
BRANCHING IN A MARKOVIAN ENVIRONMENT

LILA GRECO AND LIONEL LEVINE

Abstract. A branching process in a Markovian environment consists of an
irreducible Markov chain on a set of “environments” together with an offspring
distribution for each environment. At each time step the chain transitions to a
new random environment, and one individual is replaced by a random number
of offspring whose distribution depends on the new environment. We give a first
moment condition that determines whether this process survives forever with
positive probability. On the event of survival we prove a law of large numbers
and a central limit theorem for the population size. We also define a matrix-
valued generating function for which the extinction matrix (whose entries are
the probability of extinction in state j given that the initial state is i) is a fixed
point, and we prove that iterates of the generating function starting with the
zero matrix converge to the extinction matrix.

1. Introduction

Let S be a finite set of “environments”, and let (Qt)t∈N be an irreducible Markov
chain on the state space S. We call Qt the environment at time t. To each i ∈ S
we associate a probability distribution νi on N = {0, 1, . . .}, which we call the
offspring distribution of environment i. Consider a population of Xt identical
individuals who reproduce one at a time: At each time step t, a single individual
is replaced by a random number ξt+1 of offspring, where ξt+1 has the distribution
νQt+1 , independent of the past. Thus, Xt+1 = Xt − 1 + ξt+1. We refer to the pair
(Qt, Xt) as a branching process in random environment (BPME).

Note that Xt denotes the population after t individuals have reproduced (not
the population after t generations). The population after n generations is defined
recursively by Y0 = X0 and

Yn = XY0+Y1+...+Yn−1 (1)

for n ≥ 1. Our choice of time index t (reproduction events) instead of n (genera-
tions) is a matter of convenience: the latter can be recovered from the former by
equation (1).
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1.1. A brief survey of related processes. If there is only one environment
(#S = 1), then Yn is easily seen to be a classical Galton-Watson branching pro-
cess [Har02, AN72]. But if #S > 1 then Yn is distinct from the classical multi-
type branching process [KS66, KLPP97]. Our population is scalar-valued (all
individuals are identical) and the offspring distribution depends on the global en-
vironment. By contrast, in multitype branching, the population is vector-valued,
and the offspring distribution depends on the type of individual.

Branching processes have been generalized in various ways, but not, to our
knowledge, in the manner of the present paper. Athreya and Karlin [AK71] and
Jones [Jon04] consider branching in a stationary random environment, in which
the environment changes after each generation instead of each reproduction event.
Their analysis features the composition of a random sequence of univariate gen-
erating functions. As we will see (Theorem 1.4), our process can be analyzed by
iteration of a single matrix-valued generating function.

A related process arises in queuing theory, the batch Markovian arrival
process (BMAP) [Luc91]. The BMAP consists of population-environment pairs,
but the offspring distribution does not depend on the environment; instead, the
wait time between reproduction events depends on the environment, and the prob-
ability of transitioning from environment i to environment j depends not on i but
on the number of offspring produced. A matrix generating function also figures
prominently in the analysis of the BMAP.

The process Xt is an instance of random walk in random environment
(RWRE), whose environment is constant in space and Markovian in time. There
are quite a few central limit theorems for RWRE in a dynamic Markovian envi-
ronment [BMP97, BZ06, DKL08], but those papers all assumed Xt has bounded
increments. They also assumed an ellipticity condition which, in our setup, would
amount to requiring that there is a probability measure ν on N and an ε > 0
such that νi ≥ εν for all i. Our situation is simplified by the environment being
constant in space, which removes the substantial difficulty of proving ergodicity of
the scenery process (the environment seen from the point of view of the random
walker). So we are able to dispense with the boundedness and ellipticity assump-
tions: In our CLT (Theorem 1.3) we assume only that the offspring distributions
νi have finite variance, and we allow νi, νj to have disjoint supports.

A further difference with RWRE is that we truncate the walk at zero — corre-
sponding to extinction of the branching process — and our limit theorems are on
the event of survival. Accordingly, the limiting random variable in Theorem 1.3
is χ1S , where χ is normally distributed, S = {Xt > 0 for all t} is the event of
survival, and χ is independent of S. For RWRE it can be difficult to determine
the variance of χ (or even to prove that its variance is not zero, see [RV13]). We
give an explicit formula for the variance (Lemma 5.4) in terms of the station-
ary distribution of the environment chain, the offspring distribution means and
variances, and a quantity φ(i) measuring the “excess fertility” of environment i.
The vector (φ(i))i∈S can be computed from the stationary distribution and the
offspring means by solving a system of linear equations.
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Branching in a Markovian environment is a special case of a stochastic abelian
network (SAN) [BL16a]. Indeed, a (unary) SAN can be viewed as a multitype
BPME, in which the types correspond to the processors in the network. Survival
corresponds to a nonhalting network [CL21]. The original motivation for this paper
was to generalize the halting criterion of [BL16b] to stochastic abelian networks.
Theorem 1.1 accomplishes this in the special case of a SAN with a single unary
abelian processor.

1.2. Statement of main results. Let

µ :=
∑
i∈S

πiµi

where S is the set of possible environments, ~π is the unique stationary distribution
of the environment Markov chain, and µi ≤ ∞ is the mean number of offspring
produced by a single individual if the environment is in state i. Our first theorem
generalizes the survival/extinction dichotomy for classical branching processes.
Let S = {Xt > 0 for all t} be the event of survival, Write Pn.i for the law of the
BPME started from population n and environment i.

Theorem 1.1 (Survivial/Extinction).

(1) If µ < 1, then the BPME goes extinct almost surely: Pn.i (S) = 0 for all
n ∈ N and all i ∈ S.

(2) If µ = 1, and the number of offspring produced before the first return to
the starting state has positive or infinite variance, then the BPME goes
extinct almost surely: Pn.i (S) = 0 for all n ∈ N and all i ∈ S.

(3) If µ > 1, then the BPME with sufficiently large initial population survives
forever with positive probability: For each environment i there exists n such
that Pn.i (S) > 0.

Our next result gives the asymptotic growth rate for the population on the
event of survival. Note that Xt denotes the population after t individuals have
reproduced (not the population after t generations), so the growth is linear rather
than exponential in t.

Theorem 1.2 (Asymptotic Growth Rate). If each offspring distribution has finite
variance, then for any initial population n ≥ 1 and any initial environment i,

Xt

t
→ (µ− 1)1S Pn.i-almost surely as t→∞

where S = {Xt > 0 for all t} is the event of survival.

Our next result is a central limit theorem for the normalized population on the
event of survival.

Theorem 1.3 (Central Limit Theorem). If each offspring distribution has finite
variance, then for any initial population n ≥ 1 and any initial environment,

Xt − (µ− 1)t1S√
t

⇒ χ1S as t→∞
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where χ ∼ N (0, σ2M ) is a normal random variable independent of the event of
survival S = {Xt > 0 for all t}. The variance σ2M is computed in Lemma 5.4.

To state our next result, we define the matrix generating function

f(M) =
∑
n≥0

PnM
n

where M is an S × S substochastic matrix, and (Pn)ij is the probability that
the environment transitions from state i to state j while producing n offspring.
Here we interpret M0 as the identity matrix. The extinction matrix E is the
S × S matrix whose (i, j) entry is the probability that the BMPE started with
population 1 in state i goes extinct in state j.

Theorem 1.4 (Extinction Matrix). The (i, j) entry of En is the probability that
the BPME started with population n in state i goes extinct in state j. Moreover,
f(E) = E, and

lim
n→∞

fn(M) = E

for any matrix M satisfying 0 ≤M ≤ E entrywise.

Here fn denotes the nth iterate of f .

1.3. Plan of the paper. After the formal definitions in Section 2, we prove
Theorems 1.1-1.4 in sections 3, 4, 5, and 6, respectively. We conclude with open
questions and two conjectures in Section 7.

2. Formal definition and an example

2.1. The Markovian environment. Let P be the transition matrix of an irre-
ducible Markov chain on a finite state space S. The entry P (i, j) is the probability
of transitioning from state i ∈ S to state j ∈ S. We call this Markov chain the
environment. We associate to each state i ∈ S an offspring distribution. These
offspring distributions can be simultaneously described by a stochastic matrix
R : RS → RN called the reproduction matrix, where Rin is the probability that
an individual has n offspring given that the current environment is i.

Let (ξit)i∈S, t∈N be independent random variables such that P
(
ξit = n

)
= Rin for

all i ∈ S and n ∈ N. We interpret ξit as the number of offspring produced at time
t if the environment chain happens to be in state i at time t.

Definition 2.1 (Branching Process In A Markovian Environment (BPME)).
A branching process in a Markovian environment is a sequence (Xt, Qt)t≥0 of
population-state pairs that evolves as follows. We begin with initial population
X0 ∈ N≥1 and initial state Q0 ∈ S. Given Xt and Qt, we update:

Qt+1 ∼ P (Qt, ·) independent of X0, . . . , Xt, Q0, . . . , Qt, and (ξit)t∈N,i∈S

Xt+1 :=

{
Xt − 1 + ξt+1, Xt > 0

0, Xt = 0

(2)
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where

ξt+1 :=
∑
i∈S

ξit+11{Qt+1 = i}.

That is, the global state Qt is updated to Qt+1 by taking one step in the envi-
ronment Markov chain. If the population is positive, then one individual produces
a random number of offspring ξt+1 sampled from the offspring distribution of the
new state Qt+1. These new individuals are added to the population, while the
reproducing individual is removed from the population. The integer Xt represents
the total population after t such reproduction events.

In the branching process literature, time is usually indexed by the number
of generations. But in our notation, the time index t is number of reproduction
events so far. That is, between time t and time t+1, a single individual reproduces
(assuming the population has not yet reached zero). This difference in indexing is
convenient since the environment updates every time an individual reproduces.

The sequence (Xt)t≥0 alone is not a Markov chain, but ((Xt, Qt))t≥0 is a Markov
chain. A state of the latter chain is an ordered pair (n, i) where n ∈ N and i ∈ S.
We call such pairs total states. Following [BL16a] we adopt the notation n.i for
the total state (n, i).

Let

µi :=
∞∑
n=0

nRin

be the mean of the offspring distribution of state i. Let πi be the stationary
probability of environment i, and let

µ :=
∑
i∈S

µiπi (3)

be the mean number of offspring produced when a single individual reproduces in
the stationary environment. This value µ will play a role analogous to the mean
of the offspring distribution in the ordinary Galton-Watson branching process.

2.2. An Example. The following example illustrates why Theorem 1.1(3) re-
quires a sufficiently large starting population for the BPME to have positive prob-
ability of surviving forever.

Let the environment chain be S = {a, b} with Pab = Pba = 1. Its stationary
distribution is πa = πb = 1

2 . Let the offspring distribution of state a be uniform on
{0, 1, 2, 3, 4, 5}, and let the offspring distribution of state b be 0 with probability
1. Then µ = µaπa + µbπb = 5/4. The matrix generating function is given by

f(M) =

(
0 1
1
6 0

)
+

(
0 0
1
6 0

)
(M +M2 +M3 +M4 +M5).

The extinction matrix E solves the degree 5 polynomial equation f(E) = E. Using
Theorem 1.4, we can estimate it by calculating fn(O) for large n:

E ≈
(

0 1
0.2459 0.3497

)
.
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The BPME started in state a with initial population X0 = 1 goes extinct imme-
diately (in state b), despite the fact that µ > 1. However, the extinction matrix
for initial population X0 = 2 is given by:

E2 ≈
(

0.2459 0.3497
0.0860 0.3681

)
.

Since both row sums are < 1, this BPME with initial population 2 has positive
probability to survive forever in either starting state.

In this example, Theorem 1.2 tells us that on the event of survival, this BPME
population satisfies Xt/t → 1/4 almost surely. Theorem 1.3 tells us that on the
event of survival, the population Xt is asymptotically normal with mean 1

4 t and

variance 35
24 t.

2.3. Review of Markov Chains. We recall a few facts about Markov chains,
which we will apply in later sections to the environment chain. Let (Qt)t∈N be an
irreducible Markov chain with finite state space and transition matrix P . Denote
by Pi and Ei the probability and expectation given Q0 = i, and let τi := min{t ≥
1 | Qt = i}.

Proposition 2.2. (i) There is a unique probability row vector π such that
πP = π. Moreover, πi > 0 for all states i.

(ii) For all i, j ∈ S

Pi

(
lim
t→∞

1

t

t∑
s=1

1{Qs = j} = πj

)
= 1.

(iii) Ei [τi] = 1
πi
<∞.

(iv) If Nj :=
∑τi

t=1 1{Qt = j} is the number of visits to j until hitting i, then
Ei [Nj ] = πjEi [τi]. Note that (iii) is the special case obtained by setting
j = i.

(v) There exist constants C0, C1 > 0 such that for all t ≥ 0 and all states i, j,

Pi(τj > t) ≤ C0e
−C1t.

Proof. (i) See [LP17], Proposition 1.14 (i) and Corollary 2.17.
(ii) This follows from the Birkhoff ergodic theorem.
(iii) See [LP17] Proposition 1.14 (ii).
(iv) This follows from [LP17] Lemma 10.5.
(v) See [AF02] Section 2.4.3

�

3. The Z-Valued Process

The proof of Theorem 1.1 will proceed by comparing the BPME to a process
whose population is allowed to become negative. This Z-valued BPME is a
sequence (Yt, Qt)t≥0 of population-state pairs, with initial state Q0 ∈ S, but now
the initial population Y0 is allowed to take values in Z, and reproduction occurs
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regardless of whether the population is positive. Using the same definitions and
notation as in Definition 2.1, the update rule is given by:

Qt+1 ∼ P (Qt, ·) independent of X0, . . . , Xt, Q0, . . . , Qt−1

Yt+1 := Yt − 1 + ξt+1
(4)

where
ξt :=

∑
i∈S

ξit1{Qt+1 = i}.

Notice that we can recover the original BPME from the Z-valued BPME with
Y0 ≥ 1 by setting:

Xt =

{
Yt if Ys > 0 for all 0 ≤ s < t

0 else.

Note that Xt > 0 for all t if and only if Yt > 0 for all t.

3.1. Excursions of the environment. The proof of Theorem 1.1 will proceed
by considering excursions of the environment chain from its starting state in the
Z-valued BPME.

Fix a starting environment Q0 = i. Let τ0 = 0, and for n ≥ 1 let

τn := inf{t > τn−1 | Qt = i}.
be the time of nth return to state i.

Let
∆n = ∆i

n = Yτn − Yτn−1 .

be the net population change during the nth excursion from state i.

Lemma 3.1. The sequence (∆n)n≥1 is independent and identically distributed
(i.i.d.).

Proof. We have

∆n =

τn∑
t=τn−1+1

(ξt − 1) =

τn∑
t=τn−1+1

∑
j∈S

(ξjt − 1)1{Qt = j}.

By the strong Markov property, the sequence (Qτn−1+1, . . . , Qτn) has the same
distribution for each n, and is independent of (Q0, . . . , Qτn−1). In addition, the

stacks (ξjt )t≥0 are independent of the stopping times τn. Hence, for fixed j, the

sequence (ξjτn−1+1, . . . , ξ
j
τn) has the same distribution for each n, and is indepen-

dent of every other such sequence for varying n and j. It then follows from the
expression for ∆n above that (∆n)n≥1 is an i.i.d. sequence. �

Lemma 3.1 implies that the sequence (Yτn)n≥0 is a random walk with i.i.d. steps
∆1,∆2, . . . . The long-term behavior of such a walk is determined by the mean of
the step distribution.

Proposition 3.2 ([Dur19, Exercise 5.4.1]). Let ∆1,∆2, . . . be i.i.d. real-valued
random variables with finite mean, and Yn = Y0 +

∑n
i=1 ∆i. There are only four

possibilities, one of which has probability one.
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(1) If P (∆1 = 0) = 1, then Yn = Y0 for all n.
(2) If E [∆1] > 0, then Yn →∞.
(3) If E [∆1] < 0, then Yn → −∞.
(4) If E [∆1] = 0 and P (∆1 = 0) < 1, then −∞ = lim inf Yn < lim supYn =∞.

Therefore we need to calculate the expectation of ∆1. Recall that µ =
∑

i∈S µiπi
is the mean number of offspring produced when a single individual reproduces
in the stationary environment, and τ1 is the time of first return to the starting
environment.

Lemma 3.3. The mean number of offspring produced in one excursion from the
starting state is E [∆1] = E [τ1] (µ− 1).

Proof. Define Ft = σ(Y0, . . . , Yt−1, Q0, . . . , Qt). Note the inclusion of Qt: this
sigma field includes all information up to the time right before the tth individual
reproduces. Then,

E [∆n] =

τn∑
t=τn−1+1

∑
j∈S

E
[
E
[
(ξjt − 1)1{Qt = j} | Ft

]]
=

τn∑
t=τn−1+1

∑
j∈S

E
[
1{Qt = j}E

[
(ξjt − 1) | Ft

]]
=

τn∑
t=τn−1+1

∑
j∈S

E [1{Qt = j}(µj − 1)]

=
∑
j∈S

(µj − 1)E

 τn∑
t=τn−1+1

1{Qt = j}

 .
Now by the strong Markov property and Proposition 2.2(iv), we have

E

 τn∑
t=τn−1+1

1{Qt = j}

 = π(j)E [τn − τn−1] .

By the strong Markov property we also have E [τn − τn−1] = E [τ1]. Thus,

E [∆n] =
∑
j∈S

(µj − 1)π(j)E [τ1]

= E [τ1]

∑
j∈S

µjπ(j)−
∑
j∈S

π(j)


= E [τ1] (µ− 1). �

3.2. Extinction in the subcritical and critical cases. We now prove items
(1) and (2) of Theorem 1.1.

Theorem 3.4. Let (Xt, Qt)t≥0 be a BPME with any initial population X0 and
any initial environment Q0.
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If µ < 1, then Xt → 0 almost surely.
If µ = 1 and 0 < Var(∆1) ≤ ∞, then Xt → 0 almost surely.

Proof. The Z-valued process Yτn = Y0+
∑n

k=1 ∆k, at time of nth return to the ini-
tial environment Q0, is a random walk with i.i.d. increments ∆k. By Lemma 3.3,
we have E [∆k] = E [τ ] (µ − 1). In the case µ < 1, we are in case (3) of Propo-
sition 3.2; in the case µ = 1 and Var(∆1) > 0 we are in case (4). So in either
case,

lim inf
n→∞

Yτn = −∞ a.s..

So with probability one there exists a time T such that YT ≤ 0. Since Y is integer-
valued and decreases by at most one at each time step, for the minimal such T we
have YT = 0, and so Xt = 0 for all t ≥ T . �

3.3. Survival in the supercritical case. The proof of Theorem 1.1(3) will also
proceed by studying ∆n, the net population change during the nth excursion from
the starting state in the Z-valued BPME. If we apply Proposition 3.2 to the case
E [∆1] > 0, we find that Yτn → ∞ almost surely. However, this does not imply
Xt > 0 for all t almost surely, or even with positive probability: We could have
chosen a starting state that dooms the process to extinction in the first step, as in
Example 2.2. To rule out this kind of scenario, we make the following definition, in
which Pm.i denotes the law of the Z-valued BPME started with (Y0, Q0) = (m, i),
and τ := inf{t ≥ 1 | Qt = i} is the time of first return to state i.

Definition 3.5. Total state m.i is viable if

Pm.i (Yτ − Y0 ≥ 1 and Yt ≥ 1 for all t ∈ [0, τ ]) > 0.

In words, m.i is viable if it is possible to start in state i with m individuals
and return to state i with at least m+ 1 individuals, while keeping the population
positive the whole time. Note that if m.i is viable then (m+ 1).i is viable.

Lemma 3.6. Suppose µ > 1. Then for every state i ∈ S, there exists m such that
m.i is viable.

Proof. Fixing i ∈ S, let Cyc be the set of all tuples (y0.q0, . . . , yn.qn) (of any
length) with each yt ∈ Z and each qt ∈ S, such that y0 = 0 and q0 = qn = i and
qt 6= i for all 1 ≤ t < n. Let

P ((y0.q0, . . . , yn.qn)) := Py0.q0 (Yt.Qt = yt.qt for all 1 ≤ t ≤ n) .

The mean population change over one excursion from state i is

E0.i [∆1] =
∑
c∈Cyc

ynP (c) .

Since µ > 1 we have E0.i [∆1] = E [τ ] (µ − 1) > 0 by Lemma 3.3, so at least one
term on the right side is positive. Hence there exists c = (0.q0, . . . , yn.qn) ∈ Cyc
such that yn ≥ 1 and P (c) > 0. Since y0 = 0 and the population can decrease by
at most one per time step, each yi ≥ −i. So the excursion

c′ = ((y0 + n).q0, . . . , (yn + n).qn)

has P (c′) = P (c) > 0 and all yi + n ≥ 1 and yn + n ≥ n+ 1, so n.i is viable. �
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Remark. A similar argument shows that if no state’s offspring distribution is con-
centrated on 0, then 1.i is viable for all states i.

We are now ready to prove the main result of this section.

Theorem 3.7. Let Xt be a BPME with µ > 1. Then for all viable m.i we have

Pm.i (Xt > 0 for all t) > 0.

Proof. Let m.i be viable. Write P = Pm.i for the law of the Z-valued the BPME
(Yt, Qt)t≥0, started with initial population m and initial state i. Since Xt > 0 for
all t if and only if Yt > 0 for all t, it suffices to prove P (Yt > 0 for all t) > 0.

Since m.i is viable, there exists δ such that

P (Yτ ≥ m+ 1 and Yt ≥ 1 for all t ∈ (0, τ ]) ≥ δ > 0.

By the strong Markov property and induction on n it follows that

P (Yτn ≥ m+ n and Yt ≥ 1 for all t ∈ (0, τn]) ≥ δn

for all n ≥ 1. Write En = {Yτn ≥ m + n}. By the strong Markov property at
time τn,

P (Yt > 0 for all t) ≥ P (Yt > 0 for all t > τn | En and Yt ≥ 1 for all t ∈ (0, τn]) · δn

= P (Yt > 0 for all t > τn | En) · δn.
So it suffices to find n such that the right side is strictly positive, or equivalently,

P (Yt = 0 for some t > τn | En) < 1.

Consider the following events for k ≥ 0:

Ak := {Yt = 0 for some t ∈ (τk, τk+1]}

Bk :=

{
Yτk ≤

µ− 1

2
E [τ ] k

}
Ck :=

{
τk+1 − τk ≥

µ− 1

2
E [τ ] k

}
where τ = τ1. Observe that

{Yt = 0 for some t > τn} =

∞⋃
k=n

Ak

and for each k,
Ak ⊆ Bk ∪ Ck.

The latter holds because Yt decreases by at most one at each time step; hence
if Yτk >

µ−1
2 E [τ ] k, then Yt cannot reach 0 before time τk+1 unless τk+1 − τk ≥

µ−1
2 E [τ ] k. We wish to show

P

( ∞⋃
k=n

Ak | En

)
< 1.

Recall from Lemmas 3.1 and 3.3 that Yτk = Y0 +
∑k

m=1 ∆m, where the ∆m

are i.i.d. with mean E [τ ] (µ − 1). By the strong law of large numbers, 1
kYτk →
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E [τ ] (µ − 1) almost surely as k → ∞. In particular, this implies P (Bk i.o.) = 0,
so, P (

⋃∞
k=nBk)→ 0 as n→∞. By the FKG inequality, since Bk is a decreasing

event and En is an increasing event with respect to the offspring random variables

(ξjt )j∈S, t∈N, we have

P

( ∞⋃
k=n

Bk | En

)
≤ P

( ∞⋃
k=n

Bk

)
.

Since each τk+1 − τk has the same distribution as τ , we have∑
k≥0

P (Ck) <∞.

In addition, Ck is independent of En for all k ≥ n (since τk+1 − τk is independent
of Yτn by the strong Markov property).

Now choose n large enough so that P (
⋃∞
k=nBk) <

1
2 and

∑∞
k=n P (Ck) <

1
2 .

Then

P

( ∞⋃
k=n

Ak | En

)
≤ P

( ∞⋃
k=n

Bk | En

)
+ P

( ∞⋃
k=n

Ck | En

)

≤ P

( ∞⋃
k=n

Bk

)
+ P

( ∞⋃
k=n

Ck

)

<
1

2
+

1

2
where we have used the FKG inequality to remove the conditioning on the B term,
and independence to remove the conditioning on the C term. �

Theorem 1.1(3) follows immediately from Theorem 3.7 together with Lemma 3.6.

4. Laws of large numbers

In this section we prove strong laws of large numbers for Yt and Xt. As above,
the environment chain (Qt)t≥0 is irreducible with stationary distribution π, and for
each state i the offspring distribution has finite mean µi, and we let µ =

∑
i∈S πiµi.

Theorem 4.1. For any initial populations Y0 ∈ Z and X0 ∈ N≥1, it holds almost
surely as t→∞

Yt
t
→ µ− 1

and
Xt

t
→ (µ− 1)1S

where S = {Xt ≥ 1 for all t} is the event of survival.

Proof. We start by observing that

Yt − Y0 =

t∑
s=1

(ξs − 1) =

t∑
s=1

∑
i∈S

1{Qs = i}(ξis − 1).
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Switching the order of summation, the right side can be written as∑
i∈S

ZiLt

where Zik denotes a sum of k independent copies of ξi1−1, and Lt =
∑t

s=1 1{Qs =
i} is the local time of state i.

By the strong law of large numbers for i.i.d. sums, Zik/k → µi− 1 almost surely
as k →∞. It follows from Proposition 2.2(ii) that

ZiLt

t
=
ZiLt

Lt

Lt
t
→ (µi − 1)πi

almost surely as t→∞. Summing over i yields Yt/t→ µ− 1 almost surely.
The strong law for Xt now follows by observing that Xt = Yt on S and Xt/t→ 0

almost surely on Sc. �

5. Central Limit Theorems

In this section we prove a central limit theorem for Yt and Xt under a second
moment assumption on the offspring distributions. We will proceed by defining
a martingale involving Yt, calculating its quadratic variation, and invoking the
martingale central limit theorem. Then to pass from Yt to Xt, we show that the
limiting normal random variable is independent of the event of survival.

5.1. The martingale. As above, suppose the environment chain (Qt)t≥0 is irre-
ducible with transition matrix P and stationary distribution π, and for each state
i the offspring distribution has finite mean µi (We will impose finite second mo-
ment in the next section, but it is not needed yet). Write ~π and ~µ for the column
vectors with coordinates πi and µi respectively. As above, let

µ = 〈~π, ~µ〉 :=
∑
i∈S

πiµi.

Lemma 5.1. There is a unique vector ~ϕ ∈ RS satisfying 〈~π, ~ϕ〉 = 0 and

ϕi −
∑
j∈S

Pijϕj = µi − µ

for all i ∈ S.

Proof. Since ~π is the unique stationary distribution of the environment chain, the
left null space of I−P is spanned by ~π. The column space of I−P is the orthogonal
complement of the left null space,

Im(I − P ) = {~v ∈ RS : 〈~π,~v〉 = 0}.
We check that µ~1− ~µ is orthogonal to ~π, and thus is in the image of I − P :∑

i∈S
πi(µ− µi) = µ

∑
i∈S

πi −
∑
i∈S

πiµi

= µ− µ
= 0.
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Therefore there exists a vector ~ϕ such that (I − P )~ϕ = ~µ− µ~1 as desired.

The right null space of I−P is spanned by ~1, so ~ϕ is unique up to adding scalar
multiples of ~1. Therefore there is a unique such vector satisfying 〈~π, ~ϕ〉 = 0. �

We will see that the vector ~ϕ has a natural interpretation in terms of the BPME:
Its coordinate ϕ(i) represents the long-term excess fertility of environment i,
in the sense of Corollary 5.3 below.

We now define a martingale for the Z-valued branching process (Yt, Qt)t≥0,
adapted to the filtration

Ft := σ((ξis)i∈S,0≤s≤t, (Qs)0≤s≤t+1).

Note the inclusion ofQt+1: This sigma-algebra tells us what state we will transition
to next, but not how many offspring will be produced.

Lemma 5.2. Write ϕ(i) for the ith coordinate of the vector ~ϕ of Lemma 5.1.
Then

Mt := Yt − (µ− 1)t+ ϕ(Qt+1)

is a martingale adapted to Ft.

Note that Yt −
∑t

s=1(µQs − 1) is also a martingale, but we will find Mt much
more useful!

Proof. Recall that Yt = Yt−1 − 1 + ξt where ξt =
∑

i∈S ξ
i
t1{Qt = i} and ξit is

sampled from the offspring distribution of state i. Hence

E [Mt | Ft−1] = Yt−1 − 1− (µ− 1)t+ E [ξt + ϕ(Qt+1) | Ft−1] .

Now

E [ξt + ϕ(Qt+1) | Ft−1] =
∑
i∈S

1{Qt = i}E

ξit +
∑
j∈S

1{Qt+1 = j}ϕ(j) | Ft−1


=
∑
i∈S

1{Qt = i}

µi +
∑
j∈S

P (i, j)ϕ(j)


=
∑
i∈S

1{Qt = i}(µ+ ϕ(i))

= µ+ ϕ(Qt)

where we have used the fact that
∑

j∈S P (i, j)ϕ(j) − ϕ(i) = µ − µi. Combining
this with the above, we have

E [Mt | Ft−1] = Yt−1 − 1− (µ− 1)t+ µ+ ϕ(Qt)

= Mt−1. �

Corollary 5.3. If the environment chain is aperiodic, then

ϕ(i) = lim
t→∞

(E0.i [Yt]− (µ− 1)t) .
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Proof. Let Y0 = 0 and Q0 = i. Writing E = E0.i, equating M0 = E [Mt] yields

ϕ(i) = E [Yt]− (µ− 1)t− E [ϕ(Qt+1)] .

Since the environment is aperiodic, P (Qt = j)→ πj as t→∞, and hence

E [ϕ(Qt+1)]→ 〈~π, ~ϕ〉 = 0. �

5.2. Quadratic Variation. Assume now that each offspring distribution has
mean µi and variance σ2i < ∞. In this case EM2

t < ∞; to see this, note that
ϕ is bounded (since the state space S is finite) and

Yt = Y0 +

t∑
s=1

∑
i∈S

1{Qs = i}(ξis − 1)

and each ξis is square-integrable, so Mt is a finite sum of square-integrable random
variables. The quadratic variation associated with Mt is

Vt :=
t∑

s=1

E
[
(Mt −Mt−1)

2 | Ft−1
]
.

Lemma 5.4. Vt/t→ σ2M almost surely as t→∞, where

σ2
M :=

∑
i∈S

πi(σ
2
i − (µ− µi)2 + 2µiϕi) (5)

where ~ϕ is given by Lemma 5.1.

Proof. The increments of M are given by

Ms −Ms−1 = ξs − µ+ ϕ(Qs+1)− ϕ(Qs).

Squaring and taking conditional expectation, we break the result into three terms:

E
[
(Ms −Ms−1)

2 | Fs−1
]

= E
[
(ξs − µ)2 | Fs−1

]︸ ︷︷ ︸
(1)

+E
[
(ϕ(Qs+1)− ϕ(Qs))

2 | Fs−1
]︸ ︷︷ ︸

(2)

+ 2E [(ξs − µ)(ϕ(Qs+1)− ϕ(Qs)) | Fs−1]︸ ︷︷ ︸
(3)

.

We consider these terms one at a time. First, since Qs is Fs−1-measurable,

(1) =
∑
i∈S

1{Qs = i}E
[
(ξis − µ)2 | Fs−1

]
.

The conditioning on the right side can be dropped by independence. Adding and
subtracting µi we obtain∑

i∈S
1{Qs = i}E((ξis − µi)− (µ− µi))2
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Taking the time average, since 1
t

∑t
s=1 1{Qs = i} → πi almost surely as t → ∞,

we have

1

t

t∑
s=1

∑
i∈S

1{Qs = i}(σ2i + (µ− µi)2)→ σ2 + τ2 (6)

where

σ2 :=
∑
i∈S

πiσ
2
i

and

τ2 :=
∑
i∈S

πi(µ− µi)2.

For the second term,

(2) = E
[
(ϕ(Qs+1)− ϕ(Qs))

2 | Fs−1
]

=
∑
i∈S

1{Qs = i}
∑
j∈S

P (i, j)(ϕ(j)− ϕ(i))2

Expanding the square and using the definition of ϕ, this becomes

=
∑
i∈S

1{Qs = i}


∑
j∈S

P (i, j)ϕ(j)2 − 2ϕ(i)
∑
j∈S

P (i, j)ϕ(j)︸ ︷︷ ︸
µ−µi+ϕ(i)

+ϕ(i)2


=
∑
i∈S

1{Qs = i}

∑
j∈S

P (i, j)ϕ(j)2 − 2ϕ(i)(µ− µi)− ϕ(i)2

 .
Now taking the time average, and writing ~ϕ2 for the vector whose ith entry is
ϕ(i)2 and ~µ~ϕ for the vector whose ith entry is µiϕ(i), we obtain

1

t

t∑
s=1

∑
i∈S

1{Qs = i}

∑
j∈S

P (i, j)ϕ(j)2 − 2µϕ(i) + 2µiϕ(i)− ϕ(i)2


→
∑
i∈S

πi

∑
j∈S

P (i, j)ϕ(j)2 − 2µϕ(i) + 2µiϕ(i)− ϕ(i)2


=
∑
j∈S

ϕ(j)2
∑
i∈S

πiP (i, j)︸ ︷︷ ︸
πj

−2µ 〈~π, ~ϕ〉︸ ︷︷ ︸
0

+2 〈~π, ~µ~ϕ〉 −
〈
~π, ~ϕ2

〉

= 2 〈~π, ~µ~ϕ〉 . (7)
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For the third term, since ξis is independent of σ(Fs−1, Qs+1), we have

2E [(ξs − µ)(ϕ(Qs+1)− ϕ(Qs)) | Fs−1]

= 2
∑
i∈S

1{Qs = i}E

(ξis − µ)

∑
j∈S

1{Qs+1 = j}ϕ(j)− ϕ(i)

 | Fs−1


= 2
∑
i∈S

1{Qs = i}(µi − µ)

∑
j∈S

P (i, j)ϕ(j)− ϕ(i)


= 2

∑
i∈S

1{Qs = i}(µi − µ)(µ− µi).

The limit of the time average is

−2

t

t∑
s=1

∑
i∈S

1{Qs = i}(µi − µ)2 → −2τ2. (8)

Adding (6), (7), and (8), we conclude that

Vt
t
→ σ2 − τ2 + 2 〈~π, ~µ~ϕ〉 = σ2M . �

Remark. σ2M ≥ 0 since it is a limit of nonnegative random variables. In particular,
taking all ξit deterministic so that the first term σ2 = 0, we obtain the inequality

τ2 ≤ 2 〈~π, ~µ~ϕ〉 . (9)

It would be interesting to give a more direct proof of this algebraic fact. Note
that if at least one of the offspring distributions has positive variance, then σ2 > 0
and hence σ2M > 0 by (9). On the other hand, if all offspring distributions are
deterministic, then a necessary and sufficient condition for σ2M = 0 is that all
excursions from a fixed state have the same net number of offspring. To avoid
trivialities, we assume from now on that σ2M > 0.

5.3. Applying the martingale CLT. Our goal in this section is to prove the
following central limit theorems for Yt and Xt.

Theorem 5.5. Assume that σ2M > 0. Then we have convergence in distribution

Yt − (µ− 1)t√
t

⇒ χ

and
Xt − (µ− 1)t1S√

t
⇒ χ1S

where χ is a normal random variable with mean 0 and variance σ2M , and χ is
independent of S, the event of survival.

To prove these, we will use the following version of the martingale central limit
theorem. As above, let Vt be the quadratic variation associated to the martingale
Mt. Write Kt = Mt −Mt−1.
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Proposition 5.6 (Martingale CLT, see [Dur19, Theorem 8.2.8]). Suppose that as
t→∞

(i) Vt
t → σ2M > 0 in probability, and

(ii) 1
t

∑t
s=1 E

[
K2
s1{|Ks| > ε

√
t}
]
→ 0 for all ε > 0.

Then Mt/
√
t⇒ N (0, σ2M ) as t→∞.

We start by verifying the above conditions (i) and (ii) for the martingale defined
in Lemma 5.2. Condition (i) follows from Lemma 5.4.

To check the Lindeberg condition (ii), let J be a constant such that |ϕ(i)| ≤ J
for all i ∈ S. Since ξs ≥ 0,

|Ks| = |ξs − µ+ ϕ(Qs+1)− ϕ(Qs)| ≤ ξs + µ+ 2J.

If t is sufficiently large so that ε
2

√
t > µ+ 2J , then:

{|Ks| > ε
√
t} ⊂ {ξs >

ε

2

√
t}.

In addition, on the event ξs >
ε
2

√
t, with t large enough that ε

2

√
t > µ + 2J , we

have:

K2
s ≤ (ξs + µ+ 2J)2 < (2ξs)

2.

Hence we have:

E
[
K2
s1{|Ks| > ε

√
t}
]
≤ E

[
K2
s1{ξs >

ε

2

√
t}
]
≤ E

[
4ξ2s1{ξs >

ε

2

√
t}
]
.

We will show that this quantity goes to 0 uniformly in s as t→∞. We have:

E
[
ξ2s1{ξs >

ε

2

√
t}
]

=
∑
i∈S

E
[
E
[
(ξis)

2
1{ξis >

ε

2

√
t, Qs = i} | Fs−1

]]
=
∑
i∈S

E
[
1{Qs = i}E

[
(ξis)

2
1{ξis >

ε

2

√
t}
]]

=
∑
i∈S

P (Qs = i)E
[
(ξis)

2
1{ξis >

ε

2

√
t}
]

≤ max
i∈S

E
[
(ξis)

2
1{ξis >

ε

2

√
t}
]
.

Now since E
[
(ξis)

2
]
<∞, we have E

[
(ξis)

2
1{ξis > ε

2

√
t}
]
→ 0 as t→∞. Moreover,

this rate is uniform in s since (ξis)s≥0 are i.i.d. samples from the offspring distri-
bution of state i. This verifies condition (ii) of the martingale CLT and hence we
have shown

Mt/
√
t⇒ χ ∼ N (0, σ2M ). (10)

Proof of Theorem 5.5. Since (Yt − (µ− 1)t)−Mt is bounded, it follows from (10)
that

Zt :=
Yt − (µ− 1)t√

t
⇒ χ.
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To prove the CLT for Xt, recall that Xt = 0 eventually on Sc, and that Xt = Yt
for all t on S. Applying the CLT for Yt, we find that

Xt − (µ− 1)t1S√
t

converges in distribution to 0 on Sc, and to χ on S. It remains to show that χ is
independent of S. To this end, fix an environment state i and let

s = inf{u > t1/4 : Qu = i}.

(The choice of t1/4 is unimportant; any function tending to∞ slower than
√
t will

do.) By the strong Markov property, the random variable

Z ′t :=
Yt − Ys − (µ− 1)t√

t
.

is independent of the event

Ss := {Yu > 0 for all u < s}

of survival up to time s.
Note that s = t1/4+τ for a random variable τ satisfying P (τ > a) ≤ maxj P (τji >

a) for all a, where τji is the first hitting time of state i starting from state j. By
Proposition 2.2(v) the hitting times τji have exponential tails, so by Borel-Cantelli

we have s/
√
t → 0 almost surely. By Theorem 4.1 we have Ys/s → µ − 1 almost

surely, so
Ys√
t

=
Ys
s

s√
t
→ 0

almost surely, and hence Zt − Z ′t → 0 almost surely. Since Ss ↓ S, and Z ′t is
independent of Ss, for any fixed ε > 0 and a ∈ R we have for large enough t

P (Zt > a,S) ≤ P (Zt > a,Ss)
≤ P (Z ′t > a− ε,Ss)
= P (Z ′t > a− ε)P (Ss)
→ P (χ > a− ε)P (S)

as t→∞. Likewise,

P (Zt > a,S) ≥ P (Zt > a,Ss)− ε
≥ P (Z ′t > a+ ε,Ss)− ε
→ P (χ > a+ ε)P (S)− ε.

Since ε > 0 is arbitrary, we conclude that

P (Zt > a,S)→ P (χ > a)P (S). �

Remark. Under the same hypotheses as Proposition 5.6, the martingale conver-
gence theorem gives the stronger conclusion that (Mtu/

√
t)u∈[0,1] converges weakly
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on C[0, 1] to (σMBu)u∈[0,1] where B is a standard Brownian motion. This yields
a corresponding strengthening of Theorem 5.5, namely(

Xtu − (µ− 1)tu1S√
t

)
u∈[0,1]

⇒ (σMBu1S)u∈[0,1]

as t → ∞, where B is a standard Brownian motion independent of S, the event
of survival.

6. Matrix Generating Function

6.1. Extinction matrix. In Theorem 1.1 we obtained qualitative results about
the survival of BPME. In this section we introduce a matrix generating function
to obtain quantitative estimates of the extinction probabilities.

In the ordinary Galton-Watson branching process with offspring distribution
(p0, p1, p2, . . . ), the generating function for the offspring distribution is given by:

f(x) :=
∞∑
k=0

pkx
k, |x| ≤ 1.

Many elementary branching process results can be obtained by analyzing the gen-
erating function [Har02, AN72]. For instance,

• If q is the extinction probability of the branching process, then q is the
smallest fixed point of f in [0, 1].
• If µ ≤ 1, then q = 1.
• If µ > 1, then q ∈ [0, 1) and q is the unique fixed point of f in [0, 1).
• For every t ∈ [0, 1), we have limn→∞ f

n(t) = q, where fn refers to the nth
iterate of f .

We will prove some analogous results for BPME, namely that the extinction ma-
trix is a fixed point of the generating function, and that iterates of the generating
function starting at any matrix (entrywise) between the zero matrix and the ex-
tinction matrix converge to the extinction matrix.

Recall that P denotes the environment chain transition matrix and R denotes
the reproduction matrix: Rjn is the probability of producing n offspring if the
environment state is j. For n ∈ N we define the S × S matrix Pn by

(Pn)ij := PijRjn

the probability that environment i transitions to environment j and n offspring
are produced.

A nonnegative matrix M with real entries is called stochastic if all of its row
sums are 1, and substochastic if all of its row sums are ≤ 1. Note that Pn is
substochastic for each n. We define the matrix generating function

f(M) =

∞∑
n=0

PnM
n (11)

where we interpret M0 = I (the S × S identity matrix).
We make the following observations about f(M).
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Lemma 6.1. Let f be the matrix generating function of a BPME. Then

• f(M) converges for all substochastic matrices M .
• If M is substochastic, then f(M) is substochastic.
• If M is stochastic, then f(M) is stochastic.

Proof. Note that
∑∞

n=0 Pn = P , the transition matrix of the environment chain.
Writing 1 for the all 1’s vector and ≤ for coordinatewise inequality of vectors, a
matrix M with nonnegative entries is substochastic if and only if M1 ≤ 1, and
equality holds if and only if M is stochastic.

Let M be substochastic. Since all entries of M,P0, P1, . . . are nonnegative, we
have

f(M)1 =
∞∑
n=0

PnM
n1 ≤

∞∑
n=0

Pn1 = P1 = 1

and if M is stochastic then equality holds. �

For integers x and y, and environments i and j, denote by {x.i → y.j} the
event that the total state transitions from x.i to y.j in one time step; that is,
state i transitions to state j and y − x+ 1 offspring are produced. This event has
probability

P (x.i→ y.j) =

{
PijRj,y−x+1 if y ≥ x− 1

0 else.

We now introduce a matrix of extinction probabilities. Recall that n.i denotes
the total state with population n and environment i. We say that the initial total
state X0.Q0 = n.i halts in 0.j if T := inf{t : Xt = 0} is finite and satisfies
QT = j. The extinction matrix is the S × S matrix E with entries

Eij = P (1.i halts in 0.j) .

Note that E is substochastic, since for all i ∈ S∑
j∈S

Eij = P (1.i halts in 0.j for some j) ≤ 1.

Let En be the nth power of the extinction matrix, and let f be the matrix gener-
ating function (11).

Lemma 6.2. (En)ij = P (n.i halts in 0.j), and f(E) = E.

Proof. We prove the first part by induction on n. If it holds for En, then

(En+1)ij =
∑
k∈S

P (n.i halts in 0.k)P (1.k halts in 0.j) .

The population must reach 1 before reaching 0, as it decreases by at most one
per time step. Now P (n.i halts in 0.k) is also the probability that the BPME
started at (n + 1).i eventually reaches a population of 1 individual, and the
first time it does so it is in environment k. Hence, the above sum is equal to
P ((n+ 1).i halts in 0.j), completing the induction.
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Now observe that

(PnE
n)ij =

∑
k∈S

P (1.i→ n.k)P (n.k halts in 0.j) .

Summing over n, the (i, j) entry of
∑∞

n=0 PnE
n equals P (1.i halts in 0.j), which

is Eij . Thus f(E) = E. �

Now we state the main goal of this section.

Theorem 6.3. Let O be the S × S zero matrix. Then limn→∞ f
n(O) = E.

Write M ≤ N if Mij ≤ Nij for all i, j ∈ S. Note that if M,N are substochastic
and M ≤ N then

f(M) ≤ f(N). (12)

Corollary 6.4. If O ≤M ≤ E, then limn→∞ f
n(M) = E.

Proof. By (12), O ≤ M ≤ E implies fn(O) ≤ fn(M) ≤ fn(E) for all n ≥ 1.
Taking the limit, we find

E = lim
n→∞

fn(O) ≤ lim
n→∞

fn(M) ≤ lim
n→∞

fn(E) = E. �

6.2. Extinction in m generations. To prepare for the proof of Theorem 6.3,
we develop some notation describing the multi-step transitions of the BPME.

Denote by {x.i n−→ y.j} the event that the total state transitions from x.i to y.j
in n time steps; that is, there exist total states x1.k1, . . . , xn−1.kn−1 such that

x.i→ x1.k1 → · · · → xn−1.kn−1 → y.j.

Next we define events m and
n
 m to describe how the population can decrease

over longer time periods. For example, the event {x.i 2 (x−1).j}means that one
individual produces any number of offspring, but all offspring of the first individual
fail to produce any offspring, and the environment transitions from i to j in the
process. Likewise, {x.i  m (x − 1).j} can be interpreted as a single individual’s

family tree going extinct in at most m generations. Finally,
n
 m means that each

of n individuals’ family trees go extinct in at most m generations.

Formally, these events are defined as follows. We first define x.i
n
 1 y.j if and

only if y = x − n and x.i
n−→ y.j. We define x.i

0
 m y.j if and only if x = y and

i = j. For m,n ≥ 2 we recursively define

{x.i 1
 m (x− 1).j} :=

⋃
n∈N

⋃
k∈S
{x.i→ (x− 1 + n).k

n
 m−1 (x− 1).j}

{x.i n
 m (x− n).j} :=

⋃
k∈S
{x.i 1
 m (x− 1).k

n−1
 m (x− n).j}.

The union defining
1
 m includes n = 0, and the corresponding event is {x.i →

(x− 1).j}. We write  m to mean
1
 m.

We make a few observations:

• n
 m results in population decrease of exactly n. Moreover, the population
at the end is strictly smaller than the population at any previous time.



22 LILA GRECO AND LIONEL LEVINE

t

Xt

Figure 1. Left: An example of the event
2
 2. Right: An example

of the event  3. Each  2 event is marked with a brace.

• Since extinction in at most m generations implies extinction in at most
m+ 1 generations,

{1.i m 0.j} ⊆ {1.i (m+1) 0.j} (13)

as can be verified from the formal definition by induction on m.
• Extinction in t time steps implies extinction in at most t generations. Con-

versely, extinction in m generations implies extinction in a finite number
of time steps. Hence⋃

m≥1
{1.i m 0.j} =

⋃
t≥1
{1.i t−→ 0.j}. (14)

• For all x, y ∈ Z, we have P
(
x.i

n
 m (x− n).j

)
= P

(
y.i

n
 m (y − n).j

)
.

Some illustrations of these events are shown in Figure 1. Only the population
size is depicted, not the state of the environment.

The next lemma gives an interpretation of the entries of the nth power of the
mth iterate of f applied to the zero matrix.

Lemma 6.5. For all n ≥ 0, m ≥ 1, we have

(fm(O)n)ij = P
(
n.i

n
 m 0.j

)
.

Proof. First if n = 0, then by our convention M0 = I (the identity matrix), we

have (fm(O)0)ij = Iij = P
(

0.i
0
 m 0.j

)
for all m, as desired. Next, if m = n = 1,

then (f1(O)1)ij = (P0)ij = P
(

1.i
1
 1 0.j

)
, as desired.

Now we proceed by induction on the pair (m,n) in lexicographic order. Sup-
posing the lemma holds for the pairs (m, 1) and (m,n), we check that it holds for
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the pair (m,n+ 1):

fm(O)n+1
ij =

∑
k∈S

fm(O)ikf
m(O)nkj

=
∑
k∈S

P
(

1.i
1
 m 0.k

)
P
(
n.k

n
 m 0.j

)
=
∑
k∈S

P
(

(n+ 1).i
1
 m n.k

)
P
(
n.k

n
 m 0.j

)
= P

(
(n+ 1).i

(n+1)
 m 0.j

)
.

Finally, supposing the lemma holds for all pairs (m, 0), (m, 1), . . . we check that it
holds for the pair (m+ 1, 1):

(fm+1(O)1)ij =
∞∑
n=0

(Pnf
m(O)n)ij

=

∞∑
n=0

∑
k∈S

(Pn)ik(f
m(O)n)kj

=

∞∑
n=0

∑
k∈S

P (1.i→ n.k)P
(
n.k

n
 m 0.j

)
= P

(
1.i

1
 (m+1) 0.j

)
.

This completes the induction. �

Proof of Theorem 6.3. By definition of the extinction matrix,

Eij = P (1.i halts in 0.j)

= P

⋃
t≥1
{1.i t−→ 0.j}


= P

⋃
m≥1
{1.i m 0.j}


= lim

m→∞
P ({1.i m 0.j}) .

In the second to last line we have used (14), and in the last line we have used (13).
By Lemma 6.5, the right side equals limm→∞ f

m(O)ij . �

7. Open Questions

7.1. Infinite state space. We assumed the environment Markov chain has a
finite state space. We expect our results to extend to positive recurrent Markov
chains (perhaps assuming a tail bound on the offspring distributions and hitting
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times). We used exponential tails of hitting times to prove Theorem 5.5, but one
can check in the proof that 2 + δ moments suffice.

The null recurrent case is more subtle. Here the difficulty is that the random
variable ∆1 (the net number of offspring produced in an excursion from the starting
environment) is no longer integrable: E∆+

1 = E∆−1 =∞.
The transient case can have quite different behavior, as shown by the next two

examples.

Example. Let the environment chain be a simple random walk on Z3, with offspring
distribution

ξit =

{
0 with probability (|i|+ 2)−3

1 with probability 1− (|i|+ 2)−3

where |i| denotes the Euclidean norm of i ∈ Z3. Even though Eξit < 1 for all i,
the resulting BPME survives with positive probability. The basic estimate used
to prove survival is

P (Lr ≥ ar2) ≤ c0e−c1a (15)

where Lr =
∑∞

t=0 1{|Qt| < r} is the total time spent by the random walk in the
ball {i ∈ Z3 : |i| < r}. This estimate can be used to show that the number of

times t such that ξQt
t = 0 is almost surely finite.

Example. Fix m > 0. Let the environment chain be a simple random walk on Z3,
with offspring distribution

ξit =

{
0 with probability 1− (|i|+ 2)−3

m(|i|+ 2)3 with probability (|i|+ 2)−3.

Then Eξit = m for all i, but the resulting BPME goes extinct almost surely. The

proof uses (15) to show that almost surely, only finitely many ξQt
t are nonzero.

7.2. Uniqueness of the fixed point. By Theorem 1.1, the extinction matrix E
is stochastic if and only if µ ≤ 1 and P 6= P1. We list some open questions about
the matrix generating function f(M) =

∑
PnM

n.

(1) In the case µ ≤ 1 and P 6= P1, is the extinction matrix E the unique fixed
point of f?

(2) In the case µ > 1, is E the unique fixed point of f that is not stochastic?
(3) Does it hold for every substochastic matrix M that is not stochastic, that

limn→∞ f
n(M) = E?

7.3. Stochastic fixed point? Iterates of f starting at the identity matrix have
a natural interpretation: fn(I)ij is the probability starting with population 1 in
environment i that the environment is j after n generations. One might expect that
as n→∞, the environment after n generations would converge to the stationary
distribution π on the event of survival, but this is wrong! Let v be the left Perron-
Frobenius eigenvector of the extinction matrix, normalized so that its coordinates
sum to 1. Experiments suggest that as n→∞, the distribution of the environment
after n generations converges to v on the event of survival, which motivates the
following conjecture.
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Conjecture 7.1.

lim
n→∞

fn(I)ij = Eij +

(
1−

∑
k∈S

Eik

)
vj .

7.4. Multitype BPME. Consider a network of BPMEs, where the offspring of
each BPME are sent to other BPMEs. Formally, let G = (V,E) be a finite directed
graph, with the following data associated to each vertex v ∈ V :

(1) A finite set Sv (the state space of v).
(2) A stochastic matrix Pv : RSv → RSv (the transition matrix of v).

(3) A stochastic matrix Rv : RSv → R
∏

w N (the reproduction matrix of v).

Here the product is over out-neighbors w of v. When an individual at vertex v
reproduces, the state of v updates according to the transition matrix Pv, and the
individual at v is replaced by a random number of offspring at each out-neighbor w
of v. The reproduction matrix Rv specifies the distribution of this offspring vector,
which depends on the state of vertex v. This process continues unless there are no
individuals left, in which case the network is said to halt. The abelian property
[BL16a] ensures that the probability of halting does not depend on the order in
which individuals reproduce. Moreover, on the event that the network halts, the
distribution of the final states of the vertices does not depend on the order in
which individuals reproduce.

If the transition matrix Pv is irreducible, then it has a unique stationary dis-
tribution πv. Let µvw(i) denote the mean number of offspring sent to vertex w
when an individual at vertex v reproduces in state i. Then the long-term average
number of offspring sent from v to w when an individual at vertex v reproduces is

Mvw :=
∑
i∈Sv

πv(i)µvw(i).

Denote by µ the Perron-Frobenius eigenvalue of the V × V matrix M .

Conjecture 7.2. If µ < 1, then the network halts almost surely for any initial
state and population.

If µ = 1 and there are no conserved quantities, then the network halts almost
surely for any initial state and population.

If µ > 1, then for sufficiently large initial population the network has a positive
probability not to halt.

Here a conserved quanity is a collection of real numbers av and functions
ϕv : Sv → R for each v ∈ V , such that∑

v∈V
avXv + ϕv(Qv)

is an almost sure constant, where Xv is the number of individuals at vertex v, and
Qv is the state of vertex v.

Conjecture 7.2 is a common generalization of Theorem 1.1 and the main result
of [BL16b]: The former is the case #V = 1, and the latter is the case that all
offspring distributions are deterministic.
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