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Internal Erosion of a Domain

» Given a finite set A C Z9 containing the origin.
» Start a simple random walk at the origin.

» Stop the walk when it reaches a site x € A adjacent to the
complement of A.
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Internal Erosion of a Domain

» Given a finite set A C Z9 containing the origin.
» Start a simple random walk at the origin.

» Stop the walk when it reaches a site x € A adjacent to the
complement of A.

> Let
e(A)=A—{x}.

We say that x is eroded from A.
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Internal Erosion of a Domain

» Given a finite set A C Z9 containing the origin.
» Start a simple random walk at the origin.

» Stop the walk when it reaches a site x € A adjacent to the
complement of A.

> Let
e(A)=A—{x}.
We say that x is eroded from A.
» lterate this operation until the origin is eroded.

» The resulting random set is called the internal erosion of A.

Lionel Levine Internal Diffusion-Limited Erosion



Internal erosion of a disk of radius 250 in Z?2.
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Internal erosion of a box of side length 500 in Z2.
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Questions

» How many sites are eroded?
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Questions

» How many sites are eroded?

» If Ais (say) a square of side length n in Z2, we would guess
that
E # eroded sites = ©(n®)

for some 1 < a < 2.
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Questions

» How many sites are eroded?

» If Ais (say) a square of side length n in Z2, we would guess
that
E # eroded sites = ©(n®)

for some 1 < a < 2.

» Analogy with diffusion-limited aggregation.
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Questions

» How many sites are eroded?
» If Ais (say) a square of side length n in Z2, we would guess
that
E # eroded sites = ©(n®)
for some 1 < o < 2.
» Analogy with diffusion-limited aggregation.
» What is the probability that a given site x is eroded?
» For some sites, is this probability o(n®~2)?
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Probability of a given site being eroded from a box in Z?2.
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Internal Erosion in One Dimension

» Interval A=[—m,n] CZ with —m <0 <n.

» Transition probabilities are given by gambler’s ruin:
m .

m+n'

P([—m,n],[-m,n—1]) =
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» Transition probabilities are given by gambler’s ruin:

P([—m,n],[-m,n—1]) = er n;
P([=m,n],[1—m,n]) = min.

Internal Diffusion-Limited Erosion

Lionel Levine



Internal Erosion in One Dimension

» Interval A=[—m,n] CZ with —m <0 <n.

» Transition probabilities are given by gambler’s ruin:

P([—m,n],[-m,n—1]) = er n;
P([=m,n],[1—m,n]) = min.

» How large is the remaining interval when the origin gets
eroded?
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Internal Erosion in One Dimension

» Interval A=[—m,n] CZ with —m <0 <n.

» Transition probabilities are given by gambler’s ruin:

P([—m,n],[-m,n—1]) = m:’_ n;
P([=m,n],[1—m,n]) = min.

» How large is the remaining interval when the origin gets
eroded?

» Urn model: choose a ball at random, then remove a ball
from the other urn.

» “OK Corral” Process: Gunfight with m fighters on one side
and n on the other. Williams-Mcllroy '98, Kingman '99,
Kingman-Volkov '03.
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The Number of Surviving Gunners

> Let m= n (an equal gunfight).

» Theorem (Kingman-Volkov '03) Starting from the interval
[—n, n], let R(n) be the number of sites remaining when the
origin is eroded. Then as n —

R(n) <8>1/4\ﬁ (1)

n3/4 3

where Z is a standard Gaussian.
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The Number of Surviving Gunners

> Let m= n (an equal gunfight).

» Theorem (Kingman-Volkov '03) Starting from the interval
[—n, n], let R(n) be the number of sites remaining when the
origin is eroded. Then as n —

W)

3

where Z is a standard Gaussian.
» Why n3/4?
» For each integer j > 1, let X, Y; be independent exponentially
distributed random variables with mean j.
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The Number of Surviving Gunners

> Let m= n (an equal gunfight).

» Theorem (Kingman-Volkov '03) Starting from the interval
[—n, n], let R(n) be the number of sites remaining when the
origin is eroded. Then as n —

W)

3

where Z is a standard Gaussian.
» Why n3/4?
» For each integer j > 1, let X, Y; be independent exponentially
distributed random variables with mean j.  Then

J
P(X; > Vi) =
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The Number of Surviving Gunners

> Let m= n (an equal gunfight).

» Theorem (Kingman-Volkov '03) Starting from the interval
[—n, n], let R(n) be the number of sites remaining when the
origin is eroded. Then as n —

W)

3

where Z is a standard Gaussian.
» Why n3/4?
» For each integer j > 1, let X, Y; be independent exponentially
distributed random variables with mean j.  Then

POG > Vi) = 2 = ([ KL [k 1)
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Why n3/4?

» For each j > 1:

> Replace the edge (j—1,/) by a segment of length X;; and
> Replace the edge (—j,1—j) by a segment of length Y;.
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Why n3/4?

» For each j > 1:
> Replace the edge (j—1,/) by a segment of length X;; and
> Replace the edge (—j,1—j) by a segment of length Y;.
» Viewing the entire interval [—n, n] as a single rod of length
Xi+...+ Xy +Yi+...+Y,, let the two ends burn
continuously at the same constant rate.
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Why n3/4?

» For each j > 1:
> Replace the edge (j—1,/) by a segment of length X;; and
> Replace the edge (—j,1—j) by a segment of length Y;.
» Viewing the entire interval [—n, n] as a single rod of length
Xi+...+ Xy +Yi+...+Y,, let the two ends burn
continuously at the same constant rate.

» Claim: The order in which segments of the rod finish burning
has the same distribution as the order in which sites become
eroded.
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Why n3/4?

For each j > 1:
> Replace the edge (j—1,/) by a segment of length X;; and
> Replace the edge (—j,1—j) by a segment of length Y;.
Viewing the entire interval [—n, n| as a single rod of length
Xi+...+ Xy +Yi+...+Y,, let the two ends burn
continuously at the same constant rate.

Claim: The order in which segments of the rod finish burning
has the same distribution as the order in which sites become
eroded.

This follows from the memoryless property of exponentials:

B(X)— Yie > XX > Yi) = B(X) > ).
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Why n3/4?

» When the origin burns, the remaining rod has length

n

L= Y x-Y v

j=1 J=1
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Why n3/4?

» When the origin burns, the remaining rod has length

Ly=

n n

Xi—YY
1 j=1

J

» Since
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Why n3/4?

» When the origin burns, the remaining rod has length

i
R
|
(agE
<

» Since

where Z is a Gaussian.
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Why n3/4?

» When the origin burns, the remaining rod has length

i
R
|
(agE
<

» Since

where Z is a Gaussian.
» Thus the number of segments remaining in the rod is order

O(v/L,) = O(n34).
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.
» ANB = {Xl,...,Xk}.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.
> AﬂB:{Xl,...,Xk}.
» To form A+ B, let (5 =AUB and

G = G-1U{y}

where y; is the endpoint of a simple random walk started at x;
and stopped on exiting C;_1.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.
> AﬂB:{Xl,...,Xk}.
» To form A+ B, let (5 =AUB and

G = G-1U{y}

where y; is the endpoint of a simple random walk started at x;
and stopped on exiting C;_1.

» Define A+ B = (.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.
> AﬂB:{Xl,...,Xk}.
» To form A+ B, let (5 =AUB and

G = G-1U{y}

where y; is the endpoint of a simple random walk started at x;
and stopped on exiting C;_1.

» Define A+ B = (.

» Abeilan property: the law of A+ B does not depend on the
ordering of xy,...,x.
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Questions

» As the lattice spacing goes to zero, is there a scaling limit?
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Questions

» As the lattice spacing goes to zero, is there a scaling limit?

» If so, can we describe the limiting shape?
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Questions

» As the lattice spacing goes to zero, is there a scaling limit?

» If so, can we describe the limiting shape?

» Not clear how to define dynamics in RY.
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The Scaling Limit of Diaconis-Fulton Addition

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.
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The Scaling Limit of Diaconis-Fulton Addition

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.

» Lattice spacing &, | 0.
> Write A* = AN§,Z°.
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The Scaling Limit of Diaconis-Fulton Addition

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.

» Lattice spacing &, | 0.

> Write A" = AN§,Z¢.

» Theorem (L.-Peres) There exists a deterministic domain
D C RY such that A"+ B* — D as n— oo

Lionel Levine Internal Diffusion-Limited Erosion



The Scaling Limit of Diaconis-Fulton Addition

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.

» Lattice spacing &, | 0.

> Write A" = ANJ,Z7.

» Theorem (L.-Peres) There exists a deterministic domain
D C RY such that A%+ B — D as n — oo, in the following
sense: for any € > 0, with probability one

D; Cc A"+ B* c D% for all sufficiently large n,
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The Scaling Limit of Diaconis-Fulton Addition

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.

» Lattice spacing &, | 0.

> Write A" = ANJ,Z7.

» Theorem (L.-Peres) There exists a deterministic domain
D C RY such that A%+ B — D as n — oo, in the following
sense: for any € > 0, with probability one

D; Cc A"+ B* c D% for all sufficiently large n,

where D¢, D® are the inner and outer e-neighborhoods of D.
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Divisible Sandpile

> Given A, B C Z9, start with

» mass 2 on each site in AN B; and
» mass 1 on each site in AUB—ANB.
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Divisible Sandpile

> Given A, B C Z9, start with
» mass 2 on each site in AN B; and
» mass 1 on each site in AUB—ANB.
» At each time step, choose x € 79 with mass m(x) > 1, and
distribute the excess mass m(x) —1 equally among the 2d
neighbors of x.
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Divisible Sandpile

> Given A, B C Z9, start with
» mass 2 on each site in AN B; and
» mass 1 on each site in AUB—ANB.

» At each time step, choose x € 79 with mass m(x) > 1, and
distribute the excess mass m(x) —1 equally among the 2d
neighbors of x.

> As t — oo, get a limiting region A® B C Z9 of sites with
mass 1.

» Sites in d(A® B) have fractional mass.
» Sites outside have zero mass.
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Divisible Sandpile

Given A, B C Z9, start with

» mass 2 on each site in AN B; and

» mass 1 on each site in AUB—ANB.
At each time step, choose x € 79 with mass m(x) > 1, and
distribute the excess mass m(x) —1 equally among the 2d
neighbors of x.
As t — oo, get a limiting region A® B C Z9 of sites with
mass 1.

» Sites in d(A® B) have fractional mass.

» Sites outside have zero mass.

Abelian property: A® B does not depend on the choices.
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Diaconis-Fulton sum Divisible sandpile sum
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Odometer Function

» u(x) = total mass emitted from x.



Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

y~x
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Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

y~x

= mass received — mass emitted
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Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

yrx
= mass received — mass emitted
:1—1A(X)—1B(X), x€EADB.
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Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

yrx
= mass received — mass emitted
:1—1A(X)—1B(X), x€EADB.

» Boundary condition: u=0 on d(A% B).
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Odometer Function

v

u(x) = total mass emitted from x.

v

Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

yrx
= mass received — mass emitted
:1—1A(X)—1B(X), x€EADB.

v

Boundary condition: u=0 on d(A& B).

Need additional information to determine the domain A® B.

v
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Free Boundary Problem

» Unknown function u, unknown domain D = {u > 0}.

u>0
Au<l—-1,-1p
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Free Boundary Problem

» Unknown function u, unknown domain D = {u > 0}.
u>0

Au<l—1,—1p
u(Au—1+14+1p)=0.
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Free Boundary Problem

» Unknown function u, unknown domain D = {u > 0}.

u>0
Au<l—1,—1p
u(Au—1+14+1p)=0.

» Alternative formulation:

Au=1—-1,—1p on D;
u=Vu=0 on dD.
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Least Superharmonic Majorant

» Given A,B C 79, let

1) =—[x?= Y glx.y)— ¥ glx,y),

y€EA yeB
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Least Superharmonic Majorant

» Given A,B C 79, let

1) =—[x?= Y glx.y)— ¥ glx,y),

y€EA yeB

where g is the Green's function for simple random walk

g(va) :Ex#{k’Xk :y}
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Least Superharmonic Majorant

» Given A,B C 79, let

1) =—[x?= Y glx.y)— ¥ glx,y),

y€EA yeB
where g is the Green's function for simple random walk
g(x.y) = Ex#t{k| Xk = y}.

> Let s(x) = inf{d(x) | ¢ is superharmonic on Z9 and ¢ > y}.
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Least Superharmonic Majorant

» Given A,B C 79, let

1) =—[x?= Y glx.y)— ¥ glx,y),

y€EA yeB
where g is the Green's function for simple random walk
g(x.y) = Ex#t{k| Xk = y}.

> Let s(x) = inf{d(x) | ¢ is superharmonic on Z9 and ¢ > y}.

» Claim: ‘ odometer = s — 7. ‘
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Proof of the claim

» Claim: odometer =s—7.

> Let m(x) = amount of mass present at x in the final state.
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» Claim: odometer =s—7.

> Let m(x) = amount of mass present at x in the final state.
Then

Au=m—1,—1p
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Proof of the claim

» Claim: odometer =s—7.

> Let m(x) = amount of mass present at x in the final state.
Then

Au=m—1,—1p
<1—-14—1p.
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Proof of the claim

» Claim: odometer =s—7.

> Let m(x) = amount of mass present at x in the final state.
Then

Au=m—1,—1p
<1—-14—1p.

» Since
Ay=1p+15-1

the sum v+ is superharmonic, so u+7y > s.
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Proof of the claim

» Claim: odometer =s—7.

> Let m(x) = amount of mass present at x in the final state.
Then

Au=m—1,—1p
<1-1p-1p.
» Since
Ay=1p+15-1
the sum v+ is superharmonic, so u+7y > s.

» Reverse inequality: s —y— u is superharmonic on A¢ B and
nonnegative outside A® B, hence nonnegative inside as well.
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Defining the Scaling Limit

» A, B C RY bounded open sets such that dA,dB have measure
zero
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» A, B C RY bounded open sets such that dA,dB have measure
zero
> Let
D=AUBU{s >}
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Defining the Scaling Limit

» A, B C RY bounded open sets such that dA,dB have measure
zero

> Let
D=AUBU{s >}

where

1) =~ = [ gy — [ glxp)dy
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Defining the Scaling Limit

» A, B C RY bounded open sets such that dA,dB have measure
zero

> Let
D=AUBU{s >}
where
Y(x) = —\Xlz—/Ag(x,y)dy—/Bg(XJ)dy
and

s(x) = inf{d(x)|d is continuous, superharmonic, and ¢ >y}

is the least superharmonic majorant of .
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Defining the Scaling Limit

» A, B C RY bounded open sets such that dA,dB have measure

ZEro
> Let
D=AUBU{s >}
where
Y(x) = —\Xlz—/Ag(x,y)dy—/Bg(XJ)dy
and

s(x) = inf{d(x)|d is continuous, superharmonic, and ¢ >y}

is the least superharmonic majorant of .
» Odometer: u=s—Y.
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» Obstacle for two overlapping disks A and B:
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» Obstacle for two overlapping disks A and B:
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1) =~ — [ gley)dy— [ g(xp)dy

» Obstacle for two point sources x; and xu:
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The domain D = {s >y} for two overlapping disks in R?.
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The domain D = {s >y} for two overlapping disks in R?.
The boundary dD is given by the algebraic curve

(x2 +y2)2 —2r? (X2 +y2) —2(x*—y*)=0.
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Main Result

» Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.
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Main Result

» Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.
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Main Result

» Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,
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Main Result

» Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.

» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,

where
» D,, R, I, are the smash sums of AN§,Z? and BN3J,Z¢,
computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.
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Main Result

» Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.

» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,

where
» D,, R, I, are the smash sums of AN§,Z? and BN3J,Z¢,
computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.
» D=AUBU{s>7}.
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Main Result

» Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,

where
» D,, R, I, are the smash sums of AN§,Z? and BN3J,Z¢,
computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.
» D=AUBU{s>7}.
» Convergence is in the sense of e-neighborhoods: for all € >0

D C Dy, Ry, 1, C D¥* for all sufficiently large n.
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Internal DLA Divisible Sandpile ~ Rotor-Router Model
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Steps of the Proof

convergence of densities

4

convergence of obstacles
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Steps of the Proof

convergence of densities

4

convergence of obstacles

4

convergence of odometer functions
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Steps of the Proof

convergence of densities

4

convergence of obstacles

4

convergence of odometer functions

4

convergence of domains.
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Multiple Point Sources

> Fix centers xq,...,xx € R? and Aq,..., Ak > 0.
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Multiple Point Sources

> Fix centers xq,...,xx € R? and Aq,..., Ak > 0.
» Theorem (L.-Peres) With probability one

Dp,Rp, 1, — D as n — oo,
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Multiple Point Sources

> Fix centers xq,...,xx € R? and Aq,..., Ak > 0.
» Theorem (L.-Peres) With probability one

Dp,Rp, 1, — D as n — oo,

where
» D,, R,, I, are the domains of occupied sites §,Z9, if |A;5,9]
particles start at each site x;* and perform divisible sandpile,
rotor-router, and Diaconis-Fulton dynamics, respectively.
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Multiple Point Sources

> Fix centers xq,...,xx € R? and Aq,..., Ak > 0.
» Theorem (L.-Peres) With probability one

Dp,Rp, 1, — D as n — oo,

where
» D,, R,, I, are the domains of occupied sites §,Z9, if |A;5,9]
particles start at each site x;* and perform divisible sandpile,
rotor-router, and Diaconis-Fulton dynamics, respectively.
» D is the smash sum of the balls B(x;,r;), where A; = 0qr?.
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Multiple Point Sources

> Fix centers xq,...,xx € R? and Aq,..., Ak > 0.
» Theorem (L.-Peres) With probability one

Dp,Rp, 1, — D as n — oo,

where
» D,, R,, I, are the domains of occupied sites §,Z9, if |A;5,9]
particles start at each site x;* and perform divisible sandpile,
rotor-router, and Diaconis-Fulton dynamics, respectively.
» D is the smash sum of the balls B(x;,r;), where A; = 0qr?.

» Follows from the main result and the case of a single point
source.
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A Quadrature Identity

» If his harmonic on 8,79, then
M, = Zh(X{)
J

is a martingale for internal DLA, where (X{)tZO is the random
walk performed by the j-th particle.

Lionel Levine Internal Diffusion-Limited Erosion



A Quadrature Identity

» If his harmonic on 8,79, then

M, = Zh(X{)

is a martingale for internal DLA, where (X{)tZO is the random
walk performed by the j-th particle.
» Optional stopping:

E Y h(x)=EMr =M= ima;dj h(x;).

x€ly
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A Quadrature Identity

» If his harmonic on 8,79, then

M, = Zh(X{)
J
is a martingale for internal DLA, where (X{)tZO is the random
walk performed by the j-th particle.
» Optional stopping:

E Y h(x)=EMr =M= ipws;dj h(x;).

x€ly

» Therefore if I, — D, we expect the limiting domain D c R to
satisfy
k
/ h(x)dx = Y Aih(x).
D i=1
for all harmonic functions h on D.
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Quadrature Domains

> Given x1,...xx € RY and Aq,...,Ax > 0.
» D CR? is called a quadrature domain for the data (x;,A;) if

/D h(x)dx < Zk:k;h(x,-).

i=1

for all superharmonic functions h on D.
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Quadrature Domains

> Given x1,...xx € RY and Aq,...,Ax > 0.
» D CR? is called a quadrature domain for the data (x;,A;) if

k
/ h(x)dx < Y Aih(x).
D i=1
for all superharmonic functions h on D.

» The smash sum By ®...® By is such a domain, where B; is
the ball of volume A; centered at x;.
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» D CR? is called a quadrature domain for the data (x;,A;) if

k
/ h(x)dx < Y Aih(x).
D i=1
for all superharmonic functions h on D.
» The smash sum By ®...® By is such a domain, where B; is
the ball of volume A; centered at x;.

» Generalizes the mean value property of superharmonic
functions.
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Quadrature Domains

> Given x1,...xx € RY and Aq,...,Ax > 0.
D c RY is called a quadrature domain for the data (x;,A;) if

k
/ h(x)dx < Y Aih(x).
D i=1
for all superharmonic functions h on D.

The smash sum By & ...® By is such a domain, where B; is
the ball of volume A; centered at x;.

Generalizes the mean value property of superharmonic
functions.

The boundary of By ®...&® By lies on an algebraic curve of
degree 2k.
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//D h(x,y)dxdy = h(—1,0)+ h(1,0)

Lionel Levine Internal Diffusion-Limited Erosion



Two Mystery Shapes

Cardioid? ?

onel Levine Internal



