Xn, ”Markov Parents” of Xj are a
minimal subset, S ⊆ {1, . . . , j− 1}, such that p(xj |x1, . . . , xj−1) = p(xj |(xi)i∈S). In general
these will depend on the ordering.
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2 Conditioning can either create or destroy dependence

Given a G-Markov X1, . . . , Xn which conditional independence statements Xi ⊥⊥ Xj |Xk

hold?

The next four examples will motivate Pearl’s d-Separation Theorem by showing how
conditioning can in some cases create dependence and in other cases destroy it!

Figure 3: Conditioning on C destroys the dependence between A and B.

Example 13 p(a, b, c) = p(c)p(a|c)p(b|c)
A⊥̸⊥ B|∅: A and B are unconditionally dependent
A ⊥⊥ B|C: A and B are are conditionally independent given C

Figure 4: Conditioning on C creates dependence between A and B.

Example 14 p(a, b, c) = p(a)p(b)p(c|a, b)
A ⊥⊥ B|∅: A and B are unconditionally independent
A⊥̸⊥ B|C: A and B are conditionally dependent given C

Example 15
A→ C → B

p(a, b, c) = p(a)p(c|a)p(b|c)
Is A ⊥⊥ B|∅? No, for example C=A, B=C
Is A ⊥⊥ B|C? Yes

Proof: p(a, b|c) = p(a,b,c)
p(c) = p(a)p(c|a)

p(c) ∗ p(b|c) = p(a|c)p(b|c), which results from Bayes Rule.

Example 16 Is A ⊥⊥ B|D? No, for example D=C
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Figure 5: Conditioning on D creates dependence between A and B.

3 The d-Separation Theorem

Let X1, . . . , Xn be G-Markov and let A,B,C be disjoint subsets of {X1, . . . , Xn}. The
d-separation theorem gives a combinatorial condition that’s sufficient for conditional inde-
pendence A ⊥⊥ B |C. To state it we’ll need a definition.

Definition 17 Given a path γ = (v0, . . . , vk) in G with v0 ∈ A and vk ∈ B, and 0 < j < k,
we say that γ is blocked if there exists 0 < j < k such that

1. vj ∈ C and vj−1 ← vj → vj+1; or

2. vj ∈ C and vj−1 → vj → vj+1; or

3. vj ∈ C and vj−1 ← vj ← vj+1; or

4. vj /∈ C and des(vj) ∩ C = ∅ and vj−1 → vj ← vj+1.

Definition 18 A and B are d-separated by C in G, if all paths A-B in G are blocked.

Now that we have an understanding of what it means to block a path and the meaning of
d-separation, we can state the d-separation theorem.

Theorem 19 (d-Separation (Verma & Pearl, 1988)) Let (X1, . . . , Xn) be G-Markov,
and let A,B,C be disjoint subsets of {X1, . . . , Xn}. If A and B are d-separated by C in G,
then A ⊥⊥ B |C.

Conversely, If A and B are not d-separated by C in G, then there exists a G-Markov distri-
bution such that A ̸⊥⊥ B |C.
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Notation: We denote that A and B are d-separated by C with (A ⊥⊥ B|C)G

Exercise 20 (Lauritzen, 1990) Given subsets of vertices A,B,C in a DAG G, form an
undirected graph L(A ∪B ∪ C) as follows.

1. Delete all vertices not in anc(A ∪B ∪ C) ∪A ∪B ∪ C.

2. ∀v, w ∈ V such that chi(v) ∩ chi(w) ̸= ∅, add and edge {v, w} ∈ E(L).

3. Remove arrows: ∀(v, w) ∈ E add an edge {v, w} ∈ E(L).

Claim: (A ⊥⊥ B|C)G if and only if every path A-B in L(A ∪B ∪ C) intersects C.

Unconditional Case: When is Xi ⊥⊥ Xj |∅ in G-Markov (X1, . . . , Xn)?
Answer: When all paths Xi − Xj are blocked, i.e. every path Xi − Xj has a collider:
vj−1 → vj ← vj+1.

Note that a path with no collider must have the form

Xi ← · · · ← Z → · · · → Xj .

The node Z is then a common ancestor of Xi and Xj (or Z = Xi or Z = Xj).

Write anc(X) = anc(X) ∪ {X} for the set of ancestors of X including itself.

Corollary 21 (No common ancestor implies unconditional independence) If
anc(Xi) ∩ anc(Xj) = ∅, then Xi ⊥⊥ Xj |∅.
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