Math for Al Safety Lionel Levine

G-Markov Distributions, D-Separation Theorem
September 9, 2024 Notes by Jacob Ornelas

1 Directed Acyclic Graph (DAG)

In order to represent causal relationships and conditional independence, we will use the
"Directed Acyclic Graph” (DAG). The Directed Acyclic Graph is made of Vertices: V =
{1,...,n} (sometimes {X7i,...,X,}) and Edges: E C V x V, where Vertices are connected
by Edges, with the condition that there are no self-loops: (V,V) ¢ E,Vv € V. Edges/Paths
can either be directed or undirected.

Definition 1 A directed path v — w is a sequence v = vg,v1,...,0 = w such that
(vi,vi41) € E for all i.

Definition 2 A path v-w is a sequence such that Vi, either (v;,vi41) € E or (vit1,v;) € E.

Example 3 In this example there are 2 directed paths from a to e: 1) a,b,d,e and 2)a,c,d,e.
Note: There are 2 paths from b to c: 1) b,a,c and 2) b,d,c but neither is directed.

The next few definitions provide some terminology for whether nodes are up-stream or
down-stream from one another.

Definition 4 Parents: par(v) = {w € V|(w,v) € E}.

Definition 5 Children: chi(v) = {w € V|(v,w) € E}

Definition 6 Ancestors: anc(v) = {w € V|3 directed path w — v}
Definition 7 Descendants: des(v) = {w € V|3 directed path v — w}

Example 8 Utilizing the structure from Example 1, we observe the following:

1. par(d) = {b,c}
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2. chi(d) = {e} = des(d)
3. anc(d) = {a,b,c}

Definition 9 G is Acyclic ("DAG”) if Vv € V3 directed path v — v.

Definition 10 Skeleton: skel(G) is the undirected graph: (v, E).
EC(3) and B = {{v,w}|(v,w) C E or (w,v) C E}.

From here on, we will fix a DAG, G, on {1,...,n} with all edges of the form (i,j) for i < j.

Definition 11 Random variables X1, ..., X, are G-Markov if their joint distribution sat-

1sfies
n

p(T1,. .., xn) = H p(xj ‘ (xi>i6par(j))'

j=1

Here, as usual p(z1,...,x,) is shorthand for P(X; = z1,...,X,, = x,). Informally, what
this definition says is that the joint distribution of G-Markov random variables can be
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Figure 1: Directed Acyclic Graph: G
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decomposed into a product of conditional probabilities where each node is conditioned only
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Figure 2: Directed Acyclic Graph: G

Example 12 Utilizing the structure from Ezample 1, the joint distribution of G can be
written as: p(a, b, ¢, d, e) = p(a)p(bla)p(cla)p(d|b, c)p(e|d).

Note: Any Xi,...,X, will be K, — Markov where K, = ({1,...,n},{(i,5)li < j})
is the complete directed graph on n vertices. This just says that p(zi,...,z,) =
p(z1)p(za|z1)p(zs|zr, 22) ... p(@nlzr, ..o 20—1)

Goal: Reduce the number of variables we’re conditioning on.

Aside: Other Direction Given X = (Xi,...,X,), find a (small) DAG G such that X is
G-Markov. This is called causal discovery.

Greedy causal discovery: For fixed ordering of Xi,...,X,,, "Markov Parents” of X; are a
minimal subset, S C {1,...,j — 1}, such that p(xj|z1,...,z;-1) = p(x;|(2;)ics). In general
these will depend on the ordering.
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2 Conditioning can either create or destroy dependence

Given a G-Markov Xi,..., X, which conditional independence statements X; 1L X;| X}
hold?

The next four examples will motivate Pearl’s d-Separation Theorem by showing how
conditioning can in some cases create dependence and in other cases destroy it!
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Figure 3: Conditioning on C destroys the dependence between A and B.

Example 13 p(a,b,c) = p(c)p(alc)p(blc)
AU B|b: A and B are unconditionally dependent
A 1L B|C: A and B are are conditionally independent given C
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Figure 4: Conditioning on C creates dependence between A and B.

Example 14 p(a,b,c) = p(a)p(b)p(c|a,b)
A 1L B|0: A and B are unconditionally independent
AY B|C: A and B are conditionally dependent given C

Example 15
A—-C—B

p(a, b, c) = p(a)p(cla)p(blc)
Is A 1l B|0? No, for example C=A, B=C
Is Al B|C? Yes

Proof: p(a,b|c) = p(;(,gc) = p(agz()é;'a) * p(blc) = p(alc)p(b|c), which results from Bayes Rule.

Example 16 Is A 1l B|D? No, for example D=C
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D

Figure 5: Conditioning on D creates dependence between A and B.

3 The d-Separation Theorem

Let Xi,...,X, be G-Markov and let A, B,C be disjoint subsets of {Xi,...,X,}. The
d-separation theorem gives a combinatorial condition that’s sufficient for conditional inde-
pendence A Il B|C. To state it we’ll need a definition.

Definition 17 Given a path v = (v, ...,v) in G withvy € A and vy, € B, and 0 < j < k,
we say that v is blocked if there exists 0 < j < k such that

1. vj € C and vj_1 < vj = vji1; or
2. v; € C and vj_1 — vj = Vjy1; oT
3. vj € C and vj_1 < Vj < vjq1; o

4. vj ¢ C and des(v;) NC =0 and vj_1 — vj < Vjq1.
Definition 18 A and B are d-separated by C in G, if all paths A-B in G are blocked.

Now that we have an understanding of what it means to block a path and the meaning of
d-separation, we can state the d-separation theorem.

Theorem 19 (d-Separation (Verma & Pearl, 1988)) Let (X1,...,X,) be G-Markov,
and let A, B,C be disjoint subsets of {X1,...,Xp}. If A and B are d-separated by C in G,
then A 1L B|C.

Conversely, If A and B are not d-separated by C in G, then there exists a G-Markov distri-
bution such that A . B|C.
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Notation: We denote that A and B are d-separated by C with (A 1L B|C)q

Exercise 20 (Lauritzen, 1990) Given subsets of vertices A, B,C in a DAG G, form an
undirected graph L(AU BUC) as follows.

1. Delete all vertices not in anc(AUBUC)UAUBUC.
2. Yv,w € V such that chi(v) N chi(w) # 0, add and edge {v,w} € E(L).

3. Remove arrows: ¥(v,w) € E add an edge {v,w} € E(L).

Claim: (A 1L B|C)q if and only if every path A-B in L(AU B U C) intersects C.

Unconditional Case: When is X; 1L X;|0 in G-Markov (X1,...,X,)?
Answer: When all paths X; — X; are blocked, i.e. every path X; — X; has a collider:
Vj—1 =7 Uj £ Vj41.

Note that a path with no collider must have the form
Xi+ =2 ==X
The node Z is then a common ancestor of X; and X; (or Z = X; or Z = Xj).

Write anc(X) = anc(X) U {X} for the set of ancestors of X including itself.

Corollary 21 (No common ancestor implies unconditional independence) If
anc(X;) Nanc(X;) =0, then X; 1 X;[0.
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