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The Abelian Sandpile (BTW 1987, Dhar 1990)

» Start with a pile of n chips at the origin in Z.
» Each site x = (x1,...,xq) € Z9 has 2d neighbors

xte, i=1,...,d.

> Any site with at least 2d chips is unstable, and topples by
sending one chip to each neighbor.
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The Abelian Sandpile (BTW 1987, Dhar 1990)

Start with a pile of n chips at the origin in Z9.
Each site x = (x1,...,xq) € Z9 has 2d neighbors

xte, i=1,...,d.

Any site with at least 2d chips is unstable, and topples by
sending one chip to each neighbor.

This may create further unstable sites, which also topple.

Continue until there are no more unstable sites.



Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.
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» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.

» Sites with 4 or more chips are unstable.
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Stable.




Abelian Property

» The final stable configuration does not depend on the order of
topplings.
» Neither does the number of times a given vertex topples.



Sandpile of 1,000,000 chips in Z?

» Ostojic 2002, Fey-Redig 2008, Dhar-Sadhu-Chandra 2009,
L.-Peres 2009, Fey-L.-Peres 2010, Pegden-Smart 2011

» Open problem: Determine the limit shape! (It exists.)



Limit shape 1: The sandpile computes an area-minimizing
tropical curve through n given points

Caracciolo-Paoletti-Sportiello 2010, Kalinin-Shkolnikov 2015




ity element of the sandpile group of an

Ident

Limit shape 2

n X n square grid

Sportiello 2015+

in 2002.
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Sandpiles of the form h -+ ndg




What about h = 37
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A dichotomy

Any sandpile 7 : Z9 — N is either

» stabilizing: every site topples finitely often

> or exploding: every site topples infinitely often



An open problem

» Given a probability distribution u on N, decide whether the
i.i.d. sandpile 7 ~ [,y 1t is stabilizing or exploding.

» For example, find the smallest A such that i.i.d. Poisson()) is
exploding.



How to prove an explosion

» Claim: If every site in Z9 topples at least once, then
every site topples infinitely often.
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How to prove an explosion

Claim: If every site in Z9 topples at least once, then
every site topples infinitely often.

Otherwise, let x be the first site to finish toppling.

Each neighbor of x topples at least one more time, so x
receives at least 2d additional chips.

So x must topple again. =<«



The Odometer Function

» u(x) = number of times x topples.
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The Odometer Function

» u(x) = number of times x topples.

» Discrete Laplacian:
Au(x) = Z u(y) — 2d u(x)
yrox
= chips received — chips emitted
= Too(x) = 7(x)

where 7 is the initial unstable chip configuration
and 7, is the final stable configuration.



Stabilizing Functions

» Given a chip configuration 7 on Z¢ and a function
w29 = 7, call stabilizing for 7 if

T+ Aup <2d - 1.



Stabilizing Functions

» Given a chip configuration 7 on Z¢ and a function
w729 =7, call iy stabilizing for 7 if

T+ Aup <2d - 1.
» If u; and wy are stabilizing for 7, then

T+ Amin(ug, o) < 7+ max(Auwug, Aup)
<2d-1

so min(uy, u2) is also stabilizing for 7.



Least Action Principle

» Let 7 be a sandpile on Z9 with odometer function u.

» Least Action Principle:

If v : Z9 — Z> is stabilizing for 7, then u < v.
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Least Action Principle

Let 7 be a sandpile on Z9 with odometer function u.

Least Action Principle:
If v : Z9 — Z> is stabilizing for 7, then u < v.

So the odometer is minimal among all nonnegative stabilizing
functions:

u(x) = min{v(x)|v > 0 is stabilizing for 7}.

Interpretation: “Sandpiles are lazy.”



The Green function of Z4

» G:79 > Rand AG = —d.

» In dimensions d > 3,
G(X) = Eo#{k’Xk = X}

is the expected number of visits to x by simple random walk
started at 0.

> As x| — oo,

G(x) ~

calx*~4 d >3
g(x) =
clog|x| d=2.



An integer obstacle problem

» The odometer function for n chips at the origin is given by
u=nG+w

where G is the Green function of Z9, and w is the pointwise
smallest function on Z¢ satisfying

w > —nG
Aw <2d -1
w + nG is Z-valued



An integer obstacle problem

» The odometer function for n chips at the origin is given by
u=nG+w

where G is the Green function of Z9, and w is the pointwise
smallest function on Z¢ satisfying

w > —nG
Aw <2d -1
w + nG is Z-valued

» What happens if we replace Z by R?



Abelian sandpile Divisible sandpile
(Integrality constraint) (No integrality constraint)



Scaling limit of the abelian sandpile in Z9

» Consider s, = ndg + Aup, the sandpile formed from n chips at
the origin.

» Let r = n/9 and

Sn(x) = sn(rx) (rescaled sandpile)

Wn(x) = r~2up(rx) — nG(rx) (rescaled odometer)



Theorem (Pegden-Smart, 2011)

» There are functions w, s : RY — R such that as n — oo,

Wp — w locally uniformly in C(R9)

S5, —s weakly- in L®(RY).

Moreover s is a weak solution to Aw = s.



Two Sandpiles of Different Sizes
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(scaled down by v/2)



Locally constant “steps” of s correspond to periodic
patterns:




Limit of the least action princpile

w=min{ve C(RY) |v>—gand D*(v+g) €T}

» g encodes the initial condition (rotationally symmetric!)

» [ is a set of symmetric d x d matrices, to be described.
It encodes the sandpile “dynamics.”



Limit of the least action princpile

w=min{ve C(RY) |v>—gand D*(v+g) €T}

» g encodes the initial condition (rotationally symmetric!)

» [ is a set of symmetric d x d matrices, to be described.
It encodes the sandpile “dynamics.”

» D%y €T is interpreted in the sense of viscosity:
D?¢(x) eT

whenever ¢ is a C* function touching v from below at x
(that is, ¢(x) = u(x) and ¢ — u has a local maximum at x).



The set [ of stabilizable matrices

» [ =T(Z%) is the set of d x d real symmetric matrices A for
which there exists a slope b € R? and a function v : Z¢ — 7Z

such that

Av(x)<2d—1 and v(x) > 3x - Ax+b-x

for all x € 9.



The set [ of stabilizable matrices

» [ =T(Z%) is the set of d x d real symmetric matrices A for
which there exists a slope b € R? and a function v : Z¢ — 7Z
such that

Av(x)<2d—1 and v(x) > 3x - Ax+b-x

for all x € Z9.
» How to test for membership in ['?
> Start with v(x) = [1x - Ax+ b-x].

» For each x € Z9 such that Av(x) > 2d, increase v(x) by 1.
Repeat.



Testing for membership in [

» A e[ if and only if there exists b such that the sandpile

sab=Alqas]

stabilizes, where qa p(x) = 1x - Ax + b - x.
» if A and b have rational entries, then sy j, is periodic.

» Topple until stable, or until every site has toppled at least
once.



The structure of I'(Z?)

Parameterize 2 x 2 real symmetric matrices by

lic+a b
M(a,b,c):2[ b c—a]’



The structure of I'(Z?)

Parameterize 2 x 2 real symmetric matrices by

l{c+a b
M(a,b,c):2|: b C—a:|.

Note that if A < B (that is, B — A is positive semidefinite) and
B €T then A€ T. In particular,
={M(a,b,c) | c <~(a b)}

for some function v : R> — R.



Graph of v(a, b)
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Cross section

The Laplacian of

xi(x1 + 1)+ 3x(x + 1)

=1
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Cross section
The Laplacian of

v(x) = 3xa(xa + 1) + oo + 1) + [ex3]
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Cross section
The Laplacian of

v(x) = 1x1(x1 + 1) + 20 + 1)




Cross section

The Laplacian of

xi(x1+1) + 2xa(x + 1) + [ext]

1
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Cross section

The Laplacian of

is
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Another example

We have 7 [37] € OF because
1
v(x) = [8(5)(12 + 4dx1x0 + 4X22 + 2x1 + 4x2)w

has Laplacian




Rank-1 cones

The set [(Z?) is a union of downward cones
{B|B <A},

for a set of peaks A € P.




Periodicity
Since the matrices

1 0

M(2,0,0) = [0 o

] and M(o,z,O)ZE (1)]

have integer valued discrete harmonic quadratic forms
u(x) = 1x(x +1) = 2x0e+1) and u(x) = xx,

we see that v is 2Z?-periodic.



Associating a matrix to each circle

If C is a circle of radius r centered at a + bi, define
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€72 b —a+424r
1 |
Ag\ fié& xfw »j
D FeoNy m@\ N e
o D¢ P Z% P )@ ®
- , , w
v & & \T‘g ?’y h
\_%j 4 E‘
A S A )
AL N ff
AN aNEEe o NP NS
Y =N V- N ys L)
o <3 < Py <4
ol Nty poe N
¥ / §

Let A be the circle packing in the (a, b)-plane generated by the
vertical lines a =0, a = 2 and the circle (a — 1) + b> =1,
repeated horizontally so it is 2Z2-periodic.



The Apollonian structure of [

Theorem (L-Pegden-Smart 2013)
B eT ifand only if B < Ac for some C € A.
- -




Analysis of the peaks
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Proof idea: It is enough to show that each peak matrix Ac lies on
the boundary of T



Analysis of the peaks

Theorem (L-Pegden-Smart 2013)
B e T if and only if B < Ac for some C € A.

Proof idea: It is enough to show that each peak matrix Ac lies on
the boundary of T

For each Ac we must find v¢ : Z2 — Z and bc € R? such that
Ave(x) <3 and  ve(x) > 3x - Acx + be - x
for all x € Z2.

We use the recursive structure of the circle packing to construct
vc and bc.
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Curvature coordinates

(Descartes 1643; Lagarias-Mallows-Wilks 2002)
If Cp has parents Ci, Co, C3 and grandparent (4, then

G=2(G+G+G)—G

in curvature coordinates C = (¢, cz).
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(Descartes 1643; Lagarias-Mallows-Wilks 2002)
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in curvature coordinates C = (¢, cz).
















Inductive tile construction
We build tiles from copies of earlier tiles, using ideas from

Katherine Stange 2012 “The Sensual Apollonian Circle Packing”
to keep track of the tile interfaces.

T4



The magic identities

We associate an offset vector v(C, C’) € ZJi] to each pair of
tangent circles.

If (Co, C1, G2, G3) is a proper Descartes quadruple, then the offset
vectors v;; = v(G;, G;) satisfy

vip = V13 — ival

Vo1 = ivig

V3o + viz3+ w1 =0
V322 = C3C2(Z3 — Zg)

V13V21 + Vi3 = —2¢1

where (cj, ¢jz;) are the curvature coordinates of the circle C;.



Inductive tile construction

Given tiles of the parent circles C;, Cy, C3 and grandparent circle
C4, arrange them using the offset vectors via, Vo4, Vv34:

Ty



A topological lemma

» Define a tile to be a finite union of squares of the form

whose interior is a topological disk.

» Suppose T is a collection of tiles such that
» We suspect that T is a tiling of the plane:

C= U T (disjoint union)
TeT

» and we can verify a lot of adjacencies between tiles;
» but we have no simple way to verify disjointness.



A topological lemma

Let 7 be an infinite collection of tiles,
and G = (T,&) be a graph with vertex set 7.
If the following hold, then 7T is a tiling of the plane.

1. G is a 3-connected planar triangulation.
2. G is invariant under translation by some full-rank lattice
L C Z[i], and }_7c7/ area(T) = |det L.
3. If (T1, T2) € € then T; N T, contains at least 2 integer points.

4. For each face F = {T1, T», T3} of G we can select an integer
point
[J(F) eTiNT,NTs

such that for each adjacent face F' = { Ty, Tp, T4} there is a
path in T3 N Ty from p(F) to p(F').



Extra 90° symmetry

For each circle C € A we build a tile T¢ that tiles the plane.

J | -

— [

A pleasant surprise: Each tile T¢ has 90° rotational symmetry!



An open problem: classify such tilings.

If 7 is a primitive, periodic, hexagonal tiling of the plane by
identical 90° symmetric tiles, must its fundamental tile be T¢ for

some circle C € A?




Other lattices, higher dimensions

We have described the set ['(Z?) in terms of an Apollonian circle
packing of R2.

What about I(Z9) for d > 3?7

In general any periodic graph G embedded in R? has an associated
set of d x d symmetric matrices ['(G), which captures some aspect
of the infinitessimal geometry of %G as n — oo.



[ for the triangular lattice




Thank you!

Reference:
L.-Pegden-Smart, arXiv:1309.3267
The Apollonian structure of integer superharmonic matrices


http://arxiv.org/abs/1309.3267

