Math for Al Safety Lionel Levine

G-Markov Distributions, D-Separation Theorem

September 9, 2024 Notes by Jacob Ornelas

1 Directed Acyclic Graph (DAG)

In order to represent causal relationships and conditional independence, we will use the "Directed Acyclic Graph" (DAG). The Directed Acyclic Graph is made of Vertices: $V = \{1, \ldots, n\}$ (sometimes $\{X_1, \ldots, X_n\}$) and Edges: $E \subseteq V \times V$, where Vertices are connected by Edges, with the condition that there are no self-loops: $(V, V) \notin E, \forall v \in V$. Edges/Paths can either be directed or undirected.

Definition 1 A directed path $v \to w$ is a sequence $v = v_0, v_1, \ldots, v_k = w$ such that $(v_i, v_{i+1}) \in E$ for all i.

Definition 2 A path v-w is a sequence such that $\forall i$, either $(v_i, v_{i+1}) \in E$ or $(v_{i+1}, v_i) \in E$.

Example 3 In this example there are 2 directed paths from a to e: 1) a,b,d,e and 2)a,c,d,e. Note: There are 2 paths from b to c: 1) b,a,c and 2) b,d,c but neither is directed.

The next few definitions provide some terminology for whether nodes are up-stream or down-stream from one another.

Definition 4 Parents: $par(v) = \{w \in V | (w, v) \in E\}.$

Definition 5 Children: $chi(v) = \{w \in V | (v, w) \in E\}$

Definition 6 Ancestors: $anc(v) = \{w \in V | \exists directed path w \rightarrow v\}$

Definition 7 Descendants: $des(v) = \{w \in V | \exists directed path v \rightarrow w\}$

Example 8 Utilizing the structure from Example 1, we observe the following:

1. $par(d) = \{b, c\}$

2. $chi(d) = \{e\} = des(d)$

3. $anc(d) = \{a, b, c\}$

Definition 9 G is Acyclic ("DAG") if $\forall v \in V \not\equiv directed \ path \ v \rightarrow v$.

Definition 10 Skeleton: skel(G) is the <u>undirected graph</u>: (v, \tilde{E}) . $\tilde{E} \subseteq {V \choose 2}$ and $\tilde{E} = \{\{v, w\} | (v, w) \subseteq E \text{ or } (w, v) \subseteq E\}$.

From here on, we will fix a DAG, G, on $\{1, \ldots, n\}$ with all edges of the form (i,j) for i < j.

Definition 11 Random variables X_1, \ldots, X_n are **G-Markov** if their joint distribution satisfies

$$p(x_1, ..., x_n) = \prod_{j=1}^{n} p(x_j | (x_i)_{i \in par(j)}).$$

Here, as usual $p(x_1, ..., x_n)$ is shorthand for $\mathbb{P}(X_1 = x_1, ..., X_n = x_n)$. Informally, what this definition says is that the joint distribution of G-Markov random variables can be

Figure 1: Directed Acyclic Graph: G

decomposed into a product of conditional probabilities where each node is conditioned only on its parents.

Figure 2: Directed Acyclic Graph: G

Example 12 Utilizing the structure from Example 1, the joint distribution of G can be written as: p(a, b, c, d, e) = p(a)p(b|a)p(c|a)p(d|b, c)p(e|d).

<u>Note:</u> Any X_1, \ldots, X_n will be $\underline{K_n - Markov}$ where $K_n = (\{1, \ldots, n\}, \{(i, j) | i < j\})$ is the complete directed graph on n vertices. This just says that $p(x_1, \ldots, x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \ldots p(x_n|x_1, \ldots, x_{n-1})$

 $\underline{\operatorname{Goal:}}$ Reduce the number of variables we're conditioning on.

Aside: Other Direction Given $X = (X_1, ..., X_n)$, find a (small) DAG G such that X is G-Markov. This is called *causal discovery*.

Greedy causal discovery: For fixed ordering of X_1, \ldots, X_n , "Markov Parents" of X_j are a minimal subset, $S \subseteq \{1, \ldots, j-1\}$, such that $p(x_j|x_1, \ldots, x_{j-1}) = p(x_j|(x_i)_{i \in S})$. In general these will depend on the ordering.

2 Conditioning can either create or destroy dependence

Given a G-Markov X_1, \ldots, X_n which conditional independence statements $X_i \perp \!\!\! \perp X_j | X_k$ hold?

The next four examples will motivate Pearl's d-Separation Theorem by showing how conditioning can in some cases create dependence and in other cases destroy it!

Figure 3: Conditioning on C destroys the dependence between A and B.

Example 13 p(a, b, c) = p(c)p(a|c)p(b|c)

 $A \not\perp \!\!\! \perp B | \emptyset : A \text{ and } B \text{ are unconditionally dependent}$

 $A \perp \!\!\!\perp B|C:A$ and B are are conditionally independent given C

Figure 4: Conditioning on C creates dependence between A and B.

Example 14 p(a, b, c) = p(a)p(b)p(c|a, b)

 $A \perp \!\!\!\perp B | \emptyset : A \text{ and } B \text{ are unconditionally independent}$

 $A \not\perp\!\!\!\perp B|C:A$ and B are conditionally dependent given C

Example 15

$$A \to C \to B$$

p(a, b, c) = p(a)p(c|a)p(b|c)

Is $A \perp \!\!\!\perp B | \emptyset$? No, for example C = A, B = C

Is $A \perp \!\!\!\perp B|C$? Yes

Proof: $p(a,b|c) = \frac{p(a,b,c)}{p(c)} = \frac{p(a)p(c|a)}{p(c)} * p(b|c) = p(a|c)p(b|c)$, which results from Bayes Rule.

Example 16 Is $A \perp \!\!\!\perp B|D$? No, for example D=C

Figure 5: Conditioning on D creates dependence between A and B.

3 The d-Separation Theorem

Let X_1, \ldots, X_n be G-Markov and let A, B, C be disjoint subsets of $\{X_1, \ldots, X_n\}$. The d-separation theorem gives a combinatorial condition that's sufficient for conditional independence $A \perp\!\!\!\perp B \mid C$. To state it we'll need a definition.

Definition 17 Given a path $\gamma = (v_0, \dots, v_k)$ in G with $v_0 \in A$ and $v_k \in B$, and 0 < j < k, we say that γ is **blocked** if there exists 0 < j < k such that

- 1. $v_i \in C$ and $v_{i-1} \leftarrow v_i \rightarrow v_{i+1}$; or
- 2. $v_i \in C$ and $v_{i-1} \rightarrow v_i \rightarrow v_{i+1}$; or
- 3. $v_i \in C$ and $v_{i-1} \leftarrow v_i \leftarrow v_{i+1}$; or
- 4. $v_i \notin C$ and $des(v_i) \cap C = \emptyset$ and $v_{i-1} \rightarrow v_i \leftarrow v_{i+1}$.

Definition 18 A and B are **d-separated** by C in G, if all paths A-B in G are blocked.

Now that we have an understanding of what it means to block a path and the meaning of d-separation, we can state the d-separation theorem.

Theorem 19 (d-Separation (Verma & Pearl, 1988)) Let (X_1, \ldots, X_n) be G-Markov, and let A, B, C be disjoint subsets of $\{X_1, \ldots, X_n\}$. If A and B are d-separated by C in G, then $A \perp\!\!\!\perp B \mid C$.

Conversely, If A and B are not d-separated by C in G, then there exists a G-Markov distribution such that $A \not\perp \!\!\! \perp B \mid C$.

<u>Notation:</u> We denote that A and B are d-separated by C with $(A \perp \!\!\!\perp B|C)_G$

Exercise 20 (Lauritzen, 1990) Given subsets of vertices A, B, C in a DAG G, form an undirected graph $L(A \cup B \cup C)$ as follows.

- 1. Delete all vertices not in $anc(A \cup B \cup C) \cup A \cup B \cup C$.
- 2. $\forall v, w \in V \text{ such that } chi(v) \cap chi(w) \neq \emptyset, \text{ add and edge } \{v, w\} \in E(L).$
- 3. Remove arrows: $\forall (v, w) \in E \text{ add an edge } \{v, w\} \in E(L)$.

<u>Claim:</u> $(A \perp\!\!\!\perp B|C)_G$ if and only if every path A-B in $L(A \cup B \cup C)$ intersects C.

<u>Unconditional Case:</u> When is $X_i \perp \!\!\! \perp X_j | \emptyset$ in G-Markov (X_1, \ldots, X_n) ? <u>Answer:</u> When all paths $X_i - X_j$ are blocked, i.e. every path $X_i - X_j$ has a <u>collider</u>: $v_{j-1} \rightarrow v_j \leftarrow v_{j+1}$.

Note that a path with no collider must have the form

$$X_i \leftarrow \cdots \leftarrow Z \rightarrow \cdots \rightarrow X_i$$
.

The node Z is then a common ancestor of X_i and X_j (or $Z = X_i$ or $Z = X_j$).

Write $\overline{anc}(X) = anc(X) \cup \{X\}$ for the set of ancestors of X including itself.

Corollary 21 (No common ancestor implies unconditional independence) If $\overline{anc}(X_i) \cap \overline{anc}(X_j) = \emptyset$, then $X_i \perp \!\!\! \perp X_j | \emptyset$.