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ABSTRACT. In this paper, we consider the soliton cellular automaton introduced in [25] with a random
initial configuration. We give multiple constructions of a Young diagram describing various statistics of
the system in terms of familiar objects like birth-and-death chains and Galton-Watson forests. Using
these ideas, we establish limit theorems showing that if the first n boxes are occupied independently
with probability p ∈ (0,1), then the number of solitons is of order n for all p, and the length of the
longest soliton is of order logn for p < 1/2, order

p
n for p = 1/2, and order n for p > 1/2. Additionally,

we uncover a condensation phenomenon in the supercritical regime: For each fixed j ≥ 1, the top j
soliton lengths have the same order as the longest for p ≤ 1/2, whereas all but the longest have order
logn for p > 1/2. As an application, we obtain scaling limits for the lengths of the kth longest increasing
and decreasing subsequences in a random stack-sortable permutation of length n in terms of random
walks and Brownian excursions.

1. INTRODUCTION

In 1990, Takahashi and Satsuma proposed a 1+ 1 dimensional cellular automaton of filter type
called the soliton cellular automaton, also known as the box-ball system [17, 25]. It is defined as a
discrete-time dynamical system (Xs)s≥0 whose states are binary sequences Xs :N→ {0,1} with finitely
many 1’s. We may think of the states as configurations of balls in boxes where box k contains a ball
at stage s if Xs(k) = 1 and is empty if Xs(k) = 0. The update rule Xs 7→ Xs+1 is defined as follows: At
the beginning of stage s, each ball has been moved a total of s times. To reach stage s+1, successively
move the leftmost ball which has been moved a total of s times to the first empty box on its right,
continuing until all balls have been moved. Alternatively, at each stage s ≥ 0 a ‘carrier’ starts at the
origin and sweeps rightward to infinity. Each time she encounters an occupied box, she pushes the
ball to the top of her stack. Each time she encounters an empty box and her stack is nonempty, she
pops any ball from her stack into the box. In keeping with this picture, we will refer to the stages of
the box-ball system as sweeps henceforth.

As a concrete example, the system initially having balls in boxes 2,3,5,6,7,11 evolves through
sweep s = 3 as

s = 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 . . .

1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 . . .

2 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 . . .

3 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 . . .
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In this model, a (non-interacting) soliton of length k is defined to be a string of k consecutive 1’s
followed by k consecutive 0’s. During one sweep, such a soliton travels to the right at speed k. The
physical interpretation is that of a traveling wave with velocity equal to its wavelength. If a k-soliton
precedes a j -soliton with j < k, then the two will eventually collide, resulting in interference. The
subsequent states of the system depend on the congruence class of their initial distance modulo their
relative speed, k− j , but solitons are never created or destroyed in the course of these interactions. The
case of three or more interacting solitons can be described similarly [25]. It is easy to see that since we
have finitely many balls initially, after some finite time the system consists of non-interacting solitons
whose lengths are nondecreasing from left to right. We will call such a configuration stable. This final
macrostate of the system can be encoded in the Young diagram Λ(X0) having j th column equal in
length to the j th longest soliton.

In this paper, we start the soliton cellular automaton from a random initial configuration and study
the limiting shape of the resulting Young diagram. We have two parameters, n ∈N and p ∈ (0,1). Let
X n,p be a random coloring ofN so that each site in [1,n] is 1 with probability p and 0 with probability
1−p, independently of all others, and all sites in (n,∞) are 0. LetΛn,p =Λ(X n,p ) be the corresponding
random Young diagram and denote the lengths of its i th row and j th column by ρi (n) and λ j (n),
respectively. (Thus λ j (n) gives the length of the j th longest soliton and ρi (n) the number of solitons
of length at least i .) We are going to show that each fixed row has order n for all values of p, but
the column lengths vary drastically according to whether p is less than, equal to, or greater than 1/2.
The asymptotics of the rows and columns of Λn,p are summarized in the following table, for which
Theorem 1 proves the ρ entries, and Theorem 2 proves the λ entries. For the precise meaning of the
Landau notation employed, see Subsection 1.2.
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 Box-ball 
configurations 

Motzkin paths Rooted forests 312-avoiding 
permutations 

𝑖 th row length of 
Young diagram 

Number of solitons 
of length ≥ 𝑖 

Number of subexcursions 
of height ≥ 𝑖 

Number of leaves after 
trimming leaves 𝑖 times 

Length of 𝑖 th longest 
increasing subsequence 

𝑗 th column length 
of Young diagram 

Length of 𝑗 th 
longest soliton 

Maximum height after 
applying excursion 
operator 𝑗 times 

Maximum height after 
contracting longest path 
𝑗 times 

Length of 𝑗 th longest 
decreasing subsequence 

 

TABLE 1. Double jump phase transition for the order of the longest j solitons ( j fixed as n →
∞) in the random box-ball system. All entries are up to constant factors that do not depend
on n. In the sub- and supercritical phases the λ j are concentrated, and the constant factor
depends only on p (and not on j ). In the critical phase the λ j are not concentrated, and the
constant factor depends on j .

Erdős and Rényi coined the term double jump to describe the emergence of a giant component in
the sparse random graph with n vertices, each pair independently joined by an edge with probabil-
ity c/n, where c > 0 is a parameter. The analogy between random graph components and box-ball
solitons becomes apparent if we take c = p/(1−p). Then with high probability, all connected compo-
nents of the Erdős-Rényi graph are of size O(logn) for p < 1/2; components of size Θ(n2/3) emerge at
p = 1/2; and for p > 1/2, the largest component is of size Θ(n) while all the rest have size O(logn) [8].
Except for the exponent 2/3 (which becomes 1/2) this is exactly the behavior of the soliton lengths in
the box-ball system as summarized in the last two columns of Table 1.
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1.1. Related work. There have been some exciting recent developments involving the box-ball sys-
tem with a bi-infinite random initial configuration. A central question is to understand the invari-
ant measures on {0,1}Z under the box-ball dynamics. Ferrari, Nguyen, Rolla, and Wang [9] showed
that the Bernoulli product measure with density p < 1/2 is invariant and provided a recipe for con-
structing additional invariant measures based on a soliton decomposition of box-ball configurations.
Croydon, Kato, Sasada, and Tsujimoto [4] found sufficient conditions for invariance using Pitman’s
2M −X transformation and considered extending the box-ball system fromZ to R. See the references
for more details.

1.2. Notation. We adopt the notation R+ = [0,∞), N = {1,2,3, . . .}, and N0 = N∪ {0} throughout. We
employ the Landau notation O(·),Ω(·),Θ(·) in the sense of stochastic boundedness. That is, given
{an}∞n=1 ⊆R+ and a sequence {Wn}∞n=1 of nonnegative random variables, we say that Wn =O(an) if for
every ε> 0, there is a C ∈ (0,∞) such thatP{Wn >C an} < ε for all n. We say that Wn =Ω(an) if for every
ε > 0, there is a c ∈ (0,∞) such that P{Wn < can} < ε for all n, and we say Wn = Θ(an) if Wn = O(an)
and Wn =Ω(an). The constants c,C may depend on p and ε but not n.

1.3. Main results. Fix p ∈ (0,1), and let ξ1,ξ2, . . . be a sequence of i.i.d. random variables with law
P{ξ1 = 1} = p and P{ξ1 =−1} = 1−p. Define X p ∈ {0,1}N by

X p (k) = 1{ξk = 1},

and for each n ∈N, set X n,p = X p 1[1,n]. The interpretation is that X n,p corresponds to an arrangement
of balls in boxes where boxes 1, . . . ,n are each occupied independently with probability p, and boxes
n +1,n +2, . . . are empty.

For each fixed n ≥ 1 and p ∈ (0,1), we consider the box-ball system (Xs)s≥0 with the random initial
configuration X0 = X n,p . Recall that the soliton lengths are denoted by λ1(n) ≥ λ2(n) ≥ ·· · . This
information can be summarized by the Young diagramΛn,p whose j th column has length λ j (n). The
length of its i th row, ρi (n), equals the number of solitons in the system having length at least i . In
particular, ρ1(n) gives the total number of solitons.

Many properties of this Young diagram can be described in terms of the simple random walk
{Sk }∞k=0 defined by S0 = 0 and Sk = ξ1 + ·· · + ξk . Our first result shows that the i longest rows are
of order n for any p ∈ (0,1).

Theorem 1. Let X n,p and Sk be as above. Then the following statements hold.

(i) (SLLN for rows) Let ς= inf{k > 0 : Sk = 0} ∈N∪{∞} be the first return time of Sk to 0. Then for any
fixed i ≥ 1,

ρi (n)

n
→P

{
max

0≤k≤ς
Sk = i

}
> 0 a.s. as n →∞.

(ii) (CLT for the first row)
ρ1(n)−np(1−p)√

np(1−p)[1−3p(1−p)]
⇒ Z

where Z ∼N (0,1), the standard normal distribution.

Denote by C (R) the space of continuous functions f :R→R endowed with the topology of uniform
convergence on compact sets, and let C+

0 (R) be the subspace of C (R) consisting of nonnegative com-
pactly supported functions f such that f ≡ 0 on (−∞,0]. For any closed interval I ⊆ R containing 0,
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denote by C (I ) and C+
0 (I ) the space of restrictions f |I where f ∈C (R) and f ∈C+

0 (R), respectively. For
b ∈ I , define the operator Eb : C (I ) →C (I ) by

Eb( f )(t ) = f (t )− min
b∧t≤s≤b∨t

f (s),

where y ∧ z = min(y, z) and y ∨ z = max(y, z). We call b the pivot of Eb . Define m : C+
0 (I ) → R+ by

m(g ) = sup{x ∈ I : g (x) = max(g )}, the location of the rightmost global maximum of g . Finally, define
the excursion operator E on C+

0 (I ) by E (g ) = Em(g )(g ). See Figure 4 for an illustration.
We now state the main result of the paper.

Theorem 2. Let X n,p be as above and set θ = (1−p)/p. Let λ j (n) denote the j th longest soliton length.

(i) (Subcritical phase) For p < 1/2, λ j (n) is concentrated around µn := logθ

(
(1−2p)2

1−p n
)

for each fixed

j ≥ 1 in the sense that for all x ∈R,

exp(−θ−x )
j−1∑
k=0

θ−k(x+1)

k !
≤ liminf

n→∞ P
{
λ j (n) ≤ x +µn

}
≤ limsup

n→∞
P

{
λ j (n) ≤ x +µn

}≤ exp(−θ−(x+1))
j−1∑
k=0

θ−kx

k !
.

In particular, λ j (n) =Θ(logn).

(ii) (Critical phase) For p = 1/2, let B = {Bt }0≤t≤1 be a standard Brownian motion on [0,1]. Then for
each fixed j ≥ 1,

n−1/2[λ1(n),λ2(n), . . . ,λ j (n)] ⇒ [max |B |, maxE (|B |), . . . , maxE j−1(|B |)],

In particular, λ j (n) =Θ(
p

n).
Furthermore, for any integers j ,k ≥ 1,

lim
n→∞n−k/2E[(λ j (n))k ] = E

[(
maxE j−1(|B |)

)k
]

.

(iii) (Supercritical phase) For p > 1/2,

λ1(n)− (2p −1)n

2
√

p(1−p)n
⇒ Z ∼N (0,1).

Furthermore, there exists a constant c = c(p) > 0 such that

P{|λ1(n)− (2p −1)n| ≥ x} ≤ c exp(−x2/(8n)),

and for all j ≥ 2, λ j (n) is concentrated around µ̂n := logθ−1

(
(1−2p)2

p n
)

in the sense that for all
x ∈R,(
exp(−θ− x

2 )
j−1∑
k=0

θ−k( x
2 +1)

k !

)
− cθ

x
8 ≤ liminf

n→∞ P
{
λ j (n) ≤ x + µ̂n

}
≤ limsup

n→∞
P

{
λ j (n) ≤ x + µ̂n

}≤ (
exp(−θ−( 3x

2 +1))
j−1∑
k=0

θ−
3kx

2

k !

)
+ cθ

x
8 .

In particular, λ1(n) =Θ(n) and λ j (n) =Θ(logn) if j ≥ 2.



PHASE TRANSITION IN A SOLITON CELLULAR AUTOMATON 5

We call the statement in Theorem 2 (iii) a condensation phenomenon because in the supercritical
regime, a linear number of balls condense into the longest soliton while the next j longest solitons
each haveΘ(logn) balls.

The methods that we develop in this paper to study the box-ball system yield several interesting
results on lengths of monotone subsequences in random pattern avoiding permutations. The study
of statistics involving longest increasing or decreasing subsequences in different types of random
permutations has a long history and rich connections to many other fields [22]. In the context of the
box-ball system, the class of 312-avoiding permutations arises naturally, and we are able to generalize
some classical results on such permutations in multiple directions.

For each n ∈ N, let Sn be the set of all permutations on {1,2, . . . ,n}. Given two permutations σ ∈
Sn and τ ∈ Sk with 1 < k ≤ n, we say that σ is τ-avoiding if no subsequence of σ has the same
relative order as τ. (For example, a permutation is 312-avoiding if there is no subsequence of the
form z, x, y with x < y < z.) Denote by Sτ

n the set of all τ-avoiding permutations in Sn . Note that σ
is τ-avoiding if and only if σ−1 is τ−1-avoiding. (In particular, σ is 231-avoiding if and only if σ−1 is
312-avoiding.) Given a permutation σ ∈Sn , define integers λ1, . . . ,λk (resp. ρ1, . . . ,ρk ) recursively so
that λ1(σ)+ ·· · +λk (σ) (resp. ρ1(σ)+ ·· · +ρk (σ)) equals the length of the longest subsequence in σ

obtained by taking a disjoint union of k decreasing (resp. increasing) subsequences.
In a classic work [23], Rotem studied properties of 231-avoiding permutations chosen uniformly

at random among all such permutations of a given length. He showed that if Σn is a permutation in
S231

n chosen uniformly at random, then

E[ρ1(Σn)] = (n +1)/2, E[λ1(Σn)] =p
πn +O(1).

Our next theorem is an extension of the above result both to the higher moments and to ‘subsequent’
longest increasing and decreasing subsequences of Σn .

Theorem 3. Let Σn be a uniformly chosen random 312- (or 231-) avoiding permutation of length n.

(i) Suppose that T n
1 ,T n

2 , . . . ,T n
i is a sequence of rooted trees where T n

1 is chosen uniformly at random
among all rooted plane trees on n +1 nodes, and for r ≥ 1, T n

r+1 is obtained from T n
r by deleting

all leaves. Then

[ρ1(Σn),ρ2(Σn), . . . ,ρi (Σn)] =d [# of leaves in T n
1 ,# of leaves in T n

2 , . . . ,# of leaves in T n
i ].

(ii) Let {Sk }∞k=0 be a simple symmetric random walk with S0 = 0 and let ς= inf{k > 0 : Sk = 0} be the
time of its first return to 0. Then for any fixed i ≥ 1,

ρi (Σn)

2n
→P

{
max

0≤k≤ς
Sk = i

}
> 0 a.s. as n →∞.

(iii) Let B ex = (B ex
t )0≤t≤1 be a standard Brownian excursion on [0,1]. Then for each fixed j ≥ 1,

n−1/2[λ1(Σn),λ2(Σn), . . . ,λ j (Σn)] ⇒
p

2[maxB ex, maxE (B ex), . . . ,maxE j−1(B ex)].

Furthermore, for any integers j ,k ≥ 1,

lim
n→∞n−k/2E[(λ j (Σn))k ] = 2k/2E

[(
maxE j−1(B ex )

)k
]

.

We remark that given a 312-avoiding permuatation σ, we can actually interpret λk (σ) as the length
of the longest decreasing subsequence after successively deleting an arbitrary longest decreasing sub-
sequence k − 1 times. For the rows, we can interpret ρk similarly but the longest increasing subse-
quence we delete at each step must be a special one; see Proposition 8.1. Note that such an interpre-
tation is not valid for general permutations.
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1.4. Outline and organization. Broadly speaking, we proceed by observing correspondences be-
tween various combinatorial objects related to box-ball configurations, such as Motzkin paths, rooted
forests, and 312-avoiding permutations; see Figure 1. We can then interpret the rows and columns of
the Young diagram associated with a box-ball configuration in terms of these objects (Table 2). This
allows us to reformulate the original soliton problem in other languages and vice versa.
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FIGURE 1. Correspondences and inclusions between six combinatorial objects. Objects in
the same row are in bijective correspondence, while the vertical lines indicate that the bottom
objects are special cases of the top.

For us, Motzkin paths provide the most useful framework, especially in the random setting. This
is because the random box-ball configuration X n,p can be viewed as the increment sequence of the
first n steps of a simple random walk driven by the Bernoulli(p) measure. The corresponding random
(h-restricted) Motzkin path is the same simple random walk except that downstrokes at height 0 are
censored. The problem then essentially boils down to studying properties of the excursions of such
censored random walks. The results for random Motzkin paths can then be translated back to solitons
or permutations.
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TABLE 2. Interpretation of rows and columns of the Young diagram associated with four com-
binatorial objects.

This paper is organized as follows: In Section 2, we describe relations between box-ball configura-
tions, Motzkin paths, and rooted forests, and show how to construct the Young diagram from these
objects. In Section 3, we discuss a correspondence between random box-ball configurations, a birth-
and-death chain, and a Galton-Watson forest. We prove Theorem 1 in Section 4, and the proof of
Theorem 2 is given in Sections 5, 6, and 7. In Section 8, we discuss a connection between box-ball
configurations and pattern-avoiding permutations and prove Theorem 3. Finally, in Appendix A, we
prove the three lemmas stated in Subsection 2.2 along with some results concerning 312-avoiding
permutations.
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2. CONSTRUCTING THE TIME-INVARIANT YOUNG DIAGRAM

In this section, we establish some important statements about the Young diagram which will be
used crucially in later sections.

2.1. Motzkin paths. We begin with a bijection between box-ball states and a class of lattice paths
we call h-restricted Motzkin, a minor variant of the bijection with Dyck paths in [26]. A function
f : R+ → R is a lattice path if f is the linear interpolation of some function γ :N0 → Z. A lattice path
f is called Motzkin if it is nonnegative, compactly supported, and consists only of (1,1), (1,−1), and
(1,0) steps (which we refer to as ‘upstrokes,’ ‘downstrokes,’ and ‘h-strokes,’ respectively). We say that
a Motzkin path is h-restricted if its h-strokes occur only on the x-axis. Finally, if Γ is a Motzkin path,
we write Γk for Γ(k), k ≥ 0.

The aforementioned bijection maps a (compactly supported) configuration X : N→ {0,1} to the
h-restricted Motzkin path Γ(X ) defined by linear interpolation of its values on N2

0, which are given
recursively by Γ(X )0 = 0 and

Γ(X )k+1 −Γ(X )k =


+1 if X (k +1) = 1

−1 if X (k +1) = 0 and Γ(X )k ≥ 1

0 if X (k +1) = 0 and Γ(X )k = 0

for all k ≥ 0. The inverse map from paths to configurations proceeds by writing a 0 for each down-
stroke or h-stroke and a 1 for each upstroke. See Figure 2 for an illustration.
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FIGURE 2. The top shaded row shows an initial box-ball configuration X0, and the black path
is Γ(X0). To update, balls are placed at downstrokes of Γ(X0), resulting in the configuration X1

and the grey path Γ(X1).

The shape of this path tells us how to evolve the system by a single sweep: A ball is picked up
at each upstroke and deposited at each downstroke. Specifically, label the balls 1, . . . ,m from left to
right. (This labeling applies only to states, not the system as a whole. In subsequent sweeps, the label
of a particular ball may change.) Then the j th upstroke occurs at the site where the carrier picks up
the ball labeled j . The site at which she deposits ball j is determined by drawing a horizontal line
from the center of the j th upstroke to the first downstroke on its right. From this description, we see
that the height of the path at any site equals the number of balls in the carrier’s stack after she visits
that site. When the sweep is completed, the new state of the system corresponds to the unique path
formed by converting each downstroke to an upstroke and then adding h-strokes and downstrokes
so that it is h-restricted Motzkin.
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Formally, the box-ball state Xs+1 is given in terms of the Motzkin path Γ(Xs) by

Xs+1(k +1) = 1
{
Γ(Xs)k+1 −Γ(Xs)k =−1

}
where 1 is the indicator function.

2.2. Hill-flattening and excursion operators. We now describe two methods of constructing a Young
diagramΛ(Γ) associated with a (not necessarily h-restricted) Motzkin path Γ. As usual, we denote the
i th row and j th column by ρi (Γ) and λ j (Γ).

First we give the row-wise construction using the hill-flattening operator H defined on the set of
all Motzkin paths. To begin, we say that an interval [a,b] with a,b ∈N0 and a ≤ b is a hill interval of
the Motzkin path Γ if for every c ∈ [a,b], Γa−1 = Γc−1 = Γb+1. We write I (Γ) for the collection of all hill
intervals of Γ, and denote the number of hill intervals by ρ(Γ) = |I (Γ)|. The hill-flattening operator
H is then defined by

H (Γ)k =
{
Γk −1 if k is contained a hill interval of Γ

Γk otherwise

for k ∈N0.
A hill of Γ is the graph of Γ over [a −1,b +1] with [a,b] a hill interval. Thus hills consist of a single

upstroke, followed by zero or more h-strokes, followed by a single downstroke. Call a hill with no
h-strokes a peak. Then the hill-flattening operator H , when applied to Γ, flattens each hill of Γ by
replacing the upstroke and downstroke with h-strokes and then lowering any intermediate h-strokes
so that the path remains connected.

Note that each application of the hill-flattening operator decreases the maximum height of the
Motzkin path by 1 and never increases the number of hills, so

ρ(Γ) ≥ ρ(H (Γ)) ≥ ρ(H 2(Γ)) ≥ ·· · ≥ ρ(H maxΓ(Γ)) = 0.

We define the Young diagramΛ(Γ) associated to the Motzkin path Γ as having i th row of length ρi (Γ) =
ρ(H i−1(Γ)) for 1 ≤ i ≤ maxΓ. Here repeated applications of H are denoted by H j+1( f ) =H

(
H j ( f )

)
with H 0 the identity operator. In particular, given a box-ball configuration X : N0 → {0,1} of finite
support, we can construct the Young diagramΛ(Γ(X )). See Figure 3 for an illustration.
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FIGURE 3. Construction of Young diagram via hill-flattening procedure applied to the
Motzkin path associated with box-ball configuration X . The bottom row is the configuration
X and the black path is Γ = Γ(X ). Trapezoidal regions with label i are the hills of H i−1(Γ),
each of which becomes a distinct cell in the i th row of Λ(Γ). The resulting Young diagram
Λ(Γ) is depicted in the upper left corner.
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Now consider a box-ball system (Xs)s≥0 started from a configuration X0 :N0 → {0,1}. The following
lemma says that for each s ≥ 0, the corresponding Young diagram Λ(Γ(Xs)) is independent of s and
its column lengths correspond to the lengths of the solitons.

Lemma 2.1. Λ(Γ(Xs)) =Λ(Γ(Xs+1)) for all s ≥ 0. Moreover,Λ(Γ(X0)) =Λ(X0).

Next, we give the column-wise construction of Λ(Γ). The key observation is that the j th longest
column length, which we denote by λ j , is obtained by successively applying the excursion operator
to Γ j −1 times and then taking a maximum.

Lemma 2.2. Let Γ be a Motzkin path and let λ j (Γ) denote the length of the j th column ofΛ(Γ). Then

λ j (Γ) = maxE j−1(Γ), 1 ≤ j ≤ ρ(Γ).

In particular, if (Xs)s∈N0 is a finitely supported box-ball system with initial configuration X0 :N→ {0,1},
then

λ j (X0) = max E j−1(Γ(X0)).

We relegate the proofs of these lemmas, along with that of Lemma 2.3 below, to Appendix A in order
to maintain the flow of the paper.

Lemma 2.2 gives the following column-wise construction of Λ(Γ). Let m = m(Γ) be the location of
the rightmost global maximum of Γ, and set λ1(Γ) = Γm, the maximum height of Γ. To find λ2(Γ), one
first computes E (Γ) by traversing Γ to the left and right of m as follows: Starting with height 0 at m,
move to the left, remaining at height 0 until the first local minimum, and then record the sequence of
strokes until the original lattice path returns to the height of this minimum. Then repeat the process,
staying at height 0 until encountering a local minimum and then recording the path of the second
such excursion. Continue to the beginning of the path and then repeat the procedure moving to the
right from m. The resulting path precisely records all ‘subexcursions’ which are not subsumed by the
maximum (m,Γm). λ2(Γ), the length of the second column of Λ(Γ), is equal to the maximum of E (Γ).
Continuing in this fashion gives λ j (Γ) = maxE j−1(Γ) for all j ≥ 1.
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FIGURE 4. The black path is Γ(X0), the red path is E (Γ(X0)), and m is the location of the right-
most maximum of Γ(X0). The kth box in the bottom row is X0(k), and the red Young diagram
is constructed from the red path via hill flattening. The a and b terms are defined in the proof
of Proposition A.2.

In light of Lemma 2.2, it is natural to call maxE j−1 the j th column length functional. A crucial
advantage of extracting the column length λ j from the functional maxE j−1 is that this operation is
continuous with respect to the topology of C+

0 (R+) as stated in the lemma below. This enables us to
take various scaling limits of the system.
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Lemma 2.3. For any interval I ⊆R+, functions f , g ∈C+
0 (I ), and j ≥ 1,∣∣∣maxE j−1( f )−maxE j−1(g )

∣∣∣≤ 2‖ f − g‖∞.

Remark 2.4 (Depth process with drains). In private communication with Jim Pitman, we learned
that an operator equivalent to Eb was used in studying Brownian paths and continuum random trees.
In our context, given a Motzkin path Γ, flip it upside down and consider it as a bucket filled to the
top with water. Given b ∈ R+, poke a hole at point (b,−Γ(b)). This will drain some of the water,
and −Eb(Γ)(x) gives the water level at each x ∈ R+. For instance, the red path in Figure 4 can be
obtained from the black one in this way with drain at b = m(Γ). A similar procedure can be defined
with multiple drains. This operation was applied to Brownian paths to study, for example, the line-
breaking construction of the continuum random tree in a Brownian excursion [1]; sampling bridges,
meanders, and excursions at independent uniform times [18]; and developments in the tree setting
with different metaphors such as “forest growth” and “bead crushing” [19, 20].

2.3. Rooted forests. In this subsection, we develop an alternative perspective for constructing the
Young diagram from an associated rooted forest. The idea is to collapse a Motzkin path to a rooted
forest by horizontal identification. Intuitively, one paints the underside of the graph of each excur-
sion with glue and then compresses it horizontally to obtain a tree. Then the original Motzkin path
can be viewed as the contour process (or Harris walk in the random setting) of the rooted forest so
constructed. This point of view will be especially useful for thinking about arguments in Section 7.

To begin, recall that a rooted forest is a sequence of vertex-disjoint plane trees {Ti }i≥1 such that each
Ti is rooted at a vertex ri ∈V (Ti ). The level of a vertex v ∈ Ti is defined as `(v) = d(v,ri ) where d is the
graph distance. Given a Motzkin path Γ, we define a rooted forest F(Γ) as follows: Let G(Γ) = (V ,E) be
the graph with vertex set V = {(k,Γk )}k∈N0

⊂N2
0 and adjacency relation

(a,Γa)
adj∼ (b,Γb) ⇐⇒|a −b| = 1 and Γa ,Γb not both 0.

In words, G(Γ) is obtained from Γ by removing the h-strokes at 0 but retaining all vertices. Clearly
each component of G(Γ) is isomorphic to a path beginning and ending at height 0, and there are
only finitely many such paths since Γ has finite support. Arranging the components from left to right
so that their vertex labels are increasing, let Pi denote the i th component from the left. Define an
equivalence relation ∼ on the vertex set of G(Γ) by

(a,Γa) ∼ (b,Γb) ⇐⇒ 0 < Γa = Γb ≤ Γx for all x ∈ [a,b],

and write Ti = Pi /∼ for the resulting rooted tree; see Figure 5. The rooted forest associated with Γ is
F(Γ) = {Ti }i≥1.

We can recover Γ from F(Γ) by keeping track of the levels of the vertices explored in depth-first
search. This exploration process begins at the root of T1 and visits nodes from bottom to top and
from left to right in such a way that it backtracks to the parent of the current node only if there is no
child left to visit. After exhausting all nodes in T1, the explorer moves to the second tree T2, and so on.

More concretely, let ι : N0 → V (F) be the function which maps k to the location of the depth-first
search at step k so that ι(0) = r1, ι(k + 1) is the leftmost unvisited child of ι(k) if such a child exists,
and ι(k +1) is the parent of ι(k) if its children have all been visited. (Here the parent of ri is taken to
be ri+1.) The depth-first-search ordering of the vertices of F is given by u ≺ v if min{k : ι(k) = u} <
min{k : ι(k) = v}. Finally, the contour process on F is the function H(F) :N0 →N0 which maps k to the
level of ι(k) in F. By construction, H(F)(k) = Γk for every k ∈N0.
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FIGURE 5. Rooted forest F(X0) corresponding to the box-ball configuration X0 given in Fig-
ure 3. Each connected component of G(Γ(X0)) (left) becomes a tree rooted at a blue node
(right) by identifying vertices connected by the red horizontal lines. Flattening hills of Γ(X0)
corresponds to trimming leaves from F(X0).

Now we discuss how to compute the Young diagram Λ(Γ) from the corresponding rooted forest
F(Γ). In the previous subsection, we constructed the diagram from the Motzkin path via successive
applications of the hill-flattening and excursion operators. In terms of rooted forests, these operators
can be interpreted in terms of ‘trimming’ and ‘lopping.’ Namely, let Υ0 be the collection of all rooted
forests with finitely many vertices and consider the trimming operator T :Υ0 →Υ0 which deletes all
leaves of the input forest; see Figure 5.

Next, the lopping operator L : Υ0 → Υ0 is defined as follows: Given a rooted forest F = {Ti } ∈ Υ0,
find the rightmost node of maximal level, say vm ∈ V (Tk ). Set q = ι−1(vm) and let γ be the unique
path from rk to vm. Now let F1 and F2 be the rooted forests induced from F such thatV (F1) = ι([1, q])
and V (F2) = ι([q,∞)). Then L (F) is obtained by first deleting all edges contained in the copies of γ
from F1 and F2, and then taking the union of the resulting rooted forests with components ordered
according to the depth-first search; see Figure 6.
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FIGURE 6. The rooted forest F=F(Γ(X0)) on the left appeared in Figure 5, and the one on the
right is L (F). Numbers next to nodes indicate depth-first-search ordering and q = 13. Note
that the maximum height ofF and L (F) correspond to the first and second columns ofΛ(X0),
respectively.

The following proposition shows that these operators are compatible with each other and gives a
way to construct the Young diagramΛ(Γ) from F(Γ).
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Proposition 2.5. For each Motzkin path Γ, we have the following:

(i) F
(
H (Γ)

)=T
(
F(Γ)

)
.

(ii) F
(
E (Γ)

)=L
(
F(Γ)

)
.

(iii) For each 1 ≤ i ≤ maxΓ, ρi = # of leaves in T i−1(F(Γ)) .
(iv) For each 1 ≤ j ≤ ρ(Γ), λ j = maximal level of nodes in L j−1(F(Γ)) .

Proof. For (i), note that leaves in the forest correspond to hills in the path, so applying H to Γ re-
sults in the forest obtained by applying T to F(Γ). For (ii), observe that E only affects the rightmost
excursion of maximal height in Γ, L only affects the rightmost tree of maximal height in F(Γ), and
the ‘bushes’ growing off of the ‘trunk’ of this tree correspond precisely to the subexcursions in the
corresponding path component which are not subsumed by the maximum.

Now assertion (i) shows that F(H i−1(Γ)) = T i−1(F(Γ)) for all 1 ≤ i ≤ maxΓ, and ρi is the number
of hill intervals of H i−1(Γ), which equals the number of leaves in F(H i−1(Γ)) =T i−1(F(Γ)), and (iii)
follows. Finally, given a rooted forest F, denote by ‖F‖ the maximal level of nodes in F. Then ‖F(Γ)‖ =
maxΓ, so (ii) implies ∥∥∥L i−1(F(Γ)

)∥∥∥=
∥∥∥F(

E i−1(Γ)
)∥∥∥= maxE i−1(Γ) =λi (Γ). �

We remark that Proposition 2.5 (iv) holds if we replace the lopping operator L by the much simpler
one which simply contracts the rightmost longest path into a single root. However, for this contrac-
tion operator Proposition 2.5 (ii) no longer holds.

3. RANDOM BOX-BALL SYSTEM AND HARRIS WALK

In this section, we describe stochastic objects corresponding to the random box-ball system intro-
duced in Subsection 1.3.

3.1. Harris walks. Fix p ∈ (0,1), and let ξ1,ξ2, . . . be i.i.d. with P{ξ1 = 1} = p and P{ξ1 = −1} = 1− p.
Let X p , X n,p ∈ {0,1}N be as in Subsection 1.3, and let {Sk }∞k=0 be the associated random walk, where
S0 = 0 and Sk = ξ1 + ·· · + ξk . The Harris walk {Hk }∞k=0 associated with X p is defined by H0 = 0 and
Hk = (Hk−1 +ξk )∨0 for k ≥ 1. In other words, Hk is a simple random walk with increments ξ j , except
that downsteps at 0 are censored.

This defines an irreducible and aperiodic birth-and-death chain onN0 with transition probabilities
P (x, x+1) = p, and P (x, (x −1)∨0) = 1−p. One readily verifies that the chain is reversible with respect
to the measure µ(x) = θ−x where θ = (1−p)/p. Note that the sum

∑
k≥1θ

k converges if and only if p >
1/2, so the chain is transient for these values of p and recurrent for p ≤ 1/2. It is null recurrent when
p = 1/2 since then

∑
k≥1θ

−k =∞, and it is positive recurrent for p < 1/2 as the latter sum converges in
this case. (See [12] for background on recurrence criteria for birth-and-death chains.) In the ergodic
regime, p < 1/2, we can normalize µ to obtain the stationary distribution π(x) = [(1−2p)/(1−p)]θ−x .

Now the random Motzkin path Γ(X n,p ) is given by the trajectory of the Harris walk up to time n,
completed by appending downstrokes at the end until the height reaches 0 and appending h-strokes
thereafter. More precisely, if we define H : R+ → R+ to be the linear interpolation of the Harris walk,
H(t ) = Hbtc+ (t −btc)(Hbt+1c−Hbtc), then we have

Γ(X n,p )(x) = H(x)1[0,n](x)+max
(
0, H(n)−x +n

)
1[n,∞)(x).

Moreover, an easy induction argument shows that for all k ∈N0,

Hk = Sk − min
0≤r≤k

Sr .
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Thus if S : R+ → R is the linear interpolation of the random walk {Sk }∞k=0, then H = E0(S). This obser-
vation also shows that, marginally, Hk =d max0≤r≤k Sr .

3.2. Galton-Watson forests. Following the procedure outlined in Subsection 2.3, one can construct
a random rooted forest F(X n,p ) =F

(
Γ(X n,p )

)
from the trajectory of the truncated Harris walk Γ(X n,p ),

and it turns out that F(X n,p ) has the same law as the sub-forest of a Galton-Watson forest with mean
offspring number p/(1−p) consisting of the first n nodes revealed by depth-first search.

To be precise, let {ζk
j } j ,k≥1 be an array of i.i.d. N0-valued random variables, and define the sequence

{Zk }k≥0 by Z0 = 1 and

Zk+1 =
{
ζk+1

1 +·· ·+ζk+1
Zk

if Zk > 0

0 if Zk = 0.

The interpretation is that Zk is the population size in the kth generation of a species in which individ-
uals survive for a single generation and produce an i.i.d. number of offspring before dying. ζk+1

j is the

number of offspring of the j th individual in generation k, and the common law of the ζ’s is called the
offspring distribution. The family tree T for this population is known as a Galton-Watson tree. We will
be interested in Galton-Watson trees with geometric offspring distribution

P{ζk
j = x} = px (1−p), x ∈N0,

which is the number of independent Bern(p) trials preceding the first failure. Observe that E[ζk
j ] =

p/(1−p), so T is subcritical if 0 < p < 1/2, critical if p = 1/2, and supercritical if 1/2 < p < 1. The law
of a Galton-Watson tree with Geom(1−p) offspring distribution will be denoted by GWT(p).

We call a sequence of i.i.d. Galton Watson trees FGW = {Ti }i≥1 a Galton-Watson forest, and write
GWF(p) for the law of a forest of i.i.d. GWT(p) trees. It is well known that for 0 < p ≤ 1/2, each com-
ponent Ti is finite with full probability [7, Ch. 5.3.4], so the depth-first-search visits all nodes in the
forest. However, for p > 1/2, each component has a positive probability of being infinite, so almost
surely there exists an index I <∞ such that |Ti | <∞ for all i < I and |TI | =∞. Thus for p > 1/2, the
depth-first-search cannot pass beyond the leftmost infinite branch in TI ; see Figure 8.

Now letFp ∼ GWF(p), writeFn,p for the vertex-induced subforest ofFp on the nodes ι([1,n]) ⊆V (Fp )
which are visited by the depth-first-search in the first n steps, and write GWF(n, p) for the law of Fn,p .

Proposition 3.1. F(X n,p ) ∼ GWF(n, p).

Proof. Let Γ = Γ(X p ) and F = F(Γ). Denote by Zv the number of children of node v ∈ V (F). We will
show that the Zv ’s are i.i.d. and have the law of the number of independent Bern(p) trials before the
first failure. This will imply that the Harris walk {Hk }∞k=0 is distributed as the contour process of Fp .
Then the relation between Γ(X n,p ) and H from the previous subsection yields the assertion.

Let F(X p ) = {Ti }i≥1 and fix a node v ∈ V (Ti ) for some i ≥ 1. Let Pi be the path component in G(Γ)
which is collapsed to Ti via the equivalence relation ∼. Note that the number of nodes in Pi \{v} which
are identified with v equals the number of children of v . Let x = (a0,Γa0 ) be such a vertex of Pi with
a0 minimal. If Γa0+1 −Γa0 = ξa0+1 is 1, then the depth-first search finds the first child of v ; otherwise,
v is childless and the search moves to its parent or to the root of next tree Ti+1 depending on whether
Γa0 ≥ 1 or Γa0 = 0. If ξa0+1 = 1, then let a1 = min{k ≥ a0 : Γk = Γa0 } be the first return time to level Γa0

after a0. (a1 may be infinite if p > 1/2.) As before, the depth-first search finds the second child of v if
and only if ξa1+1 = 1. Continuing thusly, we see that Zv has a Geom(1−p) distribution, and the proof
is complete. �
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Proposition 3.1 allows us to describe the joint distribution of the first i rows or the first j columns
in the random box-ball system started at X n,p in terms of Galton-Watson Forests.

Corollary 3.2. Suppose that F ∼ GWF(n, p). For each i ≥ 1, let li and hi be the number of leaves in
T i−1(F) and the maximum height of L i−1(F), respectively. Then for any 1 ≤ i ≤ max(Γ(X n,p )) and
1 ≤ j ≤ ρ(Γ(X n,p )), we have

[ρ1(n),ρ2(n), . . . ,ρi (n)] =d [l1, l2, . . . , li ]

and
[λ1(n),λ2(n), . . . ,λ j (n)] =d [h1,h2, . . . ,h j ].

4. ASYMPTOTICS FOR THE ROWS

In this section, we prove our first main result, Theorem 1. From the construction described in
Subsection 2.2, we have that ρ1(n), the length of the first row of Λn,p , equals the number of peaks in
Γ(X n,p ), which equals the number of 10 patterns in X n,p . In general, ρi (n) is the number of subex-
cursions of height i in the Harris walk {Hk }n

k=0, and these can also be understood in terms of certain
binary patterns in the initial configuration.

We begin with a proof of the i = 1 case of Theorem 1 using arguments from renewal theory. Strong
laws for the other rows can be deduced similarly by considering analogous (delayed) renewal pro-
cesses, but we will find it more convenient to pursue an alternative approach that will be of use in
Section 8.

Proof of Theorem 1 for i = 1. First observe that the number of solitons in X n,p is equal to the number
of 10 patterns, so ρ1(n) = 1{ξn = 1}+N10(n) where N10(n) is the number of 10 patterns in the first n
terms. Because of the scaling, it suffices to prove that N10(n) =∑n−1

k=1 1
{
ξk = 1,ξk+1 =−1

}
satisfies the

asserted limit theorems.
Now N10(n) counts occurrences of ‘head, tail’ patterns in a sequence of independent coin flips,

which we view as a renewal process. Let T10 be distributed as the inter-event times in this process.
Then the elementary renewal theorem gives E[N10(n)]/n → 1/E[T10]. Since E[N10(n)] = (n−1)p(1−p),
it follows from the strong law for renewal processes that

N10(n)

n
→ 1

E[T10]
= p(1−p) a.s.

Renewal theory also shows that N10(n) converges weakly to a standard normal random variable
when appropriately normalized [3]. To compute the variance, we write Wk = 1

{
ξk = 1,ξk+1 =−1

}
and

observe that E[Wk ] = p(1−p), E[WkWk+1] = 0, and E[WkW`] = p2(1−p)2 when |k −`| > 1, hence

E[N10(n)2] =
n−1∑
k=1

E[W 2
k ]+ ∑

|k−`|>1
E[WkW`] = (n −1)p(1−p)+ (n −2)(n −3)p2(1−p)2,

so
Var

(
N10(n)

)= E[N10(n)2]−E[N10(n)]2 = (n −1)p(1−p)− (3n −5)p2(1−p)2.

The second part of the theorem follows upon invoking Slutsky’s theorem to simplify the expression
(N10(n)−E[N10(n)])/Var(N10(n))1/2. �

Remark 4.1. The normal convergence of ρ1(n) can also be established using Stein’s method for sums
of locally dependent random variables (see [2, Ch. 9]). Though this approach is more involved, it has
the upshot of supplying a Berry-Esseen rate of order O(n−1/2). One can show that a central limit theo-
rem also holds for the other row lengths by a similar renewal theory argument, but the corresponding
variance computations are not as straightforward.
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To treat the i > 1 case, we need to establish some more terminology and a useful lemma. Let γ :
R+ →R be any nearest neighbor lattice path (so |γk+1−γk | ∈ {−1,0,1} for all k ∈N0). We say that γ has
a subexcursion of height h on the interval [r, t ] if γr = γt < γs for all s ∈ (r, t ) and maxr<s<t γs −γr = h.
Such a subexcursion is said to begin at r and end at t .

Let {Sk }∞k=0 be the simple random walk with increment distribution P{Sk+1 −Sk = 1} = 1−P{Sk+1 −
Sk =−1} = p. For each i ≥ 1 and `≥ 0, define the indicator random variable

J i
` = 1{S has subexcursion of height i beginning at time `}

and let τi
`

be the length of the subexcursion of Sk beginning at k = `, conditional on J i
`
= 1. Note

that the distribution of τi
`

does not depend on ` by the Markov property of Sk , so we may drop the
subscript when notationally convenient. Moreover, due to the negative drift of Sk for 0 < p < 1/2, it is
not hard to see that τi has an exponential tail.

The following lemma establishes a polynomial tail bound for the sum of centered indicators and
thereby a strong law for the number of subexcursions of fixed height in the interval [0,n]. This bound
(with m = 4 and ε= 1/logn) will also be used in in the proof of Theorem 3 in Section 8.

Lemma 4.2. Let ς = inf{k > 0 : Sk = 0} be the first return time of Sk to zero. Fix i ≥ 1 and ε > 0. Set
µi = P{max0≤k≤ςSk = i }. Then for each fixed m ≥ 2, there exists a constant C =C (m, i , p) > 0 such that
for each n ≥ 1,

P

{∣∣∣∣ n∑
`=0

(
J i
`−µi

)∣∣∣∣> εn

}
≤ C

ε2mnm−1 .

With the above lemma (proved at the end of this section), it is easy to deduce Theorem 1.

Proof of Theorem 1 for i ≥ 1. The hill-flattening procedure produces a unique column of length at
least i for each such subexcursion, so ρi (n) is the number of height i subexcursions of H on [0,n].
Since the Harris walk Hk and the associated simple random walk Sk over [0,n] share subexcursions of
positive height, we may regard ρi (n) as the number of subexcursions of Sk occuring on [0,n]. Further-
more, we can approximate ρi (n) by Ni (n) :=∑n

`=0 J i
`

since the two only differ when H has a subexcur-
sion of height at least i beginning at or after n − i , hence |Ni (n)−ρi (n)| ≤ 1. Therefore, the assertion
follows from Lemma 4.2 with m = 3, ε= 1/logn and the first Borel-Cantelli lemma. �

Our proof of Lemma 4.2 is based on joint moment estimates of the random variables J i
`
−µi . Before

undertaking this task, we give some preliminary calculations and remarks to set the stage. Fix integers
i ≥ 0 and 0 ≤ `1 < `2 < `3. Clearly E[J i

`1
−µi ] = 0, and we compute

E
[
(J i
`1
−µi )(J i

`2
−µi )

]=µiE
[

J i
`2
−µi | J i

`1
= 1

]−µiE
[

J i
`2
−µi

]
=µiE

[
J i
`2
−µi

]
P
{
τi
`1

≤ `2 −`1
}−µ2

i P
{
τi
`1

> `2 −`1
}

=−µ2
i P

{
τi > `2 −`1

}
,

where we used the fact that J i
`2

is independent of
{

J i
`1

= 1
}

if the excursion starting at `1 ends at or

before `2, and J i
`2

= 0 otherwise. Arguing analogously, we find that

E
[
(J i
`1
−µi )(J i

`2
−µi )(J i

`3
−µi )

]
=µiE

[
(J i
`2
−µi )(J i

`3
−µi ) | J i

`1
= 1

]−µiE
[
(J i
`2
−µi )(J i

`3
−µi )

]
=µiE

[
(J i
`2
−µi )(J i

`3
−µi )

]
P
{
τi
`1

≤ `2 −`1
}−µ2

i E
[

J i
`3
−µi

]
P
{
τi
`1

∈ (`2 −`1,`3 −`1]
}

+µ3
i P

{
τi
`1

> `3 −`1
}−µiE

[
(J i
`2
−µi )(J i

`3
−µi )

]
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=−µiE
[
(J i
`2
−µi )(J i

`3
−µi )

]
P
{
τi
`1

> `2 −`1
}+µ3

i P
{
τi > `3 −`1

}
=µ3

i P
{
τi > `3 −`2

}
P
{
τi > `2 −`1

}+µ3
i P

{
τi > `3 −`1

}
.

This shows that J i
1, J i

2, . . . , J i
n are not negatively associated for n ≥ 3, so an immediate Chernoff-Hoeffding

type bound is not applicable in our case.
Now in order to prove Lemma 4.2, we need to estimate the joint central moments of the random

variables J i
`

. For the sake of readability, this is split up into two propositions. Here and henceforth,
the empty product is understood to equal one.

Proposition 4.3. Fix integers r ≥ 2, 0 ≤ `1 < `2 < ·· · < `r , and α1, . . . ,αr > 0. Then

∣∣∣∣E[ r∏
k=1

(J i
`k

−µi )αk

]∣∣∣∣≤ r∑
s=2

∣∣∣∣E[ r∏
k=s+1

(J i
`k

−µi )αk

]∣∣∣∣P{
τi > `s −`1

}
+

(∣∣∣E[(J i
`1
−µi )α1

]∣∣∣+P{
τi > `2 −`1

})∣∣∣∣E[ r∏
k=2

(J i
`k

−µi )αk

]∣∣∣∣.
Proof. Write βs =∏s−1

k=2(−µi )αk . Casing out according to whether J i
`1

is 0 or 1, we see that (J i
`1
−µi )α1 =

c1 J i
`1
+d1 where d1 = (−µi )α1 and c1 = (1−µi )α1 − (−µi )α1 . Since µi ∈ [0,1], a little calculus shows that

|c1| , |d1| ≤ 1. Now the strong Markov property for Sk implies that for any s ≥ 2, J i
`s

is independent of J i
`1

if the excursion starting at `1 ends at a site less than or equal to `s ; otherwise J i
`s
= 0. By partitioning

according to the length τi
`1

of the first excursion we compute

E
[ r∏

k=1
(J i
`k

−µi )αk

]
= d1(1−µi )E

[ r∏
k=2

(J i
`k

−µi )αk

∣∣∣J i
`1

= 0
]
+ (c1 +d1)µiE

[ r∏
k=2

(J i
`k

−µi )αk

∣∣∣J i
`1

= 1
]

= c1µiE
[ r∏

k=2
(J i
`k

−µi )αk

∣∣∣J i
`1

= 1
]
+d1E

[ r∏
k=2

(J i
`k

−µi )αk

]
= c1µi

r∑
s=2

E
[ r∏

k=2
(J i
`k

−µi )αk

∣∣∣J i
`1

= 1,τi
`1

∈ (`s−1 −`1,`s −`1]
]
P
{
τi
`1

∈ (`s−1 −`1,`s −`1]
}

+ c1µiE
[ r∏

k=2
(J i
`k

−µi )αk

∣∣∣J i
`1

= 1,τi
`1

> `r −`1

]
P
{
τi
`1

> `r −`1
}+d1E

[ r∏
k=2

(J i
`k

−µi )αk

]
= c1µi

r∑
s=2

βsE
[ r∏

k=s
(J i
`k

−µi )αk

]
P
{
τi ∈ (`s−1 −`1,`s −`1]

}
+ c1µiβr+1P

{
τi > `r −`1

}+d1E
[ r∏

k=2
(J i
`k

−µi )αk

]
= c1µi

r∑
s=3

βsE
[ r∏

k=s
(J i
`k

−µi )αk

]
P
{
τi ∈ (`s−1 −`1,`s −`1]

}+ (
c1µi +d1

)
E
[ r∏

k=2
(J i
`k

−µi )αk

]
− c1µiE

[ r∏
k=2

(J i
`k

−µi )αk

]
P
{
τi > `2 −`1

}+ c1µiβr+1P
{
τi > `r −`1

}
.
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Since |c1|, |µi |, |βs | ≤ 1, P
{
τi ∈ (`s−1−`1,`s −`1]

}≤P{
τi > `s−1−`1

}
, and c1µi +d1 = E

[
(J i
`1
−µi )α1

]
,

the triangle inequality yields∣∣∣∣E[ r∏
k=1

(J i
`k

−µi )αk

]∣∣∣∣≤ r∑
s=3

∣∣∣E[ r∏
k=s

(J i
`k

−µi )αk

]∣∣∣P{
τi > `s−1 −`1

}+P{
τi > `r −`1

}
+

∣∣∣E[(J i
`1
−µi )α1

]∣∣∣∣∣∣∣E[ r∏
k=2

(J i
`k

−µi )αk

]∣∣∣∣+ ∣∣∣E[ r∏
k=2

(J i
`k

−µi )αk

]∣∣∣P{
τi > `2 −`1

}
=

r∑
s=2

∣∣∣∣E[ r∏
k=s+1

(J i
`k

−µi )αk

]∣∣∣∣P{
τi > `s −`1

}
+

(∣∣∣E[(J i
`1
−µi )α1

]∣∣∣+P{
τi > `2 −`1

})∣∣∣∣E[ r∏
k=2

(J i
`k

−µi )αk

]∣∣∣∣. �

The key intuition for the next step is that each linear factor (J i
`k

−µk ) effectively decreases the ‘de-
grees of freedom’ by at least a half. This idea is codified in the following proposition.

Proposition 4.4. Fix integers r ≥ 2, 0 ≤ `1 < `2 < ·· · < `r , and α1, . . . ,αr ≥ 1. If I := {1 ≤ k < r : αk = 1}
is nonempty, then there exist constants Cr ,D > 0 such that

∣∣∣∣E[ r∏
k=1

(J i
`k

−µi )αk

]∣∣∣∣≤Cr
∑

I0⊆[1,r ):
2|I0|≥|I |

exp

(
−D

∑
j∈I0

(` j+1 −` j )

)
.

Proof. Since the length τi of a subexcursion of height i in Sk has exponential tail, we may choose
constants D,D0 > 0 such that

P(τi > t ) ≤ D0 exp(−Dt ) (1)

for all t ≥ 0.
Also, the exponential is nonnegative, so it’s enough to establish the inequality when the outer sum

on the right-hand side is taken over a subset of those I0 ⊆ [1,r ) with cardinality at least half that of
I . Thus, for instance, we may dispense with the I = {1} case by showing that the expectation on the
left is bounded by a constant multiple of exp(−D(`2 −`1)). This is an immediate consequence of
Proposition 4.3 and Equation (1) since E[J i

`1
−µi ] = 0,

∣∣E[∏r
k=s(J`k −µi )αk

]∣∣≤ 1, and P
{
τi > `s −`1

}≤
P
{
τi > `2 −`1

}
for s ≥ 2.

We now proceed by induction on r . The base case follows from the previous observation as the
assumption that I 6= ; implies I = {1} when r = 2. For the induction step, let r ≥ 3. Denote by B1 and
B2 the first and second term in the right-hand side of the displayed inequality in Proposition 4.3, and
let K denote the sum over I0 in the right-hand side of the displayed inequality in Proposition 4.4. By
Proposition 4.3, it suffices to show that both B1 and B2 can be bounded by some constant times K .

For the bound on B2, note that the induction hypothesis gives

∣∣∣∣E[ r∏
k=2

(J i
`k

−µi )αk

]∣∣∣∣≤Cr−1
∑

I ′0⊆[2,r ):
2|I ′0|≥|I∩[2,r )|

exp

(
−D

∑
j∈I ′0

(` j+1 −` j )

)
.
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If α1 ≥ 2, then I ⊆ [2,r ), so we have B2 ≤ 2Cr−1K . Otherwise α1 = 1 and we are assuming I 6= {1}, so
the induction hypothesis and Equation (1) imply∣∣∣∣E[ r∏

k=2
(J i
`k

−µi )αk

]∣∣∣∣P{τi > `2 −`1} ≤Cr−1
∑

I ′0⊆[2,r ):
2|I ′0|≥|I∩[2,r )|

exp

(
−D

(
`2 −`1 +

∑
j∈I ′0

(` j+1 −` j )

))
.

If we set I0 := {1}∪I ′0 for each I ′0 ⊆ [2,r ) in the above summation, then 2|I0| ≥ 2+|I ∩[2,r )| = 2+|I |−1 >
|I |. Moreover, the exponential terms can be written as exp(−D(

∑
j∈I0

` j+1−` j )). Accordingly, we have
that B2 ≤Cr−1K .

Next, we show that B1 can be bounded by some constant times K . Writing m1 = max(I ), we see
that |I ∩ [s+1,r )| ≥ 1 for s < m1, so it follows from the inductive hypothesis, Equation (1), and the fact
that all central moments are bounded in absolute value by one that

B1 ≤
m1−1∑

s=2
Cr−sD0

∑
I ′0⊆[s+1,r ):

2|I ′0|≥|I∩[s+1,r )|

exp

(
−D

(
`s −`1 +

∑
j∈I ′0

(` j+1 −` j )

))

+
r∑

s=m1

D0 exp(−D (`s −`1)) ,

with the convention that the empty sum is zero. For the first term, we view its inner sum as ranging
over all I0 ⊆ [0,r ) with I0 := [1, s)∪ I ′0. Note that 2|I0| = 2(s−1)+2|I ′0| ≥ 2(s−1)+|I ∩[s+1,r )| ≥ |I | since
s ≥ 2. Furthermore, the sum of the ` j+1 −` j terms over j ∈ [1, s) is exactly `s −`1. Thus the first term
above is at most some constant times K . Finally, taking m2 = min(m1,r −|I |+1) ≥ 2, we see that the
second term is bounded by D0

∑r
s=m2

exp(−D(`s −`s−1)), which is a single summand in K and so less
than K . This completes the inductive step and the proof. �

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. Fix m ∈ N, and use Chebyshev’s inequality and the linearity of expectation to
write

P

{∣∣∣ n∑
`=0

(J i
`−µi )

∣∣∣≥ t

}
≤ t−2m

∑
0≤`1≤···≤`2m≤n

E
[

(J i
`1
−µi ) · · · (J i

`2m
−µi )

]
Our goal is to show that the right-hand side of the above inequality is O(t−2mnm+1). Then letting
t = εn gives the assertion. (The Landau notation is in terms of n →∞ throughout this proof.) We first
observe that it suffices to bound the contribution from expectations involving at least m +1 distinct
`k ’s as there are O(nm) summands involving fewer and each is O(1).

Fix m < r ≤ 2m and let α1, . . . ,αr be positive integers such that
∑r

k=1αk = 2m. Write r = u + w
where w = ∑r

k=1 1{αk = 1}, and let I = {1 ≤ k < r : αk = 1} as in the preceding proposition. Since
there are O(1) choices for the r ’s and αk ’s, we need only to demonstrate the existence of a constant
C1 =C1(r, i , p) > 0 such that∣∣∣∣ ∑

0≤`1<···<`r ≤n
E
[

(J i
`1
−µi )α1 · · · (J i

`r
−µi )αr

]∣∣∣∣≤C1nm+1

for all n ≥ 1.
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Note that w ≥ 2 so that |I | ≥ 1 and Proposition 4.4 applies. Thus we will be done upon showing that
for each subset I0 ⊆ [1,r ) such that 2|I0| ≥ |I |, there exists a constant C2 =C2(i , p) > 0 such that∣∣∣∣ ∑

0≤`1<···<`r ≤n
exp

(
−D

∑
j∈I0

(` j+1 −` j )
)∣∣∣∣≤C2nm+1 (2)

for all n ≥ 1. (There are O(1) subsets I0 in the sum from Proposition 4.4.)
To verify Equation (2), first observe that if ` j+1−` j > n1/2m for some j ∈ I0, then the corresponding

summand is of order O(exp(−Dn1/2m)). As there are O(n2m) choices, the contribution from such
terms is of order O(1). Accordingly, it suffices to show that there are O(nm+1) sequences 0 ≤ `1 < ·· · <
`r ≤ n not verifying this condition. To this end, let L be the set of maps ` : [r ] → [n]∪ {0} such that
`( j +1)−`( j ) ≤ n1/2m for all j ∈ I0, and let G = ([r ],E) be the graph with vertex set [r ] and edge set
E = {

{ j , j +1} : j ∈ I0
}
. Then G contains at most r −|E | = r −|I0| connected components, say P1, . . . ,PN

where Pi is a path consisting of vertices { ji , ji + 1, . . . , ji + si − 1}, si = |Pi |. Now for any ` ∈ L and
1 ≤ i ≤ N , there at most n1+si /2m possible choices for `(Pi )—n for `( ji ) and n1/2m for each of the si −1
successive vertices. Since N ≤ r −|I0| and

∑N
i=1 si = r ≤ 2m, this gives

|L| ≤
N∏

i=1
n1+si /2m = nN+r /2m ≤ nr−|I0|+1.

The assertion then follows since

2r −2|I0|+2 ≤ 2r −w +2 ≤ 2u +w +2 ≤ 2m +2,

where we have used the fact that 2|I0| ≥ |I | and 2u +w ≤∑r
k=1αi = 2m. �

5. TOP SOLITON LENGTHS IN THE SUBCRITICAL REGIME

In this section, we prove Theorem 2 (i). Fix p ∈ (0,1/2) and let {Hk }∞k=0 denote the Harris walk

associated with the random box-ball configuration X p . The main insight is that the j th longest soliton
length, λ j (n), is asymptotically equal to the j th largest excursion height of Hk over the interval [0,n],
which we denote by h j (n) (Lemma 5.2). This allows us to obtain limit theorems for the λ j (n) in terms
of the h j (n) (Lemma 5.1).

Before getting into the details, we discuss the main issue in comparing soliton lengths with excur-
sion heights. Clearly λ j (n) ≥ h j (n) due to the hill-flattening construction of the invariant Young di-
agram (Lemma 2.1). For j = 1, we also have λ1(n) = h1(n) since λ1(n) equals the maximum height
of the Harris walk over [0,n] by Lemma 2.2. However, this identity does not hold for j ≥ 2. In-
deed, Lemma 2.2 shows that λ2(n) = maxE (Γ(X n,p )), the maximum excursion height of the modified
Motzkin path E (Γ(X n,p )). While all but the highest excursion of Γ(X n,p ) are preserved after applying
the excursion operator E , it might be the case that there is a large subexcursion within the highest
excursion which dominates the contribution from the second highest excursion of Γ(X n,p ). In Sub-
section 5.3, we show that this is not the case asymptotically.

5.1. Overview and main results. We begin by stating the main results of this section and using them
to prove Theorem 2 (i). Our first step is to obtain limit theorems for the h j (n) (which will be defined
more carefully in the following subsection).
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Lemma 5.1. Set θ = (1− p)/p, σ = (1− 2p)/(1− p), and µn = logθ
(
(1−2p)σn

)
. Let h j (n) be the j th

largest excursion height of the associate Harris walk over [0,n]. Then for any nondecreasing real se-
quence {xn}n≥1,

liminf
n→∞ exp

(
θ−xn

)( j−1∑
k=0

θ−k(xn+1)

k !

)−1

P
{
h j (n) ≤ xn +µn

}≥ 1,

and

limsup
n→∞

exp
(
θ−(xn+1))( j−1∑

k=0

θ−kxn

k !

)−1

P
{
h j (n) ≤ xn +µn

}≤ 1.

Next, we show that the soliton lengths and excursion heights are essentially the same objects.

Lemma 5.2. Fix p ∈ (0,1/2). Then for each j ≥ 1,

lim
n→∞P

{
λ j (n) 6= h j (n)

}= 0.

It is then straightforward to derive the main result for soliton lengths in the subcritical regime.

Proof of Theorem 2 (i). Fix j ≥ 1, x ∈R, and let µn = logθ
(
(1−2p)σn

)
. Since λ j (n) ≥ h j (n), we have

P
{
λ j (n) ≤ x +µn

}≤P{
h j (n) ≤ x +µn

}
.

Hence Lemma 5.1 shows

limsup
n→∞

P
{
λ j (n) ≤ x +µn

}≤ exp(−θ−(x+1))
j−1∑
k=0

θ−kx

k !
.

For the other inequality, we have

P
{
h j (n) ≤ x +µn

}≤P{
λ j (n) ≤ x +µn

}+P{
λ j (n) 6= h j (n)

}
,

so Lemmas 5.1 and 5.2 show that

liminf
n→∞ P

{
λ j (n) ≤ x +µn

}≥ exp(−θ−x )
j−1∑
k=0

θ−k(x+1)

k !
. �

5.2. Excursion heights. This subsection is devoted to proving Lemma 5.1. Roughly speaking, we
proceed by showing that the Harris walk has Θ(n) excursions by time n. By relating the excursion
heights to a gambler’s ruin problem, we argue that their distribution has an exponential tail. Taking
the maximum over the Θ(n) excursions shows that the law of h1(n) is approximated by a Gumbel
distribution after scaling appropriately. The other order statistics are handled similarly.

To begin, set τ1 = 0 and for k > 1, define τk = inf{ j > τk−1 : H j = 0} to be the time of the kth visit to
0. Thus τk is the beginning of the kth excursion above the x-axis, and τk+1 is the end of the kth such
excursion. (In this section, if the random walk stays at 0, this counts as an excursion of height 0.) Let

hk = sup{Ht : τk < t ≤ τk+1} = sup
{ t∑

i=τk+1
ξi : τk < t ≤ τk+1

}
∨0

be the maximum height of the kth excursion. The strong Markov property ensures that h1,h2, . . . are
i.i.d. N0-valued random variables. To compute their distribution function, F (x) = P{h1 ≤ x}, we ob-
serve that P{h1 = 0} = 1−p and P{h1 ≤ x} = P{1 ≤ h1 ≤ x}+P{h1 = 0} for x ≥ 1. In order for the event
{1 ≤ h1 ≤ x} to occur, the random walk must begin with an upstep and then visit zero before visiting
x+1. The latter occurs with the ‘gambler’s ruin’ probability that a simple random walker, started at the
origin and moving right with probability p, hits−1 before hitting x, which is given by

(
θx−1

)
/
(
θx−θ−1

)
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[7, Ch. 5.7]. Putting all of this together shows that F (x) = (1−p)+p
(
θx −1

)
/
(
θx −θ−1

)
for all x ∈N0.

After a bit of rearranging, we get

F (x) =
(
1− 1−2p

θbxc+1 −1

)
1[0,∞)(x). (3)

Now let h1:m , . . . ,hm:m denote the (reversed) order statistics of h1, . . . ,hm so that h1:m ≥ ·· · ≥ hm:m

and {h1:m , . . . ,hm:m} = {h1, . . . ,hm} as multisets. Then

F j :m(x) :=P{h j :m ≤ x} =
j−1∑
k=0

(
m

k

)
F (x)m−k (1−F (x))k , j = 1, . . . ,m.

In particular, the maximum h1:m has distribution function

F1:m(x) =
(
1− 1−2p

θbxc+1 −1

)m

1[0,∞)(x).

Write Mn = sup{k : τk+1 ≤ n} for the number of excursions completed by time n and let rn =
max{

∑r
i=τMn+1

ξi : τMn+1 ≤ r ≤ n} be the maximum height attained after the last complete excur-

sion. The excursion heights h1(n) ≥ h2(n) ≥ ·· · ≥ hMn+1(n) are the (reversed) order statistics for
h1, . . . ,hMn ,rn . We begin by showing that Mn is sharply concentrated around its mean so that we
can essentially treat it as a deterministic sequence.

Proposition 5.3. If Mn is the number of excursions of H completed by time n, then

Mn

n
→ 1−2p

1−p
a.s. as n →∞.

Proof. We may write Mn = ∑n
k=1 1{Hk = 0}, the number of visits to 0 in [1,n]. Since the Harris walk is

ergodic with stationary distribution π(x) = [(1−2p)/(1−p)]θ−x for p < 1/2, we can apply the Markov
chain ergodic theorem to obtain

Mn

n
→π(0) = 1−2p

1−p
a.s. �

The next ingredient in our argument is a simple stochastic monotonicity result.

Proposition 5.4. Set σ = (1−2p)/(1−p), p ∈ (0,1/2). For any real sequence {xn}n≥1 and any positive
integer j , we have that for all ε> 0,

limsup
n→∞

P
{
h j (n) ≤ xn

}≤ limsup
n→∞

P
{
h j :b(σ−ε)nc ≤ xn

}
and

liminf
n→∞ P{h j (n) ≤ xn} ≥ liminf

n→∞ P
{
h j :d(σ+ε)ne ≤ xn

}
.

Proof. Define
N−(n,ε) = sup{t : Mt ≤ (σ−ε)n}

and
N+(n,ε) = inf{t : Mt ≥ (σ+ε)n} .

It follows from Proposition 5.3 that there is an a.s. finite N such that

{h1, . . . ,hMN−(n,ε) } ⊆ {h1, . . . ,hMn+1} ⊆ {h1, . . . ,hMN+(n,ε)
}

with probability one for all n ≥ N . Because rn ≤ hMn+1 and the probability that hMn+1 is among the j
largest of h1, . . . ,hMn+1 goes to zero as n →∞, we see that for any ε> 0,

P
{
h j :MN−(n,ε) ≤ h j (n) ≤ h j :MN+(n,ε)

}> 1−ε
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when n is sufficiently large, hence

limsup
n→∞

P{h j (n) ≤ xn} ≤ limsup
n→∞

P
{
h j :MN−(n,ε) ≤ xn

}
and

liminf
n→∞ P{h j (n) ≤ xn} ≥ liminf

n→∞ P
{
h j :MN+(n,ε)

≤ xn
}
.

The desired assertion follows by noting that MN−(n,ε) = b(σ−ε)nc and MN+(n,ε) = d(σ+ε)ne a.s. since
0 is a recurrent state of {Hk }. �

We are now in a position to prove the main result of this subsection.

Proof of Lemma 5.1. First, we claim that for any sequence {bn}n≥1 with limn→∞ bn/n = c > 0 and any
nondecreasing sequence {yn}n≥1, we have

lim
n→∞exp

(
(c/σ)θ−yn

)(
1− θ−yn

σn − (1−2p)−1θ−yn

)bn

= 1. (4)

Indeed,

log

[(
1− θ−yn

σn − (1−2p)−1θ−yn

)bn

exp
(
(c/σ)θ−yn

)]

= θ−yn (bn/θ−yn ) log

(
1− θ−yn

σn − (1−2p)−1θ−yn

)
+ (c/σ)θ−yn

= θ−yn

 c

σ
+

log
(
1− θ−yn

σn−(1−2p)−1θ−yn

)
θ−yn /bn

 .

Since θ > 1 and {yn}n≥1 is nondecreasing, θ−yn is bounded. The claim follows since a Taylor expansion
of the log term shows that

lim
n→∞

log
(
1− θ−yn

σn−(1−2p)−1θ−yn

)
θ−yn /bn

=− c

σ
.

Now fix ε> 0 and a nondecreasing sequence {xn}n≥1. Recall that for any deterministic sequence of
integers {bn}n≥1,

P
{
h j :bn ≤ xn +µn

}= j−1∑
k=0

(
bn

k

)(
1− 1−2p

θbxn+µnc+1 −1

)bn−k (
1−2p

θbxn+µnc+1 −1

)k

=
(
1− 1−2p

θbxn+µnc+1 −1

)bn j−1∑
k=0

b−k
n

(
bn

k

)(
1− 1−2p

θbxn+µnc+1 −1

)−k (
(1−2p)bn

θbxn+µnc+1 −1

)k

when xn +µn ≥ 0. (Since {xn}n≥1 is nondecreasing and µn = logθ
(
(1−2p)σn

)↗∞, this restriction is
satisfied for all large n.)

Writing νn = (xn +µn)−bxn +µnc, we have

1−2p

θbxn+µnc+1 −1
= 1−2p

θxn+µnθ1−νn −1
= θ−xn

σnθ1−νn − (1−2p)−1θ−xn
,

so, since θ > 1 and 1−νn ∈ (0,1], we see that

θ−(xn+1)

σn − (1−2p)−1θ−(xn+1)
≤ 1−2p

θbxn+µnc+1 −1
≤ θ−xn

σn − (1−2p)−1θ−xn
. (5)
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Set bn = b(σ−ε)nc and note that limn→∞ b−k
n

(bn
k

)= 1
k ! . Then the above estimates and show that for

all sufficiently large n,

P
{
h j :bn ≤ xn +µn

}≤ (
1− θ−(xn+1)

σn − (1−2p)−1θ−(xn+1)

)bn j−1∑
k=0

1+ε
k !

(
(σ+ε)nθ−xn

σn − (1−2p)−1θ−xn

)k

.

Thus Equation (4) with yn = xn +1 and bn = b(σ−ε)nc gives

limsup
n→∞

exp
((

1− ε

σ

)
θ−(xn+1)

)(
j−1∑
k=0

θ−kxn

k !

)−1

P
{
h j :bn ≤ xn +µn

}≤ (1+ε)
(
1+ ε

σ

)k
.

By taking yn = xn and b′
n = d(σ+ε)ne, a similar argument shows that

liminf
n→∞ exp

((
1+ ε

σ

)
θ−xn

)(
j−1∑
k=0

θ−k(x+1)

k !

)−1

P
{
h1(n) ≤ xn +µn

}≥ (1−ε)
(
1− ε

σ

)k
.

Letting ε↘ 0 and applying Proposition 5.3 completes the proof. �

Remark 5.5. Because we are taking the maximum of a random number of excursions, the sequence
{h j (n)−µn}n≥1 does not have a weak limit (and thus neither do the normalized subcritical soliton
lengths). To see this, we first recall that

P{h1:bn ≤ x +µn} =
(
1− 1−2p

θbx+µnc+1 −1

)
1{x +µn ≥ 0}

for any real sequence {bn}n≥1 and any x ∈R. Now fix x >µ1, write νn = (x +µn)−bx +µnc, and choose
subsequences {νnk }k≥1 and {νn`

}`≥1 such that νnk ≤ 1
3 and νn`

≥ 2
3 for all k,` ∈N. This is possible since

µn = logθ
(
(1−2p)σ

)+ logθ(n) and the fractional part of logθ(n) is dense in [0,1].
Since

1−2p

θbx+µnc+1 −1
= θ−x

σnθ1−νn − (1−2p)−1θ−x ,

θ > 1, 1−ν` ∈ [0,1/3], and 1−νk ∈ [2/3,1], we have the following analogues of Equation (5):

θ−(x+1/3)

σn`− (1−2p)−1θ−(x+1/3)
≤ 1−2p

θbx+µn`
c+1 −1

≤ θ−x

σn`− (1−2p)−1θ−x

and
θ−(x+1)

σnk − (1−2p)−1θ−(x+1)
≤ 1−2p

θbx+µnk
c+1 −1

≤ θ−(x+2/3)

σnk − (1−2p)−1θ−(x+2/3)
.

Repeating the last part of the proof of Lemma 5.1 (and restricting attention to h1(n) = λ1(n) to
simplify notation) shows that

ex ≤ liminf
`→∞

P
{
λ1(n`) ≤ x +µn`

}≤ limsup
`→∞

P
{
λ1(n`) ≤ x +µn`

}≤ ex+1/3

and
ex+2/3 ≤ liminf

k→∞
P
{
λ1(nk ) ≤ x +µnk

}≤ limsup
k→∞

P
{
λ1(nk ) ≤ x +µnk

}≤ ex+1.

In particular,
limsup
`→∞

P
{
λ1(n`) ≤ x +µn`

}< liminf
k→∞

P
{
λ1(nk ) ≤ x +µnk

}
. (6)

Since the sequence
{
λ1(n)−µn

}
is tight by Lemma 5.1, both

{
λ1(nk )−µnk

}
and

{
λ1(n`)−µn`

}
have

subsequential weak limits. As Inequality (6) implies that the limiting distribution functions disagree
at x, it follows that

{
λ1(n)−µn

}
does not converge weakly.
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5.3. Subexcursions within an excursion. Given an excursion γ of H with length ς and rightmost
global maximum at (m∗,h), define a` = max{t ≤ m∗ : γ(t ) = `} and b` = min{t ≥ m∗ : γ(t ) = `} for
`= 0, . . . ,h. Write γa,` = γ|[a`−1,a`] −` and γb,` = γ|[b`,b`−1] −`. These paths correspond to the portions
of γwhich, moving away from m∗, begin at the point where γ first descends to height ` and end where
γ first descends to height `−1, except that they are shifted down by `; see Figure 7.

Set γ̃a,` = γa,`∨0, γ̃b,` = γb,`∨0 (which has the effect of changing the downstroke furthest from m∗
to an h-stroke) and define

ϑ(k) =
{

max γ̃a,k , k ≤ h

max γ̃b,k−h , h < k ≤ 2h
.

Then E (γ) is the concatenation of γ̃a,1, . . . , γ̃a,h , γ̃b,h , . . . , γ̃b,1, so maxE (γ) = max1≤k≤2h ϑ(k).
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FIGURE 7. The black path is γ and the red path is E (γ). a` and b` are the first locations to the
left and right of m that γ is at height ` and the blue lines indicate paths between successive
values. In these regions, γ and E (γ) differ only by vertical translation.

Now let m∗ denote the leftmost global maximum of γ and set c` = min{t ≥ m∗ : γ(t ) = `}, γc,` =
γ|[c`,c`−1] −`, γ̃c,` = γc,`∨ 0. Define ω(k) = max γ̃c,k = maxγc,k for k = 1, . . . ,h. We first observe that
max{ω(1), . . . ,ω(h)} ≥ max{ϑ(h + 1), . . . ,ϑ(2h)}. To see that this is so, let j = minm∗≤t≤m∗ γ(t ). Then
bk = ck for all k < j , hence ω(k) = maxck≤t≤ck−1 γ(t )−k ≥ maxbk≤t≤bk−1 γ(t )−k = ϑ(h +k) for all k ≤ j
because c` ≤ b` for all `. On the other hand, since c j ≤ m∗ < c j−1, ω( j ) = h − j > h −k ≥ ϑ(h +k) for
all k > j . It follows that maxE (γ) = max{ϑ(1), . . . ,ϑ(2h)} ≤ max{ϑ(1), . . . ,ϑ(h),ω(1), . . . ,ω(h)}.

Next we observe that γ is symmetric about ς/2 in distribution. This is because, conditional on
the excursion length, the law of γ depends only on the number of up and down steps. Accordingly,
Eγ|[0,m∗] and Eγ|[m∗,ς] have the same distribution, so max{ϑ(1), . . . ,ϑ(h)} =d max{ω(1), . . . ,ω(h)}, and
thus

P
{

maxE (γ) > x
}≤P{

max{ϑ(1), . . . ,ϑ(h),ω(1), . . . ,ω(h)} > x
}

≤P{
max{ϑ(1), . . . ,ϑ(h)} > x

}+P{
max{ω(1), . . . ,ω(h)} > x

}
= 2P

{
max{ω(1), . . . ,ω(h)} > x

}
.

To treat the latter probability, note that given {h = r }, m∗,cr−1, . . . ,c0 are stopping times with respect
to the natural filtration, so ω(1), . . . ,ω(r ) are independent by the strong Markov property. Also, each
ω(k) is stochastically dominated by the random variable Y which gives the maximum value taken by
a simple random walker started at 0 and moving right with probability p before hitting −1 (as the
path γc,k is constrained to be at height at most h −k whereas the random walker’s path has no such
restriction). We conclude that on the event {h ≤ r },

P
{

maxE (γ) > x
}≤ 2P

{
max{ω(1), . . . ,ω(h)} > x

}≤ 2
(
1−G(x)r )

(7)
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where G(x) =P{Y ≤ x} is the gambler’s ruin probability [7, Ch. 5.7]

G(x) = θbxc+1 −1

θbxc+1 −θ−1
1[0,∞)(x).

Proof of Lemma 5.2. Fix j ≥ 1 and let ε> 0 be given. Lemma 5.1 implies that there exist δ> 0, N ∈N
such that for each n ≥ N , the event

E j ,δ,n = {
h1(n) ≤ nδ, h j (n) ≥ 2δ logθ(n)

}
has probability at least 1 − ε. Write H (k,n) for the kth highest excursion of H |[0,n], so that hk (n) =
max H (k,n). As each application of the excursion operator affects only one excursion, λ1(n), . . . ,λ j (n)
are the j largest values among E i−1

(
H (k,n)

)
as i and k range over {1, . . . , j }. On E j ,δ,n , these coincide

with h1(n), . . . ,h j (n) when E
(
H (k,n)

)≤ 2δ logθ(n) for k = 1, . . . , j . Since

G(x) = θbxc+1 −1

θbxc+1 −θ−1
≥ 1− θ

θx −1

for x > 0, Equation (7) implies

P
{
E

(
H (k,n))> 2δ logθ(n); E j ,δ,n

}≤ 2
[

1−G
(
2δ logθ(n)

)nδ
]
≤ 2

[
1−

(
1− θ

n2δ−1

)nδ]
≤ 2

[
1−

(
1−nδ θ

n2δ−1

)]
≤ 4θ

nδ
.

Consequently,

P
{
λk (n) = hk (n) for k = 1, . . . , j

}≤ ε+ 4 jθ

nδ
,

and the claim follows since ε is arbitrary. �

6. TOP SOLITON LENGTHS AT CRITICALITY

In this section we observe that when p = 1/2, the (suitably scaled) Harris walk converges weakly to
a reflected Brownian motion at the process level. In fact, this weak convergence can be strengthened
to “polynomial convergence” by appealing to a result from Drmota [6]. This enables us to deduce
scaling limits for the top soliton lengths.

Recall that C ([0,1]) denotes the space of continuous functions f : [0,1] → R equipped with the
supremum norm. We say a continuous functional F : C ([0,1]) → R is of polynomial growth if there
exists r ≥ 1 such that |F (γ)| ≤ ‖γ‖r∞ for all γ ∈C ([0,1]).

Theorem 6.1 (Theorem 9 of [6]). Suppose that a sequence of stochastic processes xn(t ) defined on
C ([0,1]) converges weakly to x(t ). Furthermore suppose that there exists s0 ∈ [0,1] such that for all
r ≥ 0,

sup
n≥0

E
[|xn(s0)|r ]<∞,

and that for every α> 1, there exists β> 0 and C > 0 with

E
[|xn(t )−xn(s)|β]<C |t − s|α for all s, t ∈ [0,1].

If F : C ([0,1]) →R is any continuous functional of polynomial growth, then

lim
n→∞E [F (xn)] = E [F (x)] .



26 LIONEL LEVINE, HANBAEK LYU, AND JOHN PIKE

We show the following polynomial convergence of Harris walk to the reflected Brownian motion.

Theorem 6.2. Let {B(t ) : 0 ≤ t ≤ 1} be a standard Brownian motion and define H n(t ) = H(nt )/
p

n for
0 ≤ t ≤ 1. Then for p = 1/2,{

H n(t ) : 0 ≤ t ≤ 1
}⇒ {|B(t )| : 0 ≤ t ≤ 1

}
in C ([0,1]).

Furthermore, if F : C ([0,1]) →R is any continuous functional of polynomial growth, then

lim
n→∞E[F (H n)] = E(F (|B |)).

Proof. Since the rescaled Harris walk H n(t ) is uniformly bounded by n− 1
2 |Sn(t )|, which has moments

of all orders and satisfies the Hölder criterion in Theorem 6.1, we only need to show that H n converges
weakly to |B |. To this end, recall from Subsection 1.3 that the linear interpolation of the p = 1/2 Harris
walk is given by H(t ) = E0(S)(t ) = S(t )−min0≤r≤t S(r ), where S is the linear interpolation of symmetric
simple random walk.

Donsker’s Theorem shows that after scaling diffusively, S(t ) converges weakly to a standard Brow-
nian motion in the space C ([0,1]). That is, writing Sn(t ) = S(nt )/

p
n, we have

lim
n→∞E[F (Sn)] = E[F (B)]

for every bounded and continuous functional F : C ([0,1]) →R.
A direct computation shows that for any fixed b ∈ [0,1], Eb is (2-Lipschitz) continuous and satisfies

Eb(c f ) = cEb( f ) for all b,c ≥ 0 (see Proposition A.6 (i) in Subsection A.3), so for every bounded and
continuous G : C ([0,1]) →R,

lim
n→∞E[G(H n)] = lim

n→∞E
[
G

(
E0(Sn)

)]= E[G
(
E0(B)

)]
,

hence H n converges weakly to E0(B). As

E0(B)(t ) = B(t )− min
0≤s≤t

B(s) =d −B(t )− min
0≤s≤t

(−B(s)
)= max

0≤s≤t
B(s)−B(t ),

Lévy’s M −B theorem (see [16, Ch. 2.3]) implies E0(B) =d |B | and the proof is complete. �

Now we can use the Lipschitz continuity of column length functionals maxE j−1 to obtain Theorem
2 (ii).

Proof of Theorem 2 (ii). First recall that the Motzkin path Γ = Γ(X n,1/2) agrees with the Harris walk
H on [0,n], and has only downstrokes until it reaches height 0 on [n,∞), hence all of its peaks are
contained in [0,n]. Recall also that the excursion operator deletes the peak at the rightmost maximum
and preserves all the other peaks. Thus by Lemma 2.2, we have

n−1/2λ j (n) = n−1/2 maxE j−1(Γ) = n−1/2 max
[0,n]

E j−1(H |[0,n]) = max
0≤t≤1

E j−1(H n).

Lemma 2.3 in Section 2 shows that the column length functionals maxE j−1 : C ([0,1]) → R are Lips-
chitz, so taking powers gives continuous functionals of polynomial growth, and the claimed conver-
gence follows from Theorem 6.2. A stronger version of the second part of the assertion (concerning
orders of column lengths) is shown in Theorem 6.4 below. �

To establish the order of the other top soliton lengths, we appeal to known results about the mar-
ginal densities of the ranked maxima of |B | over all excursions. To state our conclusions precisely, note
that the continuity of B ensures that the random subset {t : B(t ) 6= 0} of [0,1] is a countable union of
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maximal disjoint intervals, called the excursion intervals of B . We call an excursion interval (a,b) com-
plete if B(a) = B(b) = 0, and incomplete otherwise. All of the excursion intervals are complete except
possibly the last one (g (t ),1], where g (t ) = sup{0 ≤ t ≤ 1 : B(t ) = 0} is the last zero of B .

Let h1 ≥ h2 ≥ ·· · > 0 be the ranked sequence of values supt∈(a,b) |Bt | as (a,b) ranges over all ex-
cursion intervals of B . The marginal distributions of the ranked heights over excursions in the re-
flected Brownian bridge were first obtained by Pitman and Yor [21]. Lagnoux, Mercier, and Vallois
[15] pointed out that the probability that the maximum of reflected Brownian motion is obtained
during the last incomplete excursion is approximately 0.3069. Csaki and Hu [5] obtained the follow-
ing explicit expressions for the marginal densities of ranked maxima of reflected Brownian motion
over all excursions, including the final meander:

Theorem 6.3. For each j ≥ 1 and y > 0,

P{h j ≥ y} = 2 j+1
∞∑

k=0
(−1)k

(
k + j −1

k

)(
1−Φ(

(2k +2 j −1)y
))

whereΦ(·) is the standard normal distribution function.

Accordingly, Theorem 6.2 and Lemma 2.2 imply

Theorem 6.4. At criticality, we have that for each x > 0

lim
n→∞P

{
λ1(n) ≤ x

p
n

}= 1−4
∞∑

k=0
(−1)k (1−Φ[(2k +1)x]).

Furthermore,

limsup
n→∞

P
{
λ j (n) ≤ x

p
n

}≤ 1−2 j+1
∞∑

k=0
(−1)k

(
k + j −1

k

)
(1−Φ[(2k +2 j −1)x]). (8)

In particular, for any j ≥ 1, λ j (n) =Θ(
p

n).

Remark 6.5. One might wonder whether the top soliton lengths agree with the top excursion heights
as in the subcritical phase. This would imply that the right-hand side of (8) gives the limiting dis-
tribution of λ j (n)/

p
n for all j ≥ 1. However, we conjecture that this is not the case for p = 1/2.

This is because the random variable Y appearing in the proof of Lemma 5.2 would then have distri-
bution function G(x) = 1− 1/(x + 2) [7, Ch. 4.1], and one cannot find xn ∈ O(

p
n), rn ∈ Ω(

p
n) with

1− (
1− 1

xn+2

)rn → 0.

7. TOP SOLITON LENGTHS IN THE SUPERCRITICAL REGIME

In this section, we fix p ∈ (1/2,1) and prove Theorem 2 (iii). The intuition is the following. According
to Proposition 3.1, the top soliton lengths are encoded in the first n nodes of a Galton-Watson forest
F = (Ti )i≥1 ∼ GWF(p). Since the offspring distribution has mean p/(1 − p) > 1 in the supercritical
regime, the random index I = min{i : |Ti | = ∞ } is almost surely finite. For n large, about np nodes
of the infinite component TI will be exposed by the Harris walk, which climbs up along the ‘leftmost’
infinite branch in TI . Hence λ1(n) should behave like the maximum of a random walk with positive
drift, and λ2 will be the maximum height of the first few finite components T1, . . . ,TI−1 together with
the ‘bushes’ attached to the infinite branch in TI . We prove the λ1(n) assertion by approximating
{Hk } by {Sk }. For subsequent soliton lengths, we appeal to a duality argument: A backward Harris
walk started at the highest node will encounter a subcritical Galton-Watson forest, so λ2 for density p
should behave as λ1 for density 1−p; see Figure 8.
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FIGURE 8. Supercritical Galton-Watson forest. TI is the first infinite component and the red
ray is the leftmost infinite branch in TI on which the usual Harris walk climbs up. The grey
contour is the backward Harris walk starting from the last vertex of level N , which encounters
a subcritical Galton-Watson forest.

7.1. Duality and proof of Theorem 2 (iii). To make the above sketch rigorous, we introduce the no-
tion of flip and dual configurations, which will be used to provide a coupling between the random
box-ball configurations X n,p and X n,1−p .

Given a random box-ball configuration X n,p = X p 1[1,n], define the associated box-ball configura-
tions X̃ n,p , X̂ n,p :N→ {0,1} (which we call the flip and dual) by

(flip) X̃ n,p (k) = 1−X n,p (k),

(dual) X̂ n,p (k) = (
1−X n,p (n −k +1)

)
1{1 ≤ k ≤ n}.

For each j ≥ 1, denote λ j (n) =λ j (X n,p ) and λ̂ j (n) =λ j (X̂ n,p ).

 

  

 
Box-ball 

configurations Motzkin paths Rooted forests 
312-avoiding 
permutations 

𝑖୲୦ row length of 
Young diagram 

Number of solitons 
of length ≥ 𝑖 

Number of subexcursions 
of height 𝑖 

Number of leaves after 
trimming them 𝑖 − 1 
times 

Length of 𝑖୲୦ longest 
increasing subsequence 

𝑗୲୦ column length 
of Young diagram 

Length of 𝑗 th 
longest soliton 

Maximum height after 
applying excursion 
operator 𝑗 − 1 times 

Maximum height after 
contracting longest path 
𝑗 − 1 times 

Length of 𝑗୲୦ longest 
decreasing subsequence 

m 𝑛 𝑎 

𝑋 
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ℎ = 7 

𝑟ଵ 𝑟ଵ 𝑟ଶ 𝑟ଷ 𝑟ସ 𝑟ହ 𝑟଺ m௟ m௥ 

FIGURE 9. Box-ball configuration X , its flip X̃ , and its dual X̂ , the latter being read from right
to left. The black path is Γ(X ) and the red is E (Γ(X )). Note that if one reads the Motzkin path
E (Γ(X )) from the righmost maximum m to the beginning of the associated excursion, a, the
corresponding box-ball configuration coincides with the dual X̄ .

For 1/2 < p < 1, it is easy to see from the postive drift thatλ1(n) = max1≤k≤n Hk ≈ max1≤k≤n Sk ≈ Sn ,
where {Sk }k≥0 and {Hk }k≥0 denote the random walk and Harris walk associated with X p . For the sub-
sequent soliton lengths, we establish a duality with corresponding soliton lengths in an appropriate
subcritical configuration.
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Lemma 7.1. Fix ε> 0, j ∈N, and θ = (1−p)/p < 1. Then there exists a constant c = c(p) > 1 such that
for each n, x ≥ 1,

P {|λ1(n)−Sn | ≥ x} ≤ cθx/2

and
P

{∣∣λ j+1(n)− λ̂ j (n)
∣∣≥ x

}≤ cθx/4.

It is straightforward to deduce Theorem 2 from the above lemma.

Proof of Theorem 2 (iii). First, we may write

λ1(n)− (2p −1)n

2
√

p(1−p)n
= λ1(n)−Sn

2
√

p(1−p)n
+ Sn − (2p −1)n

2
√

p(1−p)n
.

The first term on the right-hand side converges in probability to zero by Lemma 7.1, and the second
term converges in distribution to a standard normal by the usual central limit theorem, so the first
part of the assertion follows from Slutsky’s theorem.

The concentration inequality for λ1(n) is a consequence of Lemma 7.1 and Hoeffding’s inequality
applied to the associated random walk Sn :

P
{|λ1(n)− (2p −1)n| ≥ x

}=P{|λ1(n)− (2p −1)n| ≥ x, |λ1(n)−Sn | ≥ x/2
}

+P{|λ1(n)− (2p −1)n| ≥ x, |λ1(n)−Sn | < x/2
}

≤P{|λ1(n)−Sn | ≥ x/2
}+P{|Sn − (2p −1)n| ≥ x/2

}
≤ cθx/4 +2e−

x2

8n ≤Ce−
x2

8n

for a suitable constant C .
Now let µ̂n = logθ−1

(
(1−2p)2

p n
)
. (This is the µn term from Section 5 but with p and 1−p switched

since we are now working in the supercritical regime.) Then for j ≥ 1 fixed, Lemma 7.1 implies

P
{
λ j+1(n) ≤ x + µ̂n

}=P{
λ j+1(n) ≤ x + µ̂n , |λ j+1(n)− λ̂ j (n)| ≤ x/2

}
+P

{
λ j+1(n) ≤ x + µ̂n , |λ j+1(n)− λ̂ j (n)| > x/2

}
≤P

{
λ̂ j (n) ≤ 3x/2+ µ̂n

}
+ cθx/8.

The lower bound is established similarly:

P
{
λ̂ j (n) ≤ (x/2)+ µ̂n

}=P{
λ j+1(n) ≤ (x/2)+ µ̂n , |λ j+1(n)− λ̂ j (n)| ≤ x/2

}
+P

{
λ̂ j (n) ≤ x + µ̂n , |λ j+1(n)− λ̂ j (n)| > x/2

}
≤P

{
λ j+1(n) ≤ x + µ̂n

}
+ cθx/8,

and the assertion then follows from Theorem 2 (i). �

7.2. Proof of Lemma 7.1. We now prove Lemma 7.1, establishing a duality principle between the
super- and sub-critical box ball systems. Positive drift ensures that S and H are not too different,
so the first claim seems reasonable since S should attain its maximum over [0,n] near n. To explain
why the second claim is true, let Ĥ ∈ C+

0 (R+) be the Harris walk for the dual configuration so that

λ̂1(n) = max Ĥ . Now H and Ĥ are coupled in such a way that the latter is a time-reversal of En(S),
which is approximated by En(H). Thus it all boils down to showing that the path En(H) pivoted at n
is close to E (H) = Em(H), pivoted at the actual location m= m(H) of the rightmost maximum of H . But
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again positive drift ensures that H attains its maximum near the end. Continuity of the column length
functionals can then be used to show that the two paths must be close to each other in an appropriate
sense.

We begin by introducing the following random variable:

R = sup
k∈N

∣∣∣ min
1≤i≤k

Si

∣∣∣=− inf
k∈N

Sk . (9)

Also, let S̃k and H̃k be the random walk and Harris walk associated with the flip X̃ n,p . Observe that
X̃ n,p has the same law as X n,1−p , and for each 1 ≤ k ≤ n, we have S̃k = (−ξ1)+·· ·+ (−ξk ) =−Sk and

H̃k = S̃k − min
1≤i≤k

S̃i = max
1≤i≤k

Si −Sk . (10)

In the following proposition, we show that the maximum of the Harris walk {Hk }0≤k≤n on the in-
terval [0,n] is exponentially concentrated around its last value Hn .

Proposition 7.2. Fix 1/2 < p < 1 and let θ̂ = p/(1−p). Then for any n, x ≥ 1,

P
{

max
0≤k≤n

Hk −Hn ≥ x
}=P{

H̃n ≥ x
}≤ 2p −1

θ̂bxc−1
.

Proof. To show the first inequality, let a= a(X n,p ) be the location of the leftmost global minimum of
the random walk {Sk }0≤k≤n . Then for any k ≥ a,

Hk = Sk − min
0≤ j≤k

S j = Sk −Sa.

It follows that
max

0≤k≤n
Hk −Hn = max

0≤k≤n
(Sk −Sa)− (Sn −Sa) = max

0≤k≤n
Sk −Sn = H̃n .

Now H̃k gives the height of the subcritical Harris walk which moves up with probability 1 − p, so
writing b for the beginning of the excursion interval containing n, Equation (3) shows that

P
{

max
0≤k≤n

Hk −Hn ≥ x
}=P{

H̃n ≥ x
}≤P{

max
b≤k≤n

H̃k > x −1
}

≤ 1−
(
1− 1−2(1−p)

θ̂bx−1c+1 −1

)
≤ 2p −1

θ̂bxc−1
. �

Proposition 7.3. Fix 1/2 < p < 1 and θ̂ = p/(1−p) > 1. Let R and H̃n be as defined at (9) and (10). Then
there exists a constant c = c(p) > 0 such that for all n, x ≥ 1,

P
{
R +2H̃n ≥ x

}≤ cθx/2.

Proof. Casing out according to the value of ξ1 = 1
{

X p (1) = 1
}−1

{
X p (1) = 0

}
shows that for any integer

k ≥ 1, P
{
R ≤ k

}= pP
{
R ≤ k +1

}+ (1−p)P
{
R ≤ k −1

}
, hence

P
{
R = k

}=P{
R ≤ k

}−P{
R ≤ k −1

}= p
(
P
{
R ≤ k +1

}−P{
R ≤ k −1

})= p
(
P
{
R = k

}+P{
R = k +1

})
,

so P
{
R = k +1

}= θ̂−1P
{
R = k

}
. It follows that

P
{
R ≥ x

}= ∞∑
k=x

P
{
R = 1

}
θ̂1−k = θ̂1−x

1− θ̂−1
P
{
R = 1

}
for each x ∈N. Thus Proposition 7.2 implies that there is a c = c(p) > 0 such that

P
{
R +2H̃n ≥ x

}≤P{R ≥ x/2}+P{H ≥ x/2} ≤ θ̂1−bx/2c

1− θ̂−1
+ 2p −1

θ̂bx/2c−1
≤ cθ̂−x/2

for all x ≥ 2. �
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We are now ready to prove Lemma 7.1.

Proof of Lemma 7.1. Fix n ≥ j and let R and H̃n be as defined at (9) and (10), respectively. According
to the exponential bound in Proposition 7.3, it suffices to show the following inequalities:∣∣∣λ1(n)−Sn

∣∣∣≤ R +2H̃n and
∣∣∣λ j+1(n)− λ̂ j (n)

∣∣∣≤ 2R +4H̃n . (11)

Note that the first inequality in (11) follows from Lemma 2.2 and the triangle inequality upon observ-
ing that ∣∣∣ max

1≤k≤n
Hk − max

1≤k≤n
Sn

∣∣∣≤ max
1≤k≤n

∣∣∣Hk −Sk

∣∣∣= max
1≤k≤n

∣∣∣ min
1≤i≤k

Si

∣∣∣≤ sup
k∈N

∣∣∣ min
1≤i≤k

Si

∣∣∣= R.

To establish the second inequality, let n∗ := m(S1[0,n]) denote the rightmost maximum of S on [0,n],
and define the sequence of random variables {Šk }0≤k≤n by Šk = Sk for all k 6= n and Šn = Sn∗ . As
usual, let Š denote the linear interpolation of {Šk }. By construction, ‖Š − S‖∞ = H̃n . Also, observe
that En(S)(n) = 0 = E (Š)(n), and for 0 ≤ j < n, writing m j = min(S j , . . . ,Sn−1), we have En(S)( j ) = S j −
min(m j ,Sn) and E (Š)( j ) = S j−min(m j ,Sn∗) = S j−m j . If min(m j ,Sn) = Sn , then m j = Sn+1{Sn < m j }.
It follows that

En(S)( j ) = E (Š)( j )+m j −min(m j ,Sn) = E (Š)( j )+1{Sn < m j }.

Writing Ŝk =−(Sn −Sn−k ) for the random walk associated with the dual configuration, we see that
the Harris walk Ĥk can be written as

Ĥk = (Sn−k −Sn)− min
0≤ j≤k

(Sn− j −Sn) = Sn−k − min
n−k≤i≤n

Si = E (Š)(n −k)+1{Sn < mn−k }

for all 0 ≤ k ≤ n. As Sn < mn−k implies H̃n = ‖Š −S‖∞ ≥ 1, we have∣∣Ĥk −E (Š)(n −k)
∣∣≤ H̃n .

for all k ≥ 1. Since the functional maxE j−1 is invariant under time reversal, the above observation
together with Lemmas 2.2 and 2.3 yields∣∣∣λ̂ j (n)−maxE j (Š)

∣∣∣= ∣∣∣maxE j−1(Ĥ)−maxE j (Š)
∣∣∣≤ 2H̃n .

Finally, the triangle inequality, Lemma 2.2, and Lemma 2.3 give∣∣∣λ j+1(n)− λ̂ j (n)
∣∣∣≤ ∣∣∣maxE j (H)−maxE j (S)

∣∣∣+ ∣∣∣maxE j (S)−maxE j (Š)
∣∣∣+2H̃n

≤ 2‖H −S‖∞+2‖S − Š‖∞+2H̃n ≤ 2R +4H̃n . �

8. RANDOM 312-AVOIDING PERMUTATIONS

In this section, we discuss some relations between box-ball systems and 312-avoiding permuta-
tions and prove Theorem 3.

Recall that for a given permutation σ, one can use the Robinson-Schensted algorithm (see [24,
Ch. 3.1]) to obtain a pair of standard Young tableaux with common shape RS(σ). Greene’s theorem
[10] relates the sum of the lengths of the first k rows (resp. columns) of the Young diagram RS(σ) to
the length of a longest subsequence in σ which can be obtained by taking the union of k increasing
(resp. decreasing) subsequences. In Proposition 8.1, we show that if σ is 312-avoiding, then a ‘naive’
version of Greene’s theorem holds: We can subsequently delete longest increasing/decreasing sub-
sequences to obtain subsequent row/column lengths of RS(σ). Hence, roughly speaking, Theorem 3
gives the asymptotics of the ‘kth longest’ increasing/decreasing subsequences of a random 312- (or
231-) avoiding permutation.
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For a precise statement, we introduce some notation. Given two finite sequences α, β of positive
integers, denote by α \β the sequence obtained by deleting all elements in β from α. Denote by α+
(resp. α−) an arbitrary longest increasing (resp. decreasing) subsequence of α. Furthermore, let α∗+
(resp. α∗−) be the unique longest increasing (resp. decreasing) subsequence in α such that the sum
of all numbers used in (α∗+)−1 (resp. (α∗−)−1) is as small (resp. large) as possible. This ensures that σ∗+
(resp. σ∗−) is the ‘leftmost’ (resp. ‘rightmost’) longest increasing (resp. decreasing) subsequence in σ.
For instance, if σ = 146532, then both 146 and 145 are longest increasing subsequences, where the
former is σ∗+. The following proposition is proved in Appendix A.4.

Proposition 8.1. Let τ be a 312-avoiding permutation and fix arbitrary τ−. Then RS(τ\τ−) is obtained
from RS(τ) by deleting its first column. Moreover, RS(τ \τ∗+) is obtained from RS(τ) by deleting its first
row.

In order to prove Theorem 3, we begin by explaining (an equivalent version of) the construction
of the time-invariant Young diagram introduced in [26], which was built upon a connection between
box-ball configurations and 312-avoiding permutations. The first step is to map a box-ball configu-
ration X0 of m balls to a 312-avoiding permutation σ=σ(X0) ∈S312

m using the pushing and popping
stack operations from [13, Ch. 2.2.1]. To do so, label the balls 1, . . . ,m from left to right so that the
i th ball gets label i . Then the one-line notation for σ gives the left to right labels of the balls after a
single update X0 7→ X1. That is, we push the symbol 1 onto an empty stack at the first ball and then,
advancing to the right, pop the top of the stack off for storage at each empty box and push k onto the
stack upon encountering the kth ball. See Figure 10 for an illustration.

0 \, 0 \, 0 \, 1 \, 0 \, 0 \, 0 \, 1 \, 1 \, 1 \, 0 \, 1 \, 1 \, 0 \, 0 \, 0 \, 0 \, 0 

 

 

 

 

 

 

 

 

 

 

 

 

 1    2 3 4  5 6     
0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 

 

 

  

 

 

 

 

0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 

 

 

 

 

 

 

                       
                       
                       
                       
                       
0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 

 1    2 3 4 3 5 6 5 3 2  
      2 3 2 3 5 3 2   
       2  2 3 2    
          2     

                        
                        
                        
                        
                        
                        

𝜎 = 146532 

𝑅𝑆 

𝑃ଶ 𝑃ହ 𝑇ଶ 𝑇ହ 

① 

③ ④ 

① ① 

① ① 

① 

② ② 

③ 

④ 

① ① 

① ① 

① 

① 

② ② 

③ 

④ 

Xଵ
 

X଴
 

Γ(Xଵ)

``` 
Γ(X଴)

 

X଴

𝑃ଷ 𝑃ସ 𝑇ଷ 𝑇ସ 𝑃ଵ 𝑇ଵ 

4 5 
6 6 

2 1 
3 
4 
6 

5 

6 

3 5 2 2 1 
3 
4 
6 

1 

5 

4 

FIGURE 10. Construction of the 312-avoiding permutation corresponding to the box-ball en-
vironment in the bottom row via push-pop operations. The second row from the bottom
indicates the labels of the balls, and the columns in the upper table give the contents of the
right-sweeping stack. The resulting permutation is σ= 146532.

To get a Young diagram from this stack-representable permutationσ(X0), one applies the Robinson-
Schensted algorithm to obtain a pair of standard Young tableaux, and records their common shape
as RS(σ(X0)). It was shown in [26] that RS(σ(Xs)) is invariant in s ≥ 0 and its j th column length is the
j th longest soliton length in the system. Thus, by Lemma 2.1, this construction gives the same Young
diagram which was obtained by hill-flattening operations applied to the Motzkin path.

Proposition 8.2. Let X0 :N0 → {0,1} be a finitely supported box-ball configuration. Then

RS(σ(X0)) =Λ(X0) =Λ(Γ(X0)).

The following proposition (proved in Appendix A.4) shows that there is a bijection between 312-
avoiding permutations of length n and Dyck paths of length 2n which ‘factors through’ box-ball con-
figurations in a natural way. Let S312

n be the set of all 312-avoiding permutations of length n and let
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Dyck2n be the set of all Dyck paths of length 2n—that is, lattice paths from (0,0) to (2n,0) consisting
only of upstrokes and downstrokes and never dipping below the horizontal axis.

Proposition 8.3.

(i) There exists a bijection ϕ : Dyck2n →S312
n .

(ii) For each τ ∈S312
n and z ∈ Dyck2n such that ϕ(z) = τ, there is a box-ball configuration X0 such

that τ=σ(X0) and z= Γ(X0).

We now prove Theorem 3 using similar ideas from the proof of Theorem 1 together with some
known results on random Dyck paths and random walk excursions.

Proof of Theorem 3. Recall that σ ∈S312
n if and only if σ−1 ∈S231

n , so the map σ 7→σ−1 preserves the
uniform distribution on the sets S312

n and S231
n . Moreover, RS(σ) = RS(σ−1). Hence it suffices to prove

the assertion only for the 312-avoiding permutations.
Letzbe a Dyck path of length 2n and let τ=ϕ(z) be the corresponding 312-avoiding permutation.

Proposition 8.3 enables us to choose a box-ball configuration X0 such that τ = σ(X0) and z = Γ(X0),
and Proposition 8.2 implies that RS(τ) =Λ(z). If we denote byΣn andzn uniformly random elements
of S312

n and Dyck2n , this yields

RS(Σn) =d Λ(zn). (12)

Now the contour process described in Subsection 2.3 gives a bijection between Dyck paths of length
2n and rooted plane trees with n+1 nodes, so part (i) of Theorem 3 follows from (12) and Proposition
2.5.

Part (iii) also follows easily from known results. Indeed, it is well known that under diffusive scaling
the random walk excursion converges weakly to a standard Brownian excursion [1]. Moreover, by
Theorem 6.1, the convergence is polynomial. Thus (iii) follows from (12) and Lemmas 2.2 and 2.3.

Lastly, we establish the strong law for ρi (zn) stated in part (ii). To begin, fix i ≥ 1, and let {Sk }k≥0

be a simple symmetric random walk with S0 = 0. We may view the uniformly random Dyck path
zn of length 2n as the trajectory of Sk over the interval [0,2n] conditioned to stay non-negative and
satisfy S2n = 0. By (12) and the hill-flattening procedure, ρi (zn) equals the number of subexcursions
of zn of height i . Recall the definitions of µi and J i

`
given in Lemma 4.2 and above the same lemma,

respectively. Let Ni (n) =∑n
`=0 J i

`
. Then Ni (2n) = ρi (zn), so for all n ≥ 1 and ε< 1/2n,

P

{∣∣∣∣ρi (zn)

2n
−µi

∣∣∣∣> ε} ≤ P

{∣∣∣∣ Ni (2n)

2n
−µi

∣∣∣∣> ε ∣∣∣Sk is a Dyck path over [0,2n]

}
≤ P{|Ni (2n)/2n −µi | > ε}

P
{
Sk is a Dyck path over [0,2n]

} .

It is well known that the number of Dyck paths of length 2n is the nth Catalan number 1
n+1

(2n
n

)
, so

by Stirling’s approximation, P
{
Sk is a Dyck path over [0,2n]

} ∼ n−3/2/
p
π. Now by Lemma 4.2 with

m = 4 and ε= ε(n) = 1/logn ↘ 0, we get

P

{∣∣∣∣ρi (zn)

2n
−µi

∣∣∣∣> ε(n)

}
=O((logn)8n−3/2).

In particular, these probabilities are summable, so the first Borel-Cantelli lemma impliesρi (zn)/2n →
µi a.s. as n →∞. �
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APPENDIX A. PROOFS OF COMBINATORIAL LEMMAS

In this appendix, we provide proofs of Lemmas 2.1, 2.2, and 2.3, and Propositions 8.1 and 8.3.

A.1. Time invariance of the Young diagram. Our proof of Lemma 2.1 is similar to the argument from
[26], which is formulated in terms of Dyck words intead of Motzkin paths. The argument is simplified
by Proposition A.1.

To begin, recall that given a box-ball configuration Xs of finite support, the associated lattice path
Γ(Xs) is constructed by reading Xs from left to right: Starting at height 0, increase by 1 every time a
1 is encountered, decrease by 1 whenever a 0 is encountered at positive height, and remain at height
0 otherwise. A simple but useful observation is that reading Xs from right to left produces the lattice
path Γ(Xs−1). More precisely, let (Xs)s≥0 be a box-ball system started from a finitely supported con-
figuration X0. For each s ≥ 0, let rs = max{k ≥ 0 : Xs(k) = 1} be the location of the rightmost 1 at time
s. Construct a (backward) lattice path ~Γ(Xs) :N0 →N0 by ~Γ(Xs)k = 0 for k ≥ rs and

~Γ(Xs)k =


~Γ(Xs)k+1 +1 if Xs(k +1) = 1
~Γ(Xs)k+1 −1 if Xs(k +1) = 0 and ~Γ(Xs)k+1 ≥ 1

0 if ~Γ(Xs)k+1 = Xs(k +1) = 0

for 0 ≤ k < rs . See Figure A.1 for an illustration. In this appendix, we denote the ordinary lattice path
Γ by~Γ to emphasize the reading direction.
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FIGURE A.1. The environment is X1 where X0 is the environment given in Figure 3. The black
path is~Γ(X1) and the grey path is ~Γ(X1). Notice that the latter coincides with the black path in
Figure 3.

Proposition A.1. ~Γ(Xs+1) =~Γ(Xs) for all s ≥ 0.

Proof. Fix s ≥ 0, and observe that both paths are 0 on [rs+1,∞), so the assertion holds on this interval.
Now suppose the paths agree on [k +1,∞) for some k < rs+1. We must show that ~Γ(Xs+1)k =~Γ(Xs)k .

The definition of the box-ball dynamics shows that Xs+1(k + 1) = 1 if and only if ~Γ(Xs)k − 1 =
~Γ(Xs)k+1, hence

~Γ(Xs)k −~Γ(Xs)k+1 = 1 ⇐⇒ Xs+1(k +1) = 1 ⇐⇒ ~Γ(Xs+1)k − ~Γ(Xs+1)k+1 = 1.

The inductive hypothesis implies

~Γ(Xs)k =~Γ(Xs)k+1 ⇐⇒ Xs+1(k +1) = 0 and~Γ(Xs)k+1 = 0

⇐⇒ Xs+1(k +1) = 0 and ~Γ(Xs+1)k+1 = 0

⇐⇒ ~Γ(Xs+1)k = ~Γ(Xs+1)k+1
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and

~Γ(Xs)k −~Γ(Xs)k+1 =−1 ⇐⇒ Xs+1(k +1) = 0 and~Γ(Xs)k+1 ≥ 1

⇐⇒ Xs+1(k +1) = 0 and ~Γ(Xs+1)k+1 ≥ 1

⇐⇒ ~Γ(Xs+1)k − ~Γ(Xs+1)k+1 =−1. �

To facilitate the proof of Lemma 2.1, it is convenient to reformulate the procedure for building
Young diagrams row by row: Rather than flatten hills, we contract peaks by deleting the upstroke-
downstroke pair and then identifying the endpoints so that the path remains connected. The number
of hills after flattening is the same as the number of peaks after contracting, so everything is exactly
same as before. The advantage here is that if one begins with an h-restricted Motzkin path, then
the hills are always peaks and the Motzkin paths are always h-restricted. Moreover, the contraction
operation can be understood in terms of the environment as deleting 10 patterns.

Proof of Lemma 2.1. The second part of the assertion clearly holds for all stable box-ball configura-
tions X0 :N→ {0,1} of finite support. Since the system always stabilizes, the second part follows from
the time invariance as stated in the first part.

Now let (Xs)s≥0 be as before. To show the time invariance of Λ(Xs), recall that the construction of
Λ(Xs) begins by counting the number of peaks in the path corresponding Xs = X (0)

s . This is equal to
the number of 10 patterns, which is equal to the number of 1-strings, which is equal to the number of
01 patterns. The length of the first row ofΛ(Xs) is given by this number. The peaks are then contracted
by deleting the 10 patterns from Xs to obtain X (1)

s and the process is repeated with Γ(X (1)
s ). At each

step, the 1-strings are counted, the diagram is updated, and the 10 patterns are deleted, continuing
until the path consists only of h-strokes.

The key insights are that the number of 1 strings is the same regardless of whether the environment
is read from left to right or conversely, and that the number of 1-strings after 10 patterns are deleted
is the same as the number of 1 strings after 01 patterns are deleted. In the first case, each 1 string
either decreases in length by 1 (possibly disappearing), or it merges with the string on its right. In the
second, each string either decreases in length by 1 or merges with the string on its left.
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FIGURE A.2. The environment is formed by deleting either 10 patterns or 01 patterns from
the environment in Figure A.1. The corresponding left-right (black) and right-left (grey) lattice
paths have the same number of hills as the flattened paths in Figure A.1.

Now for any fixed s ≥ 0,~Γ(Xs) and~Γ(Xs+1) can be read off from Xs+1 by proceeding from right to
left and from left to right, respectively. The update rule for the former is to count 1-strings and then
delete 10 patterns, and the update rule for the latter is to count 1-strings and then delete 01 patterns.
By the previous observations, both result in the same final Young diagram.
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At this point, it remains only to show that soliton lengths are given by the column lengths of the
Young diagram Λ(X0). To see that this is so, observe that the path Γ(Xτ), which corresponds to the
first stable configuration, consists of a series of single peaks of nondecreasing height, each as tall as
the length of the associated soliton. As each flattening step reduces the height of the peaks by 1, we
see that the number of rows of Λ(Xτ) having length at least ` corresponds to the number of solitons
of length at least `. Therefore, the columns ofΛ(Xτ) encode the soliton lengths, so the same is true of
Λ(X0) by invariance. �

A.2. Extracting column lengths with excursion operators. In this subsection, we prove Lemma 2.2.
The key observation is that the hill-flattening and excursion operators commute on the space of
Motzkin paths.

To begin, we need to establish a couple of technical results. First, for any interval I ⊆ R, recall that
C+

0 (I ) denotes the space of continuous functions I → [0,∞) with compact support. For any f ∈C+
0 (I ),

we denote by supp+( f ) the open set {x ∈ I : f (x) > 0}, which is a finite disjoint union of open intervals.
Accordingly, we may write supp+( f ) = ⊔n

i=1(ci ,di ), where di < c j if i < j . We call Ji := (ci ,di ) the i th

excursion interval of f . Recall that I (Γ) denotes the set of hill intervals of Γ (see the beginning of
Subsection 2.2).

Proposition A.2. Fix a Motzkin path Γ and let x ∈ N be contained in a hill interval Ix of Γ. Denote
supp+(Ex (Γ)) =⊔n

i=1 Ji as above. Then Γ−Ex (Γ) is constant on each Ji . In addition, I (Ex (Γ)) =I (Γ) \

{Ix } and maxE j−1(Γ) ≥ 1 for all 1 ≤ j ≤ ρ(Γ).

Proof. To establish the first part, write M = Γx ≥ 0, and define integers a0 < a1 < ·· · < aM−1 < aM =
x = bM < bM−1 < ·· · < b1 < b0 by

ai = max{k ≤ x : Γk = i }, bi = min{k ≥ x : Γk = i }

for each 0 ≤ i ≤ M . In words, they are the first locations where Γ has height i when moving to the left
and right from x; see Figure 4. To simplify notation, we set a−1 = 0 and b−1 =∞. Now Γy −Ex (Γ)y =
min

{
Γz : x ∧ y ≤ z ≤ x ∨ y

}
, so onN0

Γ−Ex (Γ) =
M−1∑
i=0

i
(
1(ai−1,ai ] +1[bi ,bi−1)

)+M1(aM−1,bM−1).

It follows that Ex (Γ) vanishes at the ai ’s and bi ’s, and differs from Γ by a constant on (aM−1,bM−1) and
each interval of the form (ak−1, ak ] or [bk ,bk−1), 0 ≤ k ≤ M −1. Ji is the i th such interval (from left to
right) where Ex (Γ) is not constant. This shows the first part of the assertion.

The preceding argument also implies that I (Ex (Γ)) ⊆I (Γ). In addition, Ex (Γ) = 0 on [aM−1,bM−1]
and Ix ⊆ (aM−1,bM−1), so Ix is not a hill interval of Ex (Γ). Finally, the definition of the a and b terms
ensures that if J ∈ I (Γ) \ {Ix }, then either J ⊆ (ai−1, ai ] or J ⊆ [bi ,bi−1) for some 0 ≤ i ≤ M −1. Since
Ex (Γ) is a vertical translate of Γ on these intervals, J must be a hill interval of Ex (Γ). This shows
I (Ex (Γ)) =I (Γ) \ {Ix }.

Lastly, taking x = m in the first part gives I (E (Γ)) = I (Γ) \ {Im}, and the second part of the second
assertion follows from the first since each application of E removes a single hill interval and the height
of a Motzkin path is at least one while hill intervals remain. �

Proposition A.3. For any interval I ⊆ R+, f ∈ C+
0 (I ), x, y ∈ I , if f is constant on the interval [x, y] ⊆ I ,

then Ex ( f ) = Ey ( f ).

Proof. Casing out according to whether t < x, x ≤ t ≤ y , or t > y shows that

min
t∧x≤s≤t∨x

f (s) = min
t∧y≤s≤t∨y

f (s). �
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Proposition A.4. For any Motzkin path Γ and any x ∈N contained in a hill interval of Γ, Ex ◦H (Γ) =
H ◦Ex (Γ). In particular, E ◦H (Γ) =H ◦E (Γ).

Proof. Let m = m(Γ) and m∗ = m(H (Γ)). Note that m < m∗ and that H (Γ) is constant on [m,m∗]. This
holds for any Motzkin path Γ. Thus by Proposition A.3 with I = R+, it suffices to prove the first part.
To this end, we first note that for any k ∈N0,

min
k∧x≤y≤k∨x

Γy − min
k∧x≤y≤k∨x

H (Γ)y = 1{k ∈ Ix },

where Ix denotes the hill interval of Γ containing x. Indeed, H (Γ) = Γ−1 on Ix , so the left-hand side is
1 for all k ∈ Ix . Now fix k ∉ Ix , and let x∗ be the location of the leftmost minimum of Γ over the interval
[k ∧ x,k ∨ x]. Then x∗ is an integer which is not contained in any hill interval of Γ, so H (Γ)x∗ = Γx∗ .
Moreover, x∗ minimizes H (Γ) on [k∧x,k∨x] since the only integer points with H (Γ)y < Γy are those
contained in a hill interval of Γ, in which case Γy ≥ Γx∗ +1. This shows that the left-hand side is 0 for
k ∉ Ix as desired.

In conjunction with Proposition A.2, we have

Ex (H (Γ))k = H (Γ)k − min
k∧x≤y≤k∨x

H (Γ)y

= H (Γ)k − min
k∧x≤y≤k∨x

Γy +1{k ∈ Ix }

=
{

Ex (Γ)k −1 if k ∈⋃
I (Γ) \ {Ix }

Ex (Γ)k otherwise

= H (Ex (Γ))k .

�

Now we prove Lemma 2.2.

Proof of Lemma 2.2. Let Γ be a Motzkin path and write λ j for the length of the j th column ofΛ(Γ) for
each 1 ≤ j ≤ ρ(Γ). We show

λ j = maxE j−1(Γ)

by induction on max Γ. If the maximum is zero, then the assertion is trivial, so we may assume that
it holds for all Motzkin paths with maximum less than M ∈ N. Now fix a path Γ with max Γ = M .
The inductive hypothesis implies that the assertion holds for H (Γ) since it has maximum M −1 ≥ 0.
Moreover,Λ(H (Γ)) is obtained by deleting the first row ofΛ(Γ). Thus by Proposition A.4, we have

λ j −1 = maxE j−1(H (Γ))

= maxH (E j−1(Γ))

= maxE j−1(Γ)−1,

where the final equality used the second part of Proposition A.2 to ensure maxE j−1(Γ) ≥ 1 for any
1 ≤ j ≤ ρ(Γ). �

Remark A.5. An easy modification of Proposition A.4 and applying the same proof of Lemma 2.2
shows that the excursion operator E = Em in the statement of Lemma 2.2 could be replaced by Em∗ ,
where the pivot m∗ = m∗(Γ) is chosen to be an arbitrary element in the set {x ≥ 0 : Γ(x) = maxΓ} where
the Motzkin path Γ achieves its maximum.
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A.3. Regularity of the column length functionals. In this subsection we prove Lemma 2.3, establish-
ing Lipschitz continuity of the ‘column length functionals’ maxE j−1(·). The general strategy is to show
that the column length functionals satisfy a Lipschitz condition on Motzkin paths and then extend the
result to arbitrary functions in C+

0 (R+) by an approximation argument. We begin by establishing some
preparatory results.

Proposition A.6.

(i) Fix an interval I ⊆R+, a point b ∈ I , and functions f , g ∈C+
0 (I ). Then

‖Eb( f )−Eb(g )‖∞ ≤ 2‖ f − g‖∞.

(ii) For any Motzkin paths f , g ∈C+
0 (R+),

‖H ( f )−H (g )‖∞ ≤ ‖ f − g‖∞.

Proof. For (i), the triangle inequality gives

‖Eb( f )−Eb(g )‖∞ ≤ ‖ f − g‖∞+ sup
t∈I

∣∣∣ min
[t∧b,t∨b]

f − min
[t∧b,t∨b]

g
∣∣∣≤ 2‖ f − g‖∞

since the minima of two functions over a given interval can differ by no more than their maximum
difference over the interval.

For (ii), observe that the maximum distance between Motzkin paths is necessarily N0-valued and
the claim is clearly true if f = g , so we may assume that

∥∥H ( f )−H (g )
∥∥∞ ≥ 1. Let

x∗ = max
{

x ∈N : |H ( f )x −H (g )x | = ‖H ( f )−H (g )‖∞
}
,

and assume without loss of generality that H ( f )x∗ > H (g )x∗ . If x∗ is not in a hill interval of g , then
g (x∗) =H (g )x∗ <H ( f )x∗ ≤ f (x∗), so∥∥H ( f )−H (g )

∥∥∞ = ∣∣H ( f )x∗ −H (g )x∗
∣∣≤ ∣∣ f (x∗)− g (x∗)

∣∣≤ ∥∥ f − g
∥∥∞ .

If x∗ is in a hill interval of both f and g , then∥∥H ( f )−H (g )
∥∥∞ = ∣∣H ( f )x∗ −H (g )x∗

∣∣= ∣∣( f (x∗)−1
)− (

g (x∗)−1
)∣∣≤ ∥∥ f − g

∥∥∞ .

Finally, suppose that x∗ is in a hill interval [a,b] of g but is not in any hill interval of f . Then g
is constant on [a,b], so our choice of x∗ implies that f (x∗) ≥ f (y) for all y ∈ [a,b]. By considering
whether or not x∗ < b, we see that we must have f (x∗ + 1) = f (x∗)− 1. A similar consideration of
whether f (x∗) = f (y) for all a ≤ y ≤ x∗ leads to the contradiction that x∗ is in a hill interval of f . �

To state our next result, we say that a functionϕ :R→R is an affine scaling ifϕ(x) = ax+b for some
a > 0, b ∈ R. The set of all affine scalings forms a group under composition. Given f ∈ C+

0 (R) and an
affine scaling ϕ, we write ϕ∗( f ) for the function f ◦ϕ−1. A function Γ :R→R+ is an extended Motzkin
path if Γ(n) = 0 for all n ≤ 0 and Γ|[0,∞) is a Motzkin path.

Proposition A.7. For any f1, f2 ∈C+
0 (R) which are not identically zero and any ε> 0, there exist affine

scalings ϕ,ψ and extended Motzkin paths Γ1,Γ2 such that ψ(0) = 0 and for i = 1,2, the function f̄i =
ψ◦ϕ∗(Γi ) ∈C+

0 (R) satisfies

‖ fi − f̄i‖∞ < ε and m( f̄i ) = m( fi ).

Proof. By hypothesis, m( f1),m( f2) ∈ (0,∞). Also, the fi ’s are uniformly continuous, so there is some δ>
0 such that |x−y | < δ implies | f1(x)− f1(y)|, | f2(x)− f2(y)| < ε/4. Set s= |m( f1)−m( f2)|+1{m( f1) = m( f2)}
and choose N large enough that ∆ := s/2N < δ. Define the lattice

L= {m( f1)+k∆}k∈Z.
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Note that m( f1),m( f2) ∈L. Set a = 2∆/ε, L+ =L∩ [0,∞), and let `0 denote the smallest element of L+.
Observe that 0 ≤ `0 <∆ by construction.

For i = 1,2, define the function γi :L→L+ by

γi (`) =
{
`0 if `≤ `0

∆d(a fi (`))/∆e+`0 otherwise.

Note that a fi changes by no more than ∆/2 when the argument changes by no more than ∆. In con-
junction with the fact that fi ≡ 0 on (−∞,0], fi ≥ 0, and `0 ∈ [0,∆), this implies that γi is an extended
Motzkin path on L. That is, γi (`) = `0 for all ` ∈L∩(−∞,`0] and for each `,`′ ∈L with |`−`′| =∆, we
have γi (`) ≥ `0 and |γi (`)−γi (`′)| ∈ {0,∆}.

Letϕ(x) =∆·x+`0. Thenϕ is an affine scaling which mapsZ bijectively to L. Also define the affine
scaling σ(x) = (x −`0)/a. By a slight abuse of notation, we will henceforth let γi denote its extension
to R by linear interpolation. Let Γi ∈C+

0 (R) be the extended Motzkin path defined by Γi =ϕ−1 ◦γi ◦ϕ.
Now define

f̄i = (γi −`0)/a =σ◦ϕ◦Γi ◦ϕ−1 =ψ◦ϕ∗(Γi )

where ψ(x) = σ ◦ϕ(x) = ε
2 x. Then ψ(0) = σ(`0) = 0 and m( f̄i ) = m(γi ) = m( fi ). For x ∈ L, a direct

computation gives | fi (x)− f̄i (x)| < ε/2. For x ∉L, writing `x for the nearest lattice point to x gives

| fi (x)− f̄i (x)| ≤ | fi (x)− fi (`x )|+ | fi (`x )− f̄i (`x )|+ | f̄i (`x )− f̄i (x)| < ε

4
+ ε

2
+ ∆

2a
= ε,

hence ‖ fi − f̄i‖∞ < ε as desired. �

We are now ready to prove Lemma 2.3.

Proof of Lemma 2.3. Fix j ≥ 1. To begin, we observe that it is enough to show the assertion for I =R.
Indeed, for any I ⊆ R and any h ∈C+

0 (I ), we can define a function h̃ ∈C+
0 (R) which equals h on I and

drops linearly to zero on [b,b + 1] where b is the rightmost boundary point of I . This construction
ensures that maxE j−1(h) = maxE j−1(h̃) and ‖h1 −h2‖∞ = ‖h̃1 − h̃2‖∞.

Next we show that the result holds if the graphs of f and g are (extended) Motzkin paths by induc-
tion on m = maxE j−1( f )+maxE j−1(g ). The assertion is trivial when j = 1 or m = 0. If maxE j−1( f ) ≥ 1
and maxE j−1(g ) = 0, write m j := m(E j−1( f )). Let J = [a,b] be the excursion interval of E j−1(Γ) which
contains m j . By Proposition A.2, Γ−E j−1(Γ) is constant on the excursion intervals of E j−1(Γ). Hence
we get

maxE j−1( f ) = E j−1( f )(m j )−E j−1( f )(a) = f (m j )− f (a).

As f , g ≥ 0, consideration of whether or not g (m j ) ≥ g (a) shows that

maxE j−1( f ) = f (m j )− f (a) ≤ f (m j )− f (a)+ ∣∣g (m j )− g (a)
∣∣

≤ ∣∣ f (m j )− g (m j )
∣∣+ ∣∣ f (a)− g (a)

∣∣≤ 2‖ f − g‖∞,

By symmetry, the result also holds when m ≥ 1 and maxE j−1( f ) = 0, so we may assume that both
maxE j−1( f ) and maxE j−1(g ) are at least 1. As the maxima are necessarily attained on hill intervals,
Proposition A.4, the inductive hypothesis, and part (ii) of Proposition A.6 imply∣∣∣maxE j−1( f )−maxE j−1(g )

∣∣∣= ∣∣∣maxH ◦E j−1( f )−maxH ◦E j−1(g )
∣∣∣

=
∣∣∣maxE j−1 ◦H ( f )−maxE j−1 ◦H (g )

∣∣∣
≤ 2

∥∥H ( f )−H (g )
∥∥∞ ≤ 2

∥∥ f − g
∥∥∞ .
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This completes the proof for Motzkin paths.
Now we show the assertion for f , g ∈ C+

0 (R) by induction on j ≥ 1. The base case is tautological.
For the inductive step, choose ψ,ϕ,Γ1,Γ2, f̄ , ḡ as in Proposition A.7 with f1 = f , f2 = g . Then by the
choice of f̄ , Proposition A.4, the inductive hypothesis, and Proposition A.6 (i), we have∣∣∣maxE k ( f )−maxE k ( f̄ )

∣∣∣= ∣∣∣maxE k−1 ◦Em( f )( f )−maxE k−1 ◦Em( f )( f̄ )
∣∣∣

≤ ‖Em( f )( f )−Em( f )( f̄ )‖∞
≤ 2‖ f − f̄ ‖∞ < 2ε,

and similarly for g . Also, since ψ(0) = 0, the triangle inequality gives

ψ(‖Γ1 −Γ2‖∞) =ψ(‖ϕ∗Γ1 −ϕ∗Γ2‖∞)

= ‖ψ◦ϕ∗Γ1 −ψ◦ϕ∗Γ2‖∞
= ‖ f̄ − ḡ‖∞ < 4ε+‖ f − g‖∞.

Lastly, observe that the functional maxE k satisfies

maxE k ( f̄i ) =ψ◦maxE k (Γi ).

Thus in conjunction with the assertion for the Motzkin paths, we obtain∣∣∣maxE k ( f )−maxE k (g )
∣∣∣< 4ε+

∣∣∣maxE k ( f̄ )−maxE k (ḡ )
∣∣∣

≤ 4ε+ψ
(∣∣∣maxE k (Γ1)−maxE k (Γ2)

∣∣∣)
≤ 4ε+ψ (‖Γ1 −Γ2‖∞) < 8ε+‖ f − g‖∞.

Letting ε↘ 0 completes the inductive step and the proof. �

A.4. Statistics of 312-avoiding permutations. In this subsection, we provide proofs of Propositions
8.3 and 8.1.

Recall that for each n ≥ 1 and permutation τ ∈ S3 of length 3, we denote by Sτ
n the set of all τ-

avoiding permutations of length n. Also recall that Dyck2n denotes the set of all Dyck paths of length
2n. Note that a permutation σ is 312-avoiding iff its inverse σ−1 is 231-avoiding. Also, if we denote by
~σ the reversal of σ obtained by reading σ from right to left, then σ is 231-avoiding iff its reversal ~σ is

132-avoiding.
There are a number of bijections between τ-avoiding permutations and Dyck paths in the litera-

ture. For instance, Krattenthaler [14] obtained a bijection S132
n → Dyck2n , and later Hoffman, Rizzolo,

and Silvken [11] used a bijection Dyck2n →S231
n to study random 231-avoiding permutations in terms

of random walks and Brownian excursions. In fact, the inverse of the latter bijection is the conjuga-
tion of the former by reversals of permutations and Dyck paths, where the reversal of a Dyck path is its
left-right mirror image. In the forthcoming proof of Proposition 8.3, we will make use of the bijection
Dyck2n →S231

n mentioned above, which we give below in a slightly more general version.
For a given h-restricted Motzkin path Γ, we define a permutation σ(Γ) as follows: Let vk be the

location of the kth upstroke of Γ. (Thus if Γ= Γ(X0), then vk is the location of the kth ball in X0). Then
we define a 231-avoiding permutation σ(Γ) by

σ(Γ)(k) = k + 1

2
inf

{
r ≥ 0 : Γvk+r = Γvk−1

}−Γvk

= k + 1

2
sup

{
r ≥ 0 : Γvk+r ≥ Γvk

}+1−Γvk .
(A.1)
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When restricted to Dyck paths, this map z 7→ σ(z) is shown to be a bijection between Dyck2n and
S231

n in [11, Thm. 4.3].
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FIGURE A.3. Construction of the inverse 165243 of the 312-avoiding permutation σ(X0) =
146532 directly from the corresponding Motzkin path Γ(X0) and rooted forest F(Γ(X0)). On
the left, the lengths of the red and orange paths correspond to the supremum and Γvk terms
in (A.1) for k = 3. On the right, the subtree rooted at v3 consists of the four red nodes and
the level of v3 is the number of edges in the orange path. Thus (A.1) and (A.2) each show that
σ−1(3) = 5.

Remark A.8. For a given rooted forest F, a permutation σ(F) can be defined similarly: Let vk be the
kth non-root node in F according to the depth-first order and define

σ(F)(k) := k +#{nodes in the subtree of F rooted at vk }− (level of vk in F). (A.2)

Note that the maps (A.2) and (A.1) yield the same permutation for corresponding rooted forest and
its contour process. Namely, let Γ be the h-restricted Motzkin path which is a contour process of F.
Then σ(Γ) =σ(F); see Figure A.3 for an illustration.

Proof of Proposition 8.3. We define a map ϕ : Dyck2n →S312
n by

z 7→σ(z) 7→σ(z)−1,

where the first map is given by (A.1). As a composition of two bijections, ϕ is a bijection from Dyck2n
to S312

n . This shows (i).
To show (ii), fix z ∈ Dyck2n and let X0 be the box-ball configuration obtained from z by

X0(i ) = 1
{
z(i +1)−z(i ) = 1

}
for all i ≥ 0. It then suffices to show that

σ(X0) =σ(z)−1.

To this end, label the balls 1, . . . ,n from left to right, and recall the push-pop stack construction X0 7→
σ(X0) described in Section 8. Fix a label 1 ≤ k ≤ n. We are going to track the trajectory of ball k during
the push-pop stack construction. Using the notation from Equation (A.1), let ball k be at site vk . Note
that zvk equals the number of balls in the stack after ball k is pushed onto it. Hence the number
of balls which have been popped off in previous steps equals k −zvk . Next, while the stack sweeps
sites to the right of vk , balls with larger labels will be pushed on and popped off until ball k is finally
deposited. This happens precisely when z first hits height zvk −1 after location vk . Accordingly, the
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number of balls that are deposited during the period when ball k is in the stack equals the height of
the subexcursion of z started at vk , which equals to half of the duration of this excursion. Thus

# balls popped out before ball k = k −zvk +
1

2
sup

{
r ≥ 0 : zvk+r ≥zvk

}
.

Therefore,σ(z)(k), which is one more than the above quantity, is the position of k inσ(X0) as desired.
�

Proof of Proposition 8.1. Before we begin, recall the definition of the longest ‘leftmost’ increasing
and ‘rightmost’ decreasing subsequences τ∗+ and τ∗− given above the statement of Proposition 8.1.

We first show the assertion for τ∗+. By induction on the length of the permutation, we suppose
that the assertion holds for all 312-avoiding permutations of length less than n for some n ≥ 3, and
fix a 312-avoiding permutation τ of length n. (The result is true by inspection when n = 3.) Using
Proposition 8.3, choose a box-ball configuration X0 and a Dyck path z such that τ = σ(X0) and z =
Γ(X0).

By Greene’s theorem ([10]), we know that the length of the first row of RS(τ) equals the length of
any longest increasing subsequence in τ. Since RS(τ) = Λ(z), we see that the length of the longest
increasing subsequence of τ equals the number of peaks in z.

Let X ′
0 be the box-ball configuration obtained from X0 by deleting all 10 patterns from X0, as in

the proof of Lemma 2.1, and let Γ′ = Γ(X ′
0) and τ′ = σ(X ′

0) be the h-restricted Motzkin path and 312-
avoiding permutation constructed from X ′

0 (see the commutative diagram (A.3)). It is easy to see that
Γ′ can be directly obtained from Γ by first applying the hill-flattening operator H and then contract-
ing new h-strokes which are not at height 0.

On the other hand, let L be the number of 10 patterns in X0, which is the same as the number of
peaks in Γ. When reading X0 from left to right, let `i be the label of the ball that corresponds to the
‘1’ in the i th 10 pattern. Then τ̃ := `1`2 · · ·`L is an increasing subsequence in σ satisfying τ′ = τ \ τ̃.
Moreover, Greene’s theorem shows that this is a longest increasing subsequence. By an easy induction
argument, one sees that `i+1 is the first number to the right in σ that exceeds `i . Thus by definition,
τ̃ = τ∗+, is the ‘leftmost’ longest increasing subsequence in σ. From the construction it is clear that
τ′ = τ\τ∗+.

τ

��

X0
oo //

��

Γ

��
τ′ X ′

0
oo // Γ′

(A.3)

To complete the argument, recall that Λ(Γ′) is obtained from Λ(Γ) by deleting the first row. Since
RS(τ) = Λ(Γ) and RS(τ′) = Λ(Γ′) by Proposition 8.2, we have that RS(τ′) is obtained from RS(τ) by
deleting its first row. Since τ′ can be obtained from τ by deleting a longest increasing subsequence,
the inductive hypothesis applied to τ′ completes the proof.

Next, we show the assertion for the columns. Let τ, X0, Γ be as before. To begin, observe that
in the stack construction of τ from X0, every decreasing subsequence in τ is generated by the balls
that occupy the stack at the same time. (For instance, in Figure 10, the decreasing subsequence 432
in σ = 14632 is generated by the balls in the stack on top of the ball of label 4.) Thus, every longest
decreasing subsequence in τ is generated by the balls in the stack where Γ achieves its maximum.

Let m∗ be any location where Γ attains its global maximum. During the stack operation to construct
τ from X0, let τ̄= `1`2 · · ·`M be the decreasing sequence consisting of the numbers in the stack after
pushing all the balls over the interval [1,m∗]. This is a longest decreasing subsequence in τ. Denote
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τ† = τ\τ∗−. Let X †
0 be the box-ball configuration that is obtained by converting 1’s that correspond to

balls with labels in τ̄ to 0’s. Then observe that σ(X †
0 ) = τ† and Γ† = Em∗(Γ), where Em∗ is the excursion

operator pivoted at location m∗ instead of the rightmost one m. According to Lemma 2.2 and the
following remark, Λ(Em∗(Γ)) is obtained by deleting the first column of Λ(Γ). Since Λ(Em∗(Γ)) = RS(τ)
andΛ(Γ) = RS(τ†), the assertion follows. �
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