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1 Applications and examples of the d-separation theorem

We begin by verifying some conditional independence statements about a given G-Markov
distribution.

Example 1

A BC

D E

1. A ⊥⊥ B |∅ as there is only one path from A to B and it is blocked by the collider at
D. (It’s also blocked by the collider at E, but one blocking vertex is enough to block
a path!)

2. A ⊥⊥ B |D as the path is blocked by the collider at E

3. A ̸⊥⊥ B | (D,E) as the path is unblocked.

4. A ⊥⊥ B|(C,D,E) as the path is blocked by C.

Example 2

A BC

D E

F

1. A ̸⊥⊥ B |F as both paths from A to B are unblocked. Note that D is a collider on
the upper path but not on the lower path. D does not block the upper path because
it has a descendant in the conditioning set, namely F .

2. A ̸⊥⊥ B | (D,F ) because the upper path from A to B is unblocked.
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2 How G-Markov distributions get their name

G-Markov distributions can be considered an extension of Markov chains. To see this, we’ll
prove a theorem that characterizes G-Markov distributions by their conditional indepen-
dence relations.

Let G = (V,E) be a directed acyclic graph with vertex set V = {X1, X2, . . . Xn}. We say
that G is properly labeled if (Xi, Xj) ∈ E implies i < j. Write des(Xi) = des(Xi) ∪ {Xi}
for the set of descendants of Xi including itself.

Given a tuple of outcomes (x1, . . . , xn) we’ll use the notation pai = (xk)Xk∈par(Xi) for the
sub-tuple of outcomes of the parents of Xi.

Theorem 1 The distribution (X1, X2, . . . , Xn) is G-Markov if and only if

Xi ⊥⊥ Xj | par(Xi) ∀i, j such that Xj /∈ des(Xi). (1)

Proof: By re-indexing the random variables we may assume G is properly labeled. If (1)
holds, then

p(x1, . . . , xn) =
n∏

i=1

p(xi |x1, . . . , xi−1) =
n∏

i=1

p(xi |pai)

so the distribution is G-Markov. In the second equality we’ve used (1) to drop the condi-
tioning on all Xj that are not parents of Xi. We were able to do this because G is properly
labeled, so the set {X1, . . . , Xi−1} contains par(Xi) and is disjoint from des(Xi).

For the converse, let γ = (Xi, Y, . . . ,Xj) be any path in G from Xi to Xj . There are two
cases depending whether the first vertex is a parent or child of Xi.

Case 1: If Y ∈ par(Xi) then γ is blocked by Y.

Case 2: If Y is a child of Xi, then since Xj /∈ des(Xi), the path must have a collider. The
first collider, call it Z, is a descendant of Xi. So des(Z) ⊂ des(Xi) is disjoint from par(Xi)
(by acyclicity). So γ is blocked by Z.

Since all paths are blocked, (1) follows from the d-separation theorem. □

To see how discrete-time Markov chains are a special case, consider the graph

G : X1 → X2 → · · · → Xn.

From the theorem above, we obtain the Markov property:

Xt+1 ⊥⊥ Xs |Xt for all 1 ≤ s < t < n.
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Equivalently,
p(xt+1|x1, . . . , xt) = p(xt+1|xt) for all 1 ≤ t < n.

Thinking of t as a discrete time parameter, the Markov property says “the future is condi-
tionally independent of the past, given the present.” One way to think about (1) is that
G-Markov distributions have a “time” index indexed by a DAG instead of by the natural
numbers: In this interpretation, Xi is the “future” and par(Xi) is the “present”. Non-parent
ancestors of Xi are the “past”. According to (1), not only is Xi conditionally independent
of this “past”, it is conditionally independent of all its non-descendants.

3 Parameter counts

Consider the joint probability distribution of n random variables X1, . . . , Xn, where each
Xi takes values in {0, 1}.

• There are 2n parameters to specify for the joint distribution

p(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn)

corresponding to each possible n-tuple of outcomes (x1, . . . , xn) ∈ {0, 1}n.

• However, since probabilities sum to 1, there are only 2n − 1 free parameters.

We can also write the joint distribution as a product of conditional distributions:

p(x1, . . . , xn) =

n∏
i=1

p(xi|x1, . . . , xi−1).

The number of free parameters in the conditional distribution p(xi|x1, . . . , xi−1) is 2i−1,
since for each i and x1, . . . , xi−1 we have

p(0|x1, . . . , xi−1) + p(1|x1, . . . , xi−1) = 1.

Thus, the total number of free parameters in the joint distribution is:

n∑
i=1

2i−1

which equals 2n − 1, consistent with our earlier count.

For a G-Markov distribution, the joint distribution p(x1, . . . , xn) can be factored according
to the conditional independence structure:
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p(x1, . . . , xn) =
n∏

i=1

p(xi|pai),

where pai represents a tuple of outcomes for the parents of Xi in G. The number of free
parameters for each conditional distribution is determined by the number of parent variables
for each Xi. The total number of free parameters is

n∑
i=1

2|Pa(Xi)|,

where |Pa(Xi)| is the number of parents of Xi.

Consider a G-Markov distribution where eachXi has at most k parents, i.e., |Pa(Xi)| ≤ k ∀i.
In this case, the number of free parameters is

n∑
i=1

2|Pa(Xi)| ≤ 2kn.

which is often much smaller than the 2n − 1 free parameters required for an unrestricted
joint distribution. For example if n = 1000 and k = 10, then 2kn is around a million
(tractable!) whereas 2n − 1 is more than the number of atoms in the universe (≈ 2270).

Most joint distributions on 1000 variables are completely intractable: they have high Kol-
mogorov complexity. You’d need a universe much bigger than ours just to write down a
complete description of p(x1, . . . , x1000)! But the distributions we care about predicting are
the ones actually arising in our universe, and those distributions have a lot of structure.
The G-Markov condition is a flexible way of imposing structure on a joint distribution to
make it tractable.

4 Functional causal models

Next time: In addition to the distribution, we can also model which variables Xi are
functions of which other variables. For example,
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X1

X2 X3

X4

X5

X1 = f(U1) (Season)

X2 = f(X1, U2) (Rain)

X3 = f(X1, U3) (Sprinkler is on or off)

X4 = f(X2, X3, U4) (Pavement is wet)

X5 = f(X4, U5) (Pavement is slippery)

Where:

• U1, U2, . . . , Un are background variables or disturbances that are jointly independent.

• f1, f2, . . . , fn are deterministic functions that describe the dependencies between the
Xi.
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