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Abstract

Do transformers “think ahead” during inference at a given position? It
is known transformers prepare information in the hidden states of the
forward pass at time step t that is then used in future forward passes t + τ.
We posit two explanations for this phenomenon: pre-caching, in which
off-diagonal gradient terms present during training result in the model
computing features at t irrelevant to the present inference task but useful for
the future, and breadcrumbs, in which features most relevant to time step t
are already the same as those that would most benefit inference at time t+ τ.
We test these hypotheses by training language models without propagating
gradients to past timesteps, a scheme we formalize as myopic training. In a
constructed synthetic data setting, we find clear evidence for pre-caching.
In the autoregressive language modeling setting, our experiments are more
suggestive of the breadcrumbs hypothesis, though pre-caching increases
with model scale.

1 Introduction

Humans are known to think ahead while speaking; decades of linguistics research (Huettig,
2015; Miller, 1951) have shown evidence that human language users internally predict
upcoming language input, words and sometimes sentences ahead (Barthel et al., 2016).

Unlike humans, contemporary language models allocate a fixed amount of information
processing for each token when “speaking” (Vaswani et al., 2017). Do language models, like
humans, think ahead? Recent work (Pal et al., 2023; Hernandez et al., 2024) has shown that
tokens beyond the immediate next token can be predicted by probing the hidden state of
the language model. Model outputs at future tokens can be predicted to some extent using
linear probes on model hidden states, and interventions on hidden states can predictably
alter future outputs.1

These findings indicate that model activations at a given timestep are at least somewhat
predictive of future outputs. However, it remains unclear why this might be: is this
just a happenstance property of the data, or because the model is deliberately preparing
information for future timesteps, at the expense of degrading performance on the current
position?

We observe that gradients during training optimize weights for both the loss at the current
token position as well as for tokens later in the sequence. We question to what extent
current transformer weights dedicate resources to the current token vs. allocating it for
future tokens.

1Code to reproduce our results can be found at https://github.com/wiwu2390/FutureGPT2-public
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Figure 1: At which position is the computation required to correctly answer this math
problem taking place? Cognitive science tells us that humans think ahead while speaking;
we investigate the extent to which language models do the same.

We consider two possibilities: the pre-caching hypothesis, in which the transformer learns
to compute features at time step t that are irrelevant to the inference task at that current
time step but may be useful for future time steps t + τ, and the breadcrumbs hypothesis, in
which the features most relevant to time step t are already identical to those that would
most benefit inference at time t + τ. To evaluate which hypothesis might be correct, we
propose a myopic training scheme that does not propagate gradients from the loss at the
current position to hidden states from previous positions. We then evaluate the myopia
gap in performance between myopically trained and vanilla transformers as a measure of
pre-caching.

To consider whether language models might directly implement pre-caching, we design
a synthetic scenario where the task can only be completed via explicit pre-caching. We
configure a task where the model must precompute information for the next token, because
otherwise the correct answer could not be accurately computed in a single forward pass.
In this synthetic scenario, we find clear evidence that the transformer learns to pre-cache.
When transformer-based sequence models must precompute information to minimize loss,
they do so.

We then consider whether breadcrumbs or pre-caching is demonstrated in natural language
models. Our experiments with myopic training suggest that, with small language models
like GPT-2 (Radford et al., 2019), much less pre-caching occurs in this setting, pointing
towards the breadcrumbs hypothesis. That is, we claim language models on this scale do
not intentionally prepare information for the future to a significant extent. Instead, they
compute features that are useful to predicting the immediate next token, which turn out to
then be helpful at future steps; there is not a significant tradeoff between greedily optimizing
for next token loss and ensuring future predictive performance.

However, we also find evidence that the importance of pre-caching increases with scale,
becoming non-negligible with larger models, e.g. Pythia 2.8B (Biderman et al., 2023). This
suggests that these larger models are “planning for the future” in a way that small models
cannot.
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2 Related work

Future token meta-prediction. Several recent works (nostalgebraist, 2020; Belrose et al.,
2023; Pal et al., 2023; Cai et al., 2024) observe that transformer hidden states can be used
to predict current and future tokens in a sequence, typically via linear probing. Notably,
Hernandez et al. (2024) show that more complicated relationships are encoded linearly
in hidden states, such as subject-object relations, implying that future tokens can also be
predicted in specific cases. This future token predictivity has also been applied to speeding
up inference by decoding future tokens in parallel (Stern et al., 2018; Cai et al., 2024). Unlike
these works, we focus on the question of how the model learns to prepare hidden states that
are useful for future prediction, possibly at the expense of current-token predictivity.

Probing. Our synthetic data experiments make use of probing, a technique where a simple
auxiliary model is used to predict properties from target models’ representations (Belinkov
& Glass, 2019; Shi et al., 2016; Hewitt & Liang, 2019; Pimentel et al., 2020; Belinkov, 2021).
Probing-based approaches are known to overestimate latent information if the classifier
learns to do a task on its own (Belinkov, 2021), and probing analyses may only be informative
when compared to probing a reasonable baseline (Hewitt & Liang, 2019). In our probing
experiments, we avoid these pitfalls by ensuring that the function to be learned cannot
possibly be computed by the probe itself.

Mechanistic interpretability. Our analysis of transformer models in a synthetic setting
relates to the subfield of mechanistic interpretability, which seeks to understand models by
isolating and explaining the behavior of their components (Olah et al., 2020; Bau et al., 2020;
Meng et al., 2023; Nanda et al., 2023). Some of these works (Nanda et al., 2023; Li et al.,
2023; Zhong et al., 2023) practice mechanistic interpretability by studying models trained
on synthetic data. We apply some mechanistic interpretability techniques in a synthetic
setting to study the problem of whether language models “think ahead” for future tokens.
However, our approach also differs from that of mechanistic interpretability by analyzing
the effect of the training procedure on the learned model.

3 Theory: Pre-caching or breadcrumbs?

Consider a generic causal sequence-to-sequence prediction task

(x1, . . . , xn, y1, . . . , yn) ∼ D,

where D is a data distribution supported on Xn × Yn for some domains X, Y. The task is
to estimate the conditional expectations ED(yi | x1, . . . , xi) for 1 ≤ i ≤ n.2 Note that we
recover the autoregressive setting by setting Y = X and yi = xi+1.

Transformer models trained on such tasks have been observed (Pal et al., 2023) to store
information in hidden states during inference at position i that is then used in future
inference at j > i. However, since the loss associated with each step i depends only on
how well the model does at the immediate task of predicting yi, it may not be immediately
obvious how this preparation for the future arises. We give names to two competing
explanations:

• Pre-caching: The model “deliberately” computes and stores features that are ex-
pected to be useful for the future, even if they are irrelevant to the present.

• Breadcrumbs: The features that most benefit the present inference task are the
same as those that are most useful to the future. When the model performs the
present forward pass, it “unintentionally” leaves a trace (“breadcrumbs”) that is
then picked up by future passes.

2For classification tasks, we are typically interested in the conditional probabilities PrD(yn = c |
x1, . . . , xn) for each class c. However, this can be subsumed into the generic case by letting Y be the
probability simplex over all classes.
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To disentangle these two explanations, we introduce a notion of myopic transformer models,
which we show to be incapable of deliberate pre-caching—for these models, the extent
to which past features are beneficial to the future is decided purely by the breadcrumbs
explanation. Thus, the gap between vanilla and myopic transformer models is a quantitative
measure of how much pre-caching is taking place.

3.1 Causal sequence modeling

Suppose, for the sake of exposition, that the transformer model G uses independent parame-
ters for each position. 3 Let p be the parameter count of each forward pass of G. Then, letting
θi ∈ Θ = Rp be all parameters used by G at position i, a transformer G is a parameterized
function

G : Xn × Θn → Yn, (x1, . . . , xn; θ1, . . . , θn) 7→ (ŷ1, . . . , ŷn).
For 1 ≤ i ≤ n, let Gi(x1, . . . , xn) ∈ Y be the output of G’s ith forward pass. Because of the
causal masking within G, this depends only on x1, . . . , xi and θ1, . . . , θi. That is, with slight
abuse of notation, we may write

ŷi = Gi(x1, . . . , xn; θ1, . . . , θn) = Gi(x1, . . . , xi; θ1, . . . , θi).

3.2 Off-diagonal gradient terms

Now, letting L : Y × Y → R+ be some choice of loss function, the expected loss ℓ of a
transformer model with parameters θ1, . . . , θn is

ℓ(θ1, . . . , θn) := E(⃗x,⃗y)∼D
n

∑
i=1

L(Gi(x1, . . . , xi; θ1, . . . , θi), yi) =:
n

∑
i=1

ℓi(θ1, . . . , θi),

the sum over 1 ≤ i ≤ n of the expected loss ℓi at position i. (We suppress the dependence
on G and D for concision.) In practice, we always tie the weights across position. That is, all
θi are set equal to the same θ ∈ Θ. Then, by the chain rule,

∇θℓ(θ, . . . , θ) =
n

∑
i=1

∇θiℓ(θ1, . . . , θn)
∣∣
θ1=...=θn=θ

=
n

∑
i=1

n

∑
j=i

∇θiℓj(θ1, . . . , θj)
∣∣
θ1=...=θn=θ,

a sum over an upper-triangular expected Jacobian “matrix”. The off-diagonal terms i < j,
corresponding to the expected gradient of the model’s future loss at position j with respect
to its weights at position i, are the training signals that encourage pre-caching.

3.3 Measuring pre-caching: The myopia gap

We say a model is myopic when each forward pass Gi optimizes only ℓi without regard for
future ℓj at j > i. In the untied weights case, the right definition is then apparent.

Definition 1. The parameters (θ̃1, . . . , θ̃n) ∈ Θn are untied-myopic if they satisfy

θ̃i ∈ arg min
θi

ℓi(θ̃1, . . . , θ̃i−1, θi) ∀i ∈ {1, . . . , n}. (1)

Definition 2. Let M be the feasible set of the constraints in Equation 1. The untied myopia gap
is the smallest possible gap between the expected loss attained by a myopic model and the optimal
model:

p∗ := min
(θ̃1,...,θ̃n)∈M

ℓ(θ̃1, . . . , θ̃n)− min
(θ1,...,θn)∈Θn

ℓ(θ1, . . . , θn) ≥ 0. (2)

In the tied weights case, it is perhaps not immediately clear what the right definition of
myopia should be. It does not suffice to simply constrain the minimizations in Equation 1
to θ̃1 = . . . = θ̃n, since minθ ℓi(θ, . . . , θ) is optimizing for pre-caching (the dependence on
arguments j < i) as well as the present inference (the dependence on argument i). Instead,

3For example, this is true of absolute position embedding weights.

4



Published as a conference paper at COLM 2024

the right notion is a choice of tied parameters such that the model is, aggregated over
positions, optimal for the present task when conditioned on a fixed past. That is, forward
passes do not compute features for the future if they can compute other features more
beneficial to the present.

Definition 3. The parameters θ̃ ∈ Θ are (tied-)myopic if they satisfy

θ̃ ∈ arg min
θ∈Θ

n

∑
i=1

ℓi(θ̃, . . . , θ̃, θ). (3)

The (tied) myopia gap is then defined analogously to Definition 2.

The breadcrumbs hypothesis states that the myopia gap is small—near-optimal performance
can be attained even when each forward pass is computing features relevant to only its own
immediate inference task, with no regard to pre-caching for the future.

If the breadcrumbs hypothesis does not hold, we say that the model is pre-caching. It is
important to remember that the ℓi depend on a choice of transformer model G and dataset
D. That is, breadcrumbs and pre-caching are properties of the model architecture and the
data considered as a whole.

Although a small myopia gap reveals that one can do just as well without pre-caching, it
does not say much about any specific model. To measure pre-caching within a given model,
we examine the extent to which its parameters violate the myopia constraints.
Definition 4. The (tied) local myopia bonus at θ∗ ∈ Θ is

ĉ(θ∗) := max
θ∈Θ

n

∑
i=1

(ℓi(θ
∗, . . . , θ∗)− ℓi(θ

∗, . . . , θ∗, θ)) ≥ 0.

For further interpretation of the myopia gap and myopia bonus, see Appendix A.

3.4 Myopic gradient descent

Our heuristic remark in Section 3.2, that the off-diagonal gradient terms are responsible
for pre-caching, is justified by Theorem 13 below. It states that, given certain regularity
conditions on the loss terms ℓi, performing gradient descent with the off-diagonal terms
removed results in a myopic model in the sense of Definition 3. We call this myopic descent.

For myopic descent to be stable in the tied-weights case, we need, roughly speaking,
for the model to depend more on the parameters associated with the present forward
pass than those from the past. This is a plausible condition—dependence on the past is
mediated purely by the attention mechanism, while the present forward pass depends on
both attention and feedforward parameters. The precise condition we use is forward bias
(Definition 11); see Appendix C for details and the proof of the theorem.

Theorem 13. Let f (θ̃, θ) := ∑n
i=1 ℓi(θ̃, . . . , θ̃, θ). If f is forward-biased, σ-strongly convex, and

L-smooth, then, for some step size η > 0, the iterates of myopic descent with tied weights

θ(t+1) = θ(t) − η∇θ f (θ̃, θ)
∣∣
θ̃=θ=θ(t)

converge to θ̃ ∈ Θ satisfying the myopia constraints of Equation 3.

4 Synthetic data experiments

4.1 The Dp task

To demonstrate a simple example where the transformer model learns to pre-cache (and
thus the myopia gap is large), we construct the following synthetic dataset.

Definition 5. The data distribution DN
p,a,b is defined as the joint distribution of real-valued random

variables (xn)N
n=1, (yn)

N
n=1, (zn)N

n=1 where, for each n,

5
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• xn ∼ N (0, 1) (standard Gaussian)

• zn ∼ Ber(p) (Bernoulli with probability p)

• yn = zn ∑a
i=1 sin(bxn−i) + (1 − zn)xn

and {xn}n∈N ∪ {zn}n∈N are mutually independent. In our experiments, we always set the parame-
ters a = b = 10 and N = 64, so for convenience notate Dp := D64

p,10,10.

The intuition is that a transformer regression model G trained on Dp would benefit from
pre-caching sin(bxn) during its forward pass at position n, even though this computation is
irrelevant to its task of predicting yn. One simple strategy that makes use of this pre-caching
is Algorithm 1. 4

The motivation for the Bernoulli variables zi is that, as p decreases, the expected first time
when sin(bxn) becomes useful advances further into the future. In addition, when p is
sufficiently small, the probability (1 − p)a that the value sin(bxn) is never useful at all
becomes non-negligible. We will show that, even in this case, the transformer model learns
to pre-cache.

Investigating myopia. Suppose that we train a myopic model (Section 3.4) on the same
task. Since this model lacks off-diagonal gradient terms, we do not expect it to learn to
pre-cache sin(bxn) at position n. One possible strategy that does not use pre-caching is
Algorithm 2. We expect this brute force algorithm to perform significantly worse given the
same parameter count—it computes an a-dimensional nonlinear function within a single
layer, while each layer of Algorithm 1 computes only scalar nonlinear functions.5

Algorithm 1 Pre-caching algorithm
At position n,

input xn, zn
layer 1 compute Fn := sin(bxn)
layer 2 read Fn−i for i = 1, . . . , a.
layer 2 compute
ŷn := zn ∑a

i=1 Fn−i + (1 − zn)xn.
return ŷn.

Algorithm 2 Brute force algorithm
At position n,

input xn, zn
layer 1 compute ∅
layer 2 read xn−i for i = 1, . . . , a.
layer 2 compute
ŷn := zn ∑a

i=1 sin(bxn−i) + (1 − zn)xn.
return ŷn.

4.1.1 Evaluation: linear probing

To determine if the transformer model is computing sin(bxn) at position n, we fit linear
probes on the hidden states. We additionally compute the correlations between sin(bxn)
and each individual dimension (i.e., each neuron) of each hidden state.6 See Section D.1.1
for details.

4We think of each transformer layer as a read operation, performed by the attention mechanism,
followed by a compute operation, performed by the feedforward block.

5For example, Shen et al. (2022) provide upper bounds on MLP error that degrade exponentially in
dimensionality given a fixed parameter and layer count.

6Note that, in order for linear probing to be meaningful, we must first ensure that there is no
pre-existing linear relationship between the inputs and the quantities we are probing for. Since
the (xn, zn)n are mutually independent, this follows from Lemma 15, stating that xn and sin(bxn)
have near-zero correlation for large enough b. In our experiments, we set b = 10, in which case
ρ(xn, sin(bxn)) < 10−20. In other words, there is low predictive V-information from the inputs to the
target sin(bxn), where V is the class of linear models (Xu et al., 2020).

6
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4.1.2 Results for Dp

For varying p, we train two-layer transformer models with embedding dimensions of 128 on
Dp using using both ordinary and myopic gradient descent. Full architecture and training
details are provided in Section D.1.

Examining the performance of each linear probe against sin(bxn−i) for varying i, we find
strong evidence that the transformer model with vanilla training is indeed pre-caching
sin(bxn), possibly in order to implement Algorithm 1. Indeed, in Figure 2,

• The zeroth hidden state (i.e., the sum of the input and position embeddings) at
position n is correlated with only xn.

• The first hidden state is correlated with sin(bxn) but not correlated with any
sin(bxn−i) for i > 0.

• The second hidden state (immediately before the output unembedding) is correlated
with sin(bxn−i) for each 0 ≤ i ≤ a.

p Vanilla Myopic

0.01 0.096 1.10
0.1 0.016 0.97
0.3 0.0030 1.03
1.0 0.0074 1.26

Table 1: Normalized Huber loss L/p for
vanilla and myopic models trained and eval-
uated on Dp for each p in our synthetic set-
ting. For reference, the trivial model that
always outputs zero attains a Huber loss of
1.26.

Further, looking at the per-neuron correla-
tions in Figure 3, we see that sin(bxn−i) for
1 ≤ i ≤ a are all correlated with a sin-
gle 1-d subspace of the second hidden state
(they share the same striping pattern); this is
the subspace storing ∑a

i=1 sin(bxn−i). Mean-
while, sin(bxn), as well as many of the xn−i,
are located in various other 1-d subspace of
the second hidden state; these terms are all
left over in the residual stream from previous
layers, and are cleaned up only by the output
unembedding.

On the other hand, in Table 1, the myopic
models perform significantly worse. The per-
neuron correlations in Figure 3 suggest that
the myopic model may be implementing a
crude approximation of Algorithm 2. This suggests that the synthetic setting has an in-
herently high myopia gap—it is impossible for the transformer model to do well without
pre-caching.

4.2 Multiplication

In addition to the above Dp synthetic data setting, we also measure the myopia gap on
the task of natural number multiplication. In particular, we find evidence suggesting that
pre-caching is responsible for model computation on filler tokens, in the sense of Pfau et al.
(2024). See Appendix D.3 for details.

5 Natural language experiments

5.1 GPT-2’s myopia gap

In order to measure the extent to which transformer models learn to pre-cache on natural
language data, we estimate both the myopia gap (Definition 3) in this setting as well as
the local myopia bonus (Definition 4) of a transformer model with vanilla pre-training.
Experiments in this subsection use the 124M-parameter GPT-2 architecture; see Table 4 in
Appendix D for configuration details.

We train all models (vanilla and myopic) from random initialization for one epoch on 4.6M
sequences from the MS MARCO dataset (Nguyen et al., 2016), truncated to length 64. To
estimate the local myopia bonus of the vanilla model, we train another model from random
initialization with the same architecture, but with past hidden states sourced from the frozen

7
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Figure 2: Empirical R2 between linear probes fit on each layer of vanilla transformer models
trained on Dp for p ∈ {0.01, 0.1, 0.3, 1} to targets sin(bxn−i). Computed over 50 000 samples
from D1.

vanilla model during both training and evaluation.7 See Appendix B for implementation
details.

As baseline, we also train a “transformer bigram” model, a model with an identical architec-
ture but all off-diagonal key/value states zeroed out.

5.1.1 GPT-2 results

From Table 2, the estimated myopia gap in this setting is 3.40 − 3.28 = 0.12 cross entropy,
while the local myopia bonus of the vanilla model is 3.28 − 3.26 = 0.02.

The nonzero myopia gap suggests that pre-caching may provide a small positive benefit.
Indeed, in Figure 4, we see that the myopic model outperforms the vanilla model at the
beginning of the sequence, since it can allocate all compute to next-token prediction, but
quickly falls behind as the length of the past increases, since it suffers from a lack of pre-
cached information from earlier forward passes.8

Model Cross-entropy

Vanilla 3.28
Myopic 3.40
Local myopic 3.26
Transformer bigram 5.33

Table 2: Validation cross-entropy loss ob-
tained by GPT-2 with vanilla and myopic
training

However, note that this gap is much smaller
than that between the vanilla model and the
transformer bigram model (Table 2). That is, the
myopic model is still able to leverage past in-
formation (breadcrumbs) to a significant extent,
even if they optimized only for the present in-
ference task. That the local myopia gap is near
zero further supports this direction—the model
learned through vanilla training does not trade
off significantly between features useful for the
present and pre-caching for the future.

7Note that this “local myopic” model attains slightly better performance than the vanilla model;
each forward pass can focus purely on next-token prediction, since past hidden states are supplied by
a separate model.

8We use a sliding window over PG-19 (Rae et al., 2019) samples, which comprise longer sequences,
in order to reduce noise in our per-position loss estimates. The distribution shift between MS MARCO
and PG-19 does not affect the relative comparison of myopic and vanilla GPT-2.
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Vanilla model Myopic model

Figure 3: Empirical correlations between each hidden state neuron and xn−i or sin(bxn−i).
Models are vanilla (left two columns) and myopic (right two columns) transformers trained
on D0.3.

Figure 4: Cross-entropy loss of vanilla and myopic GPT-2 models by token position, and
their difference. Evaluated on a sliding window over a 100K-token sample text from the
PG-19 dataset (Rae et al., 2019). Aggregate cross-entropy losses on this sample are 4.67
(vanilla) and 4.77 (myopic).

5.2 Myopia gap scaling

One might suppose that the relatively small myopia gap of GPT-2 is due to the relative
simplicity of the small architecture we consider, and that larger language models might
exhibit a more pronounced myopia gap.

To test this, we train both vanilla and myopic transformers from the Pythia LLM suite (Bi-
derman et al., 2023), ranging in size from 14M to 2.8B parameters, on one epoch of 10M

9



Published as a conference paper at COLM 2024

LAMBADA (Paperno et al., 2016) PIQA (Bisk et al., 2020)

SciQ (Welbl et al., 2017) ARC-Easy (Zhang et al., 2018)

Figure 5: Benchmarks of Pythia models fine-tuned on the Pile dateset using vanilla and
myopic descent.

sequences of 64 tokens each subsampled from the Pile dataset (Gao et al., 2020). (We use the
same subsampled dataset for every training run.) We report validation cross-entropy loss
(Figure 7 in Appendix D) as well as performance on a variety of natural language experi-
ments (Figure 5). Note that, unlike in the GPT-2 experiments (Section 5.1), which start from
random initialization, we start all training for Pythia models from the pre-trained check-
points provided by Biderman et al. (2023)—for the larger architectures, the 10M sequence
dataset we use is not sufficiently large to use for pre-training from random initialization.

6 Discussion and future work

Using a synthetic dataset, we demonstrate that pre-caching can indeed be learned by a
transformer model. On the other hand, our experiments with natural language suggest that
the breadcrumbs hypothesis is more explanatory for that setting, especially with smaller
models, but that the importance of pre-caching increases with scale.

If the myopia gap is indeed not large in practice, there may be several applications of myopic
training. We hypothesize that myopic transformers may have advantages in terms of safety
and/or interpretability—it may be easier to understand what a model is doing if we know
that everything that it is computing on each forward pass is directly towards the goal of
predicting the immediate next token. For example, as seen in Appendix D.3, myopic models
may not be able to make use of computation on the forward passes of filler tokens in the
sense of Pfau et al. (2024).

Another possibility is that of automatically swapping in a locally myopic model (Section 5.1)
on forward passes where we detect it is beneficial to sacrifice future performance in favor of
immediate next-token accuracy (for example, on especially important tokens, or near the
end of a text). We leave these possible applications to future work.
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A Myopia bonus and malus

Notice that the myopia gap consists of two pieces: a myopia bonus, the improvement that can
be obtained at the current forward pass by ignoring the future forward passes; and a myopia
malus, the cost to the future forward passes that is incurred by not pre-caching for them. To
be precise, in the untied case,9 given a choice of myopic θ̃1, . . . , θ̃n satisfying constraints (1)
of Definition 1, write

ℓ(θ̃1, . . . , θ̃n)− min
θ1,...,θn

ℓ(θ1, . . . , θn)

=
n

∑
i=1

(
min

θi+1,...,θn
ℓ(θ̃1, . . . , θ̃i−1, θ̃i, θi+1, . . . , θn)− min

θi ,...,θn
ℓ(θ̃1, . . . , θ̃i−1, θi, θi+1, . . . , θn)

)
=

n

∑
i=1

(
ℓi(θ̃1, . . . , θ̃n−1, θ̃i)− ℓi(θ̃1, . . . , θ̃n−1, θ

∗i
i )
)

+
n

∑
i=1

n

∑
j=i+1

(
ℓj(θ̃1, . . . , θ̃i−1, θ̃i, θ

∗i+1
i+1 . . . , θ

∗i+1
n )− ℓj(θ̃1, . . . , θ̃i−1, θ

∗i
i , θ

∗i
i+1, . . . , θ

∗i
n )
)

.

where we define

θ
∗i
i , . . . , θ

∗i
n ∈ arg min

θi ,...,θn

ℓ(θ̃1, . . . , θ̃i−1, θi, θi+1 . . . , θn).

That is, the myopia gap is the sum c + d = ∑i ci + ∑i di of the myopia bonuses

ci(θ̃1, . . . , θ̃n) := ℓi(θ̃1, . . . , θ̃n−1, θ̃i)− ℓi(θ̃1, . . . , θ̃n−1, θ
∗i
i ) ≤ 0,

9The tied case is analogous, so we do not write it explicitly.
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(the inequality following from the myopia constraints (1)), and the myopia maluses

di(θ̃1, . . . , θ̃n)

:=
n

∑
j=i+1

(
ℓj(θ̃1, . . . , θ̃i−1, θ̃i, θ

∗i+1
i+1 . . . , θ

∗i+1
n )− ℓj(θ̃1, . . . , θ̃i−1, θ

∗i
i , θ

∗i
i+1, . . . , θ

∗i
n )
)

≥ 0,

with di + ci ≥ 0 for each 1 ≤ i ≤ n by the definition of the θ∗i
j . A priori, a small myopia gap

does not necessarily imply a small (in magnitude) myopia bonus c and malus d. Indeed, in
the case when the myopia gap is small, a large value for c (and thus a corresponding large
value for d) means precisely that the transformer model is committing significant resources
to pre-caching that could otherwise have been used to improve inference on the current
position. On the other hand, it is possible that both c and d are small; that is, there is not
much cost associated with pre-caching for the future, as the present forward pass already
results in information (breadcrumbs) useful for that purpose.

In practice, the myopia bonus may be difficult to estimate, as it depends on the result of
O(n) separate optimization problems (each of which, in practice, is a full transformer model
training run). Thus, we instead compute the local myopia bonus of Definition 4.

A.1 Explicit gradient paths

The dependence of forward pass Gi on previous forward passes Gj for j < i is mediated
through hidden states h1, . . . , hi−1:

Gi(x1, . . . , xi; θ1, . . . , θi) = G̃i(h1, . . . , hi−1, xi; θi)

where the hi are themselves recursively defined parameterized functions hi =
hi(h1, . . . , hi−1, xi; θi). (Note that we are making a choice here to consider transformers
as functions of hidden states, and not their key/value states. This has implications for how
myopic descent is defined: when hidden state hj is attended to by forward pass i > j, we
consider the key and value weights WK and WV , respectively, to belong to forward pass i.
Thus, they are updated by the gradient wrt. ℓi.)

With the hidden states explicitly written out, the gradient wrt the loss is a sum over all
possible paths to the present: for j < i,

∂Gi
∂θj

(x1, . . . , xi; θ1, . . . , θi) = ∑
j=i1<...<im<i

∂hj

∂θj

∂Ĝi
him

m−1

∏
k=1

∂hik
∂hik−1

.

where the sum is over all partitions j = i1 < . . . < im < i.

B The myopic attention mechanism

An important primitive that we use when implementing the myopic gradient descent of
Section 3.4, the local myopic bonus of Definition 4, and the transformer bigram in Section 5.1
is an attention mechanism that uses key/value states for past forward passes differing from
those it uses for the current pass, while still computing all forward passes in parallel. We
call our construction the myopic attention mechanism. We use it to implement several distinct
transformer training methodologies:

• When training with myopic descent, the past key/value states are the result of
key/value weights WK and WV , respectively, multiplying a cloned and detached
copy of the previous hidden states.

• During both training and inference of a local myopic model, the past key/value states
come from a separate frozen pre-trained transformer model.

• During both training and inference of a transformer bigram model, the past key/value
states are simply zeroed out.
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Let X = (x1, . . . , xn)⊤ ∈ Rn×d be the sequence of residual stream hidden states per position,
with each row representing one position’s hidden state in Rd. Let WQ, WK, WV ∈ Rd×h be
the query, key, value weight matrices for one attention head, of dimensionality h, in the
transformer G. Denote

Q := XWQ, K := XWK, V := XWV

and let Q̃, K̃, Ṽ be the alternate states we wish to use for off-diagonal attention terms. We
adopt the convention that lowercase letters with subscripts represent rows of matrices;
e.g. qi is the ith row of Q. For simplicity of presentation, we omit causal masking; the
modifications that should be made in the presence of a mask are straightforward.

Recall that the vanilla attention mechanism for G is

Y = σ(QK⊤)V ,

where σ is row-wise softmax. Writing this out token-wise,

yi = Z−1
i

n

∑
j=1

exp(q⊤
i kj)vj,

where Zi is the partition function

Zi :=
n

∑
j=1

exp(q⊤
i kj).

The myopic attention mechanism, on the other hand, is written tokenwise as

ỹi = Z̃−1
i

(
exp(q⊤

i ki)vi + ∑
j ̸=i

exp(q⊤
i k̃j)ṽj

)

= Z̃−1
i

n

∑
j=1

exp(q⊤
i k̃j + δijq⊤

i (kj − k̃j))(ṽj + δij(vj − ṽj))

=
n

∑
j=1

aijṽj −
n

∑
j=1

δijaij(vj − ṽj)

where

Z̃i := exp(q⊤
i ki) + ∑

j ̸=i
exp(q⊤

i k̃j)

=
n

∑
j=1

exp(q⊤
i k̃j + δijq⊤

i (kj − k̃j)),

aij := Z̃−1
i exp(q⊤

i k̃j + δijq⊤
i (kj − k̃j)),

and δij is the Kronecker delta. Now, notate

(diag A)ij := δij Aij.

That is, diag A is the diagonal matrix that has the same entries as A along the diagonal and
is zero elsewhere. We are now able to write the myopic attention mechanism in matrix form:

Ỹ = AṼ + (diag A)(V − Ṽ),

where
A := σ(QK̃⊤ + diag(Q(K⊤ − K̃⊤))).

C Proofs

We use two assumptions on the loss function to be minimized. These are standard in the
first-order methods literature.
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Definition 6. A function f : Rn → R is called L-smooth if it is continuously differentiable with
L-Lipschitz gradient. That is, for all x, y in the domain,

∥∇ f (x)−∇ f (y)∥2 ≤ L∥x − y∥2.

Definition 7. A function f : Rn → R is called σ-strongly convex if, for all x, y in the domain,

f (y) ≥ f (x) +∇ f (x)⊤(y − x) +
σ

2
∥y − x∥2

2.

In particular, recall that strong convexity implies the existence of a unique minimum. Hence,
it makes sense to write, for example, x∗ = arg maxx f (x) without ambiguity.

C.1 Gradient descent with untied weights

Theorem 8. Assume ℓ : Θn → R is σ-strongly convex and L-smooth for some σ, L > 0. Consider
ordinary gradient descent with untied weights

θ
(t)
i = θ

(t−1)
i − η∇θiℓ(θ

(t−1)
1 , . . . , θ

(t−1)
i ) ∀i ∈ {1, . . . , n}.

Then, for θ∗1, . . . , θ∗n = arg minθ1,...,θn
ℓ(θ1, . . . , θn), for small enough η > 0,

∥θ
(t)
i − θ∗i ∥2

2 ≤
(

1 − 2ησL
σ + L

)t
∥θ

(0)
i − θ∗i ∥2

2 ∀i ∈ {1, . . . , n}.

Proof. This is a standard convergence result for gradient descent on strongly convex func-
tions. For example, see Nesterov (2018).

C.2 Gradient descent with tied weights

Theorem 9. Assume ℓ is σ-strongly convex and L-smooth, and consider ordinary gradient descent
with tied weights

θ
(0)
1 = . . . = θ

(0)
n

θ
(t+1)
i = θ

(t)
i + η

n

∑
i=1

∇θiℓ(θ1, . . . , θn) ∀i ∈ {1, . . . , n}.

There exists η > 0 such that

∥θ
(t)
i − θ∗∥2

2 ≤
(

1 − 2
√

nησL
σ + L

)t

∥θ
(0)
i − θ∗∥2

2 ∀i ∈ {1, . . . , n}.

where θ∗ = arg minθ ℓ(θ, . . . , θ).

Proof. This is again the standard convergence result, now applied to descent with step size√
nη on the σ-strongly convex L-smooth function θ 7→ ℓ(θ/

√
n, . . . , θ/

√
n). Alternatively,

one may think of this as projected gradient descent constrained to the subspace θ1 = . . . =
θn with a step size of

√
nη. Projected gradient descent inherits the same convergence

properties as unconstrained gradient descent (Beck, 2017).

C.3 Myopic descent with untied weights

Theorem 10. Assume each of the ℓ1, . . . , ℓn are σ-strongly convex and L-smooth. Consider myopic
gradient descent with untied weights

θ
(t)
i = θ

(t−1)
i − η∇θiℓi(θ

(t−1)
1 , . . . , θ

(t−1)
i ) ∀i ∈ {1, . . . , n}.
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There exists η > 0 such that θi
t→∞−−→ θ̃i for all i, where

θ̃1 = arg min
θ1

ℓ1(θ1)

θ̃2 = arg min
θ2

ℓ2(θ̃1, θ2)

. . .

θ̃n = arg min
θn

ℓn(θ̃1, θ̃2, . . . , θ̃n−1, θn).

Proof. Let θ̃1, . . . , θ̃n be as in the theorem statement. We proceed by induction. For the base
case, note that the myopic descent iterates for θ

(t)
1 are independent of θ

(t)
j for j > i. Thus,

the standard convergence theorem gives that θ
(t)
1 → θ̃1 as t → ∞.

Now, assume θ
(t)
i

t→∞−−→ θ̃i for all i < k. Thus, for any ε > 0, for sufficiently large t,

∥(θ(t)i )k−1
i=1 − (θ̃i)

k−1
i=1 ∥2 < ε.

Hence, since ℓk is L-smooth, for any θk,

∥∇θkℓk(θ
(t)
1 , . . . , θ

(t)
k−1, θk)−∇θkℓk(θ̃1, . . . , θ̃k−1, θk)∥2 < Lε.

Expanding and rearranging,

⟨∇θkℓk(θ
(t)
1 , . . . , θ

(t)
k−1, θk),∇θkℓk(θ̃1, . . . , θ̃k−1, θk)⟩ ≥

1
2
∥∇θkℓk(θ̃1, . . . , θ̃k−1, θk)∥2

2 −
1
2

L2ε2

is bounded away from zero as long as, say,

∥∇θkℓk(θ̃1, . . . , θ̃k−1, θk)∥2 ≥ σ∥θk − θ̃k∥2 > (L + 1)ε,

using the σ-strong convexity of ℓk. That is, as long as ∥θk − θ̃k∥2 >
(L + 1)ε

σ
, it is guar-

anteed that −∇θkℓk(θ
(t)
1 , . . . , θ

(t)
k−1, θk) is a descent direction for ℓk(θ̃1, . . . , θ̃k−1, θk). This is

a sufficient condition for θk to converge to a
(L + 1)ε

σ
-neighborhood of θ̃k given a small

enough step size (Beck, 2017). Since ε > 0 is arbitrary, this completes the inductive step.

C.4 Myopic descent with tied weights

Definition 11. A function f (x, y) : Ra × Ra → R with continuous second derivatives is ρ-
forward-biased if, for all y ∈ Ra and x = y,

Hy,y f (x, y) + Hx,y f (x, y) ≻ 0

and
κ(Hy,y f (x, y) + Hx,y f (x, y)) < ρ,

where κ is the condition number, and we write the Hessian of f as a block matrix:

H f (x, y) =
[

Hx,x f (x, y) Hx,y f (x, y)
Hy,x f (x, y) Hy,y f (x, y)

]
=



(
∂ f (x, y)
∂xi∂xj

)
1≤i≤a
1≤j≤a

(
∂ f (x, y)
∂xi∂yj

)
1≤i≤a
1≤j≤b(

∂ f (x, y)
∂yi∂xj

)
1≤i≤b
1≤j≤a

(
∂ f (x, y)
∂yi∂yj

)
1≤i≤b
1≤j≤b

 .

Lemma 12. If A ∈ Ra×a is positive definite with κ(A) < ρ, then there exists some η > 0 such that
I − ηA is a (1 − ρ−1)-contraction. Explicitly, for any y ∈ Ra,

∥(I − ηA)y∥2 ≤ (1 − ρ−1)∥y∥2.
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Proof. Set η = 1/λmax(A). Then I − ηA ⪰ 0 with

λmax(I − ηA) = 1 − ηλmin(A) = 1 − λmin(A)

λmax(A)
< 1 − ρ−1.

It immediately follows that I − ηA is a (1 − ρ−1)-contraction.

Theorem 13. Let f (x, y) : Ra × Ra → R be ρ-forward biased, σ-strongly convex, and L-smooth
with continuous second derivatives for some ρ, σ, L > 0. Then, there exists ỹ ∈ Ra such that

ỹ = arg min
y∈Ra

f (ỹ, y). (4)

Further, for some step size η > 0, the iterates of myopic gradient descent with tied weights

y(t+1) = y(t) − η∇y f (x, y)|x=y=y(t)

converge to ỹ ∈ Ra satisfying (4). We call such ỹ a myopic solution.

We then recover the original sequential modeling setting by defining f (θ̃, θ) :=
∑n

i=1 ℓi(θ̃, . . . , θ̃, θ).

Proof. First, note that if myopic descent does converge, it must be to a point ỹ such that
ỹ = arg miny f (ỹ, y). Indeed, at convergence we must have ∇y f (ỹ, y)|y=ỹ = 0, so strong
convexity tells us that ỹ is optimal. Thus, if we establish that myopic descent with small
enough step size η > 0 converges to some ỹ, we automatically get the existence of a myopic
solution. For this, it suffices to show that the gradient descent step

gη(y) = y − η∇y f (x, y)|x=y

is strictly contractive, so that iterates of gη converge to a fixed point.

Consider arbitrary y and y′. Then, by chain rule and the mean value theorem applied to the
map y′ 7→ ∇y f (x, y)|x=y=y′ ,

∇y f (y′, y′)−∇y f (y, y) = (Hx,y f (y′′, y′′) + Hy,y f (y′′, y′′))(y′ − y) (5)

for some y′′ ∈ [y, y′]. Using the definition of gη and substituting in (5),

∥gη(y′)− gη(y)∥2
2 = ∥(y′ − y)− η(∇y f (y′, y′)−∇y f (y, y))∥2

2

= ∥(I − (Hx,y f (y′′, y′′) + Hy,y f (y′′, y′′)))(y′ − y)∥2
2

≤ (1 − ρ−1)(y′ − y),

where the last line is by ρ-forward bias and Lemma 12. That is, gη is (1 − ρ−1)-contractive,
completing the proof.

C.5 Properties of sine

Lemma 14. Let x ∼ N (0, 1). Then

Var(sin(bx)) =
1
2
− e2b2

2
.

Proof.

Var(sin(bx)) = (2π)−1/2
∫ ∞

−∞
sin2(bx)e−x2/2 dx =

1
2
− e2b2

2
.

Lemma 15. Let x ∼ N (0, 1). Then

ρ(x, sin(bx)) =
2be3b2/2

e2b2 − 1
∈ O(e−b2/2),

where ρ is the Pearson correlation coefficient.
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Proof. By symmetry, E[sin(bx)] = 0. We calculate

Cov(x, sin(bx)) = (2π)−1/2
∫ ∞

−∞
x sin(bx)e−x2/2 dx = be−b2/2.

We already computed the variance in Lemma 14, so

ρ(x, sin(bx)) =
Cov(x, sin(bx))√

Var(x)Var(sin(bx))
=

2be3b2/2

e2b2 − 1
.

In our experiments we set b = 10, so ρ(x, sin(bx)) < 10−20.

D Details and additional experiments

D.1 Synthetic setting: Dp task

We use a smaller version of the GPT-2 architecture, adapted to regression tasks. That is, the
token embedding and unembedding layers are replaced with a trained linear map from the
input space to the embedding space and from the embedding space to the output space,
respectively. For each p ∈ {0.01, 0.1, 0.3, 1} models are trained using ordinary and myopic
descent on one epoch of 30M sequences of length 64 sampled from D64

p,10,10. See Table 3 for
architecture details.

Configuration Key Value

num layers 2
num heads 2
embd dim 128
n inner 512
input dim 2
output dim 1
activation relu
attn pdrop 0
embd pdrop 0
resid pdrop 0
lr 1e-3
optimizer AdamW
weight decay 0.01
betas (0.9, 0.999)
scheduler cosine
warmup 0.01
batch size 512
seq length 64
loss fn HuberLoss

Table 3: Transformer configuration used when training on synthetic data distribution Dp

D.1.1 Probe details

Given a transformer model trained on Dp, we sample the hidden states at each layer when
the model is given as input 50 000 evaluation sequences from the same distribution Dp.
For each layer and targets sin(bxn−i) for varying i > 0, we fit a linear regression model on
the hidden state of that layer to the target. The in-sample R2 of each linear model is then
reported in Figure 2. Figure 6 is a visualization of the linear probe’s performance on the
vanilla transformer.

19



Published as a conference paper at COLM 2024

Figure 6: Estimate of sin(bxn) by linear probe fit on layer 1 of transformer with vanilla
training on D0.3. Computed over 50 000 samples from D1.

D.2 Natural language setting

D.2.1 GPT-2

For both vanilla and myopic training, we train the GPT2-small architecture from random
initialization for one epoch on 4.6M sequences from the MS MARCO dataset (Nguyen et al.,
2016), truncated to length 64. To estimate the local myopia bonus of the vanilla model,
we train another model from random initialization with the same architecture, but with
past hidden states provided by the vanilla model. Note that this “local myopic” model
attains slightly better performance than the vanilla model; each forward pass can focus
purely on next-token prediction, since past hidden states are supplied by a separate model.
As a baseline, we also train a “transformer bigram” model, which is a transformer model
whose key/value states are zeroed out during training and evaluation. See Table 4 for
configuration details.

Configuration Key Value

num layers 12
num heads 12
embd dim 768
n inner 3072
vocab size 50257
activation gelu new
attn pdrop 0.1
embd pdrop 0.1
resid pdrop 0.1
lr 6.0 × 10−4

optimizer AdamW
weight decay 0.01
betas (0.9, 0.999)
scheduler cosine
warmup 0.01
batch size 512
seq length 64
loss fn CrossEntropy

Table 4: GPT-2 small configuration used when training on natural language data.
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D.2.2 Pythia

For experiments on the Pythia suite, we finetune with either vanilla or myopic descent on
10M sequences of 64 tokens each subsampled from The Pile (Gao et al., 2020). Learning
rates and batch sizes for each model are presented in Table 5; they are the same between
vanilla and myopic descent. All other training and architectural hyperparameters are the
same as those used by Biderman et al. (2023).

Model Learning rate Batch size

Pythia 14M 4.0 × 10−4 512
Pythia 31M 4.0 × 10−4 512
Pythia 70M 1.2 × 10−4 512
Pythia 160M 1.2 × 10−4 512
Pythia 410M 1.2 × 10−4 256
Pythia 1B 1.2 × 10−4 128
Pythia 1.4B 1.2 × 10−4 128
Pythia 2.8B 8.0 × 10−5 64

Table 5: Pythia suite hyperparameters for finetuning. Batch size is measured in sequences of
64 tokens each.

Figure 7: Cross-entropy loss of Pythia models fine-tuned on The Pile dataset using vanilla
and myopic gradient descent. Starting from the 70M model, we see that the gap increases
with parameter count.

D.3 Multiplication

In addition to the natural language experiments, we also measure the myopia gap on the
task of natural number multiplication. We use the same GPT2-small architecture as in the
natural language experiments starting from random initialization; see Table 4. See Figure 8
for an example input sequence.

3 7 0 0 * 5 4 0 0 = 5 8 2 3 0 0 0 0

Figure 8: Example multiplication input sequence.
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Vanilla multiplication accuracy

Myopic multiplication accuracy

Vanilla-myopic accuracy gap

Figure 9: Accuracy of vanilla and myopic transformers trained on multiplication of up to
8-digit inputs. Row and columns correspond to the number of digits in the first and second
multiplicands, respectively.

We use several formatting tricks found by Shen et al. (2023) to improve performance on the
multiplication task:

• Characters are delimited by spaces, such that each digit is tokenized into a separate
token.

• All numbers are written in the reverse of the standard order, i.e. such that the least
significant digits come first.

• All inputs are zero-padded to the same length.

Note for each multiplicand we first sample the number of digits d ∼ Unif(n) uniformly in
some range n, then uniformly sample a natural number x ∼ Unif(10d − 1) with no more
than d digits. This distribution allocates increased weight to smaller numbers, and was
found to result in superior performance.

We train both vanilla and myopic transformers on one epoch of 10M examples with no more
than 8 digits, then measure 0/1 accuracy (that is, the model is provided with the an input
sample up to the ‘=’ token, and scored 1 if it completes the rest of the sequence exactly
correctly and 0 otherwise) on 1024 independent random validation examples for each of the
8 × 8 possible pairs of digit counts for the two multiplicands. See Figure 9.
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D.3.1 Filler tokens

We further hypothesize that, as in Pfau et al. (2024), the vanilla transformer may learn to
perform computation even on forward passes corresponding to filler tokens, thus attaining
better performance when trained on examples zero-padded to longer lengths. We expect
that myopic transformers, on the other hand, are not incentivized to do this, since this extra
computation holds no relevance towards the immediate task of predicting the filler zero
token. To test this hypothesis, we train vanilla and myopic transformers on each of two
different multiplication datasets:

1. Both multiplicands have at most 5 digits, and are zero-padded to exactly 5 digits.

2. Both multiplicands have at most 5 digits, and are zero-padded to exactly 10 digits.

Again, all training runs consist of one epoch of 10M examples.

See Figure 10 for results. Note that the vanilla transformer indeed performs better when
trained and evaluated on input sequences zero-padded to a longer length. However,
the myopic transformer performs substantially worse with increased zero-padding. Our
explanation is that, not only does the myopic transformer not learn to perform intermediate
tokens during zero-token forward passes, the increased input length makes it more difficult
for the attention mechanism to correctly attend to the relevant tokens.

D.4 Gradient angles

Using the publicly available training checkpoints for Pythia-410M (Biderman et al., 2023),
we measure the sizes of both the myopic component and the future component of the
gradient of the loss w/r/t the parameters over the course of training. (Note that the future
component is the difference between the total vanilla gradient and the myopic gradient.)
We also measure the cosine similarity between the myopic and future components. See
Figure 11. One observation is that the norm of the myopic gradient is consistently larger
than that of the future gradient—thus, training is dominated by the effect of each forward
pass’s parameters on the immediate next-token prediction.

Vanilla accuracy, padded to length 5 Vanilla accuracy, padded to length 10

Myopic accuracy, padded to length 5 Myopic accuracy, padded to length 10

Figure 10: Multiplication accuracy of GPT-2 with either vanilla or myopic training and with
input multiplicands zero-padded to either length 5 or 10. Row and columns correspond
to the number of digits in the first and second multiplicands, respectively. Observe that
padding improves performance of the vanilla model, but decreases performance of the
myopic model.
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Norms of myopic, future, and total gradients Cosine similarity between myopic and future gradient

Figure 11: Myopic and future gradients of Pythia-410M during training.
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