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1 Applications and examples of the d-separation theorem
We begin by verifying some conditional independence statements about a given G-Markov
distribution.

Example 1

A C B

N SN S
D E

1. A 1l B|@ as there is only one path from A to B and it is blocked by the collider at
D. (It’s also blocked by the collider at E, but one blocking vertex is enough to block
a path!)

2. A 1l B|D as the path is blocked by the collider at E
3. A/ B|(D,E) as the path is unblocked.
4. A 1l B|(C, D, E) as the path is blocked by C.

Example 2
A C B
D E
F
1. A L B|F as both paths from A to B are unblocked. Note that D is a collider on

the upper path but not on the lower path. D does not block the upper path because
it has a descendant in the conditioning set, namely F.

2. A/ B|(D,F) because the upper path from A to B is unblocked.
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2 How G-Markov distributions get their name

G-Markov distributions can be considered an extension of Markov chains. To see this, we’ll
prove a theorem that characterizes G-Markov distributions by their conditional indepen-
dence relations.

Let G = (V, E) be a directed acyclic graph with vertex set V' = {X3, Xs,... X,,}. We say
that G is properly labeled if (X;, X;) € E implies ¢ < j. Write des(X;) = des(X;) U {X;}
for the set of descendants of X; including itself.

Given a tuple of outcomes (z1,...,z,) we'll use the notation pa; = (1) x, epar(x,) for the
sub-tuple of outcomes of the parents of X;.

Theorem 1 The distribution (X1, Xo, ..., X,) is G-Markov if and only if

X; 1L X |par(X;)  Vi,j such that X; ¢ des(X;). (1)

Proof: By re-indexing the random variables we may assume G is properly labeled. If (1)
holds, then

n n

p(T1,. .., xn) = Hp(q:i|x1, e X)) = Hp(xl Ipa;)

i=1 i=1
so the distribution is G-Markov. In the second equality we’ve used (1) to drop the condi-

tioning on all X; that are not parents of X;. We were able to do this because G is properly
labeled, so the set {Xy,..., X;_1} contains par(X;) and is disjoint from des(X;).

For the converse, let v = (X;,Y,..., X;) be any path in G from X; to X;. There are two
cases depending whether the first vertex is a parent or child of X;.

Case 1: If Y € par(X;) then « is blocked by Y.

Case 2: If Y is a child of Xj, then since X; ¢ des(X;), the path must have a collider. The
first collider, call it Z, is a descendant of X;. So des(Z) C des(X;) is disjoint from par(X;)
(by acyclicity). So « is blocked by Z.

Since all paths are blocked, (1) follows from the d-separation theorem. [J

To see how discrete-time Markov chains are a special case, consider the graph
G: X1 —Xo— = X,
From the theorem above, we obtain the Markov property:

X UL X | Xy foralll <s<t<n.
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Equivalently,
p(zigi|xr, ... xe) = p(xig1|ze) forall 1 <t <n.

Thinking of ¢ as a discrete time parameter, the Markov property says “the future is condi-
tionally independent of the past, given the present.” One way to think about (1) is that
G-Markov distributions have a “time” index indexed by a DAG instead of by the natural
numbers: In this interpretation, X; is the “future” and par(X;) is the “present”. Non-parent
ancestors of X; are the “past”. According to (1), not only is X; conditionally independent
of this “past”, it is conditionally independent of all its non-descendants.

3 Parameter counts

Consider the joint probability distribution of n random variables X1, ..., X,, where each
X; takes values in {0, 1}.

e There are 2" parameters to specify for the joint distribution
p(z1,...,2n) = P(X1 =21,...,Xn = 2p)
corresponding to each possible n-tuple of outcomes (z1,...,z,) € {0,1}".

e However, since probabilities sum to 1, there are only 2" — 1 free parameters.

We can also write the joint distribution as a product of conditional distributions:

n
p(x1,...,xn) = Hp(a:i]ml, Ce i)
i=1
The number of free parameters in the conditional distribution p(z;|z1,...,z;_1) is 2°71,

since for each 7 and x1,...,x;_1 we have

p(O‘ﬂSl, Ceey .Tifl) er(l‘ﬂjl, ceey .Tifl) =1.

Thus, the total number of free parameters in the joint distribution is:

n

Z 22’—1

i=1
which equals 2™ — 1, consistent with our earlier count.

For a G-Markov distribution, the joint distribution p(x1,...,x,) can be factored according
to the conditional independence structure:
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n

p($1, s 7$n) = Hp($i|pai)v

=1

where pa; represents a tuple of outcomes for the parents of X; in G. The number of free
parameters for each conditional distribution is determined by the number of parent variables
for each X;. The total number of free parameters is

n
22‘Pa(Xi)"
i=1

where |Pa(X;)| is the number of parents of X;.

Consider a G-Markov distribution where each X; has at most k parents, i.e., |Pa(X;)| < k Vi.
In this case, the number of free parameters is

n
Z 9lPa(Xi)] < 2k
i=1

which is often much smaller than the 2" — 1 free parameters required for an unrestricted
joint distribution. For example if n = 1000 and k = 10, then 2*n is around a million
(tractable!) whereas 2" — 1 is more than the number of atoms in the universe (~ 227).

Most joint distributions on 1000 variables are completely intractable: they have high Kol-
mogorov complexity. You’d need a universe much bigger than ours just to write down a
complete description of p(z1,...,x1000)! But the distributions we care about predicting are
the ones actually arising in our universe, and those distributions have a lot of structure.
The G-Markov condition is a flexible way of imposing structure on a joint distribution to
make it tractable.

4 Functional causal models

Next time: In addition to the distribution, we can also model which variables X, are
functions of which other variables. For example,
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Xo X3
Xy
X5
X1 = f(Uh) (Season)
X2 = f(Xl, Ug) (Rain)
X3 = f(X1,Us) (Sprinkler is on or off)
Xy = f(Xo, X3,Uy) (Pavement is wet)
X5 = f(X4,Us) (Pavement is slippery)
Where:
e Uy, Us,...,U, are background variables or disturbances that are jointly independent.
e f1,f2,..., fn are deterministic functions that describe the dependencies between the
Xi.
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