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Internal Erosion of a Domain

I Given a finite set A⊂ Zd containing the origin.

I Start a simple random walk at the origin.

I Stop the walk when it reaches a site x ∈ A adjacent to the
complement of A.

I Let
e(A) = A−{x}.

We say that x is eroded from A.

I Iterate this operation until the origin is eroded.

I The resulting random set is called the internal erosion of A.
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Internal erosion of a disk of radius 250 in Z2.
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Internal erosion of a box of side length 500 in Z2.
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Questions

I How many sites are eroded?

I If A is (say) a square of side length n in Z2, we would guess
that

E#eroded sites = Θ(nα)

for some 1 < α < 2.

I Analogy with diffusion-limited aggregation.
I What is the probability that a given site x is eroded?

I For some sites, is this probability o(nα−2)?
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Probability of a given site being eroded from a box in Z2.

Lionel Levine Internal Diffusion-Limited Erosion



Internal Erosion in One Dimension

I Interval A = [−m,n]⊂ Z with −m ≤ 0≤ n.

I Transition probabilities are given by gambler’s ruin:

P([−m,n], [−m,n−1]) =
m

m +n
;

P([−m,n], [1−m,n]) =
n

m +n
.

I How large is the remaining interval when the origin gets
eroded?

I Urn model: choose a ball at random, then remove a ball
from the other urn.

I “OK Corral” Process: Gunfight with m fighters on one side
and n on the other. Williams-McIlroy ’98, Kingman ’99,
Kingman-Volkov ’03.
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The Number of Surviving Gunners

I Let m = n (an equal gunfight).

I Theorem (Kingman-Volkov ’03) Starting from the interval
[−n,n], let R(n) be the number of sites remaining when the
origin is eroded. Then as n→ ∞

R(n)

n3/4
=⇒

(
8

3

)1/4√
|Z | (1)

where Z is a standard Gaussian.

I Why n3/4?
I For each integer j ≥ 1, let Xj ,Yj be independent exponentially

distributed random variables with mean j . Then

P(Xj > Yk) =
j

j +k
= P([−j ,k], [−j ,k−1]).
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Why n3/4?

I For each j ≥ 1:
I Replace the edge (j−1, j) by a segment of length Xj ; and
I Replace the edge (−j ,1− j) by a segment of length Yj .

I Viewing the entire interval [−n,n] as a single rod of length
X1 + . . .+Xn +Y1 + . . .+Yn, let the two ends burn
continuously at the same constant rate.

I Claim: The order in which segments of the rod finish burning
has the same distribution as the order in which sites become
eroded.

I This follows from the memoryless property of exponentials:

P(Xj −Yk ≥ x |Xj ≥ Yk) = P(Xj ≥ x).
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Why n3/4?

I When the origin burns, the remaining rod has length

Ln =

∣∣∣∣∣ n

∑
j=1

Xj −
n

∑
j=1

Yj

∣∣∣∣∣ .

I Since

Var

(
n

∑
j=1

Xj −
n

∑
j=1

Yj

)
= 2

n

∑
j=1

j2 = Θ(n3)

we have by the Lindeberg CLT

Ln

n3/2
=⇒ |Z |

where Z is a Gaussian.

I Thus the number of segments remaining in the rod is order
Θ(
√

Ln) = Θ(n3/4).
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Diaconis-Fulton Addition

I Finite sets A,B ⊂ Zd .

I A∩B = {x1, . . . ,xk}.

I To form A+B, let C0 = A∪B and

Cj = Cj−1∪{yj}

where yj is the endpoint of a simple random walk started at xj

and stopped on exiting Cj−1.

I Define A+B = Ck .

I Abeilan property: the law of A+B does not depend on the
ordering of x1, . . . ,xk .
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Questions

I As the lattice spacing goes to zero, is there a scaling limit?

I If so, can we describe the limiting shape?

I Not clear how to define dynamics in Rd .
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The Scaling Limit of Diaconis-Fulton Addition

I Let A,B ⊂ Rd be bounded open sets with ∂A, ∂B having
measure zero.

I Lattice spacing δn ↓ 0.

I Write A:: = A∩δnZd .

I Theorem (L.-Peres) There exists a deterministic domain
D ⊂ Rd such that A:: +B ::→ D as n→ ∞, in the following
sense: for any ε > 0, with probability one

D ::
ε ⊂ A:: +B :: ⊂ Dε:: for all sufficiently large n,

where Dε,D
ε are the inner and outer ε-neighborhoods of D.
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Divisible Sandpile

I Given A,B ⊂ Zd , start with
I mass 2 on each site in A∩B; and
I mass 1 on each site in A∪B−A∩B.

I At each time step, choose x ∈ Zd with mass m(x) > 1, and
distribute the excess mass m(x)−1 equally among the 2d
neighbors of x .

I As t→ ∞, get a limiting region A⊕B ⊂ Zd of sites with
mass 1.

I Sites in ∂(A⊕B) have fractional mass.
I Sites outside have zero mass.

I Abelian property: A⊕B does not depend on the choices.
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Diaconis-Fulton sum Divisible sandpile sum
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Odometer Function

I u(x) = total mass emitted from x .

I Discrete Laplacian:

∆u(x) =
1

2d ∑
y∼x

u(y)−u(x)

= mass received−mass emitted

= 1−1A(x)−1B(x), x ∈ A⊕B.

I Boundary condition: u = 0 on ∂(A⊕B).

I Need additional information to determine the domain A⊕B.
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Free Boundary Problem

I Unknown function u, unknown domain D = {u > 0}.

u ≥ 0

∆u ≤ 1−1A−1B

u(∆u−1 + 1A + 1B) = 0.

I Alternative formulation:

∆u = 1−1A−1B on D;

u = ∇u = 0 on ∂D.
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Least Superharmonic Majorant

I Given A,B ⊂ Zd , let

γ(x) =−|x |2− ∑
y∈A

g(x ,y)− ∑
y∈B

g(x ,y),

where g is the Green’s function for simple random walk

g(x ,y) = Ex#{k|Xk = y}.

I Let s(x) = inf{φ(x) | φ is superharmonic on Zd and φ≥ γ}.

I Claim: odometer = s− γ.
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Proof of the claim

I Claim: odometer = s− γ.

I Let m(x) = amount of mass present at x in the final state.

Then

∆u = m−1A−1B

≤ 1−1A−1B .

I Since
∆γ = 1A + 1B −1

the sum u + γ is superharmonic, so u + γ≥ s.

I Reverse inequality: s− γ−u is superharmonic on A⊕B and
nonnegative outside A⊕B, hence nonnegative inside as well.
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Defining the Scaling Limit

I A,B ⊂ Rd bounded open sets such that ∂A,∂B have measure
zero

I Let
D = A∪B ∪{s > γ}

where

γ(x) =−|x |2−
Z
A

g(x ,y)dy −
Z
B

g(x ,y)dy

and

s(x) = inf{φ(x)|φ is continuous, superharmonic, and φ≥ γ}

is the least superharmonic majorant of γ.

I Odometer: u = s− γ.
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I Obstacle for two overlapping disks A and B:

γ(x) =−|x |2−
Z
A

g(x ,y)dy −
Z
B

g(x ,y)dy

I Obstacle for two point sources x1 and x2:

γ(x) =−|x |2−g(x ,x1)−g(x ,x2)
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The domain D = {s > γ} for two overlapping disks in R2.

The boundary ∂D is given by the algebraic curve(
x2 + y2

)2−2r2
(
x2 + y2

)
−2(x2−y2) = 0.

Lionel Levine Internal Diffusion-Limited Erosion



The domain D = {s > γ} for two overlapping disks in R2.

The boundary ∂D is given by the algebraic curve(
x2 + y2

)2−2r2
(
x2 + y2

)
−2(x2−y2) = 0.

Lionel Levine Internal Diffusion-Limited Erosion



Main Result

I Let A,B ⊂ Rd be bounded open sets such that ∂A, ∂B have
measure zero.

I Lattice spacing δn ↓ 0.

I Theorem (L.-Peres) With probability one

Dn,Rn, In→ D as n→ ∞,

where
I Dn, Rn, In are the smash sums of A∩δnZd and B ∩δnZd ,

computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.

I D = A∪B ∪{s > γ}.
I Convergence is in the sense of ε-neighborhoods: for all ε > 0

D ::
ε ⊂ Dn,Rn, In ⊂ Dε:: for all sufficiently large n.
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Internal DLA Divisible Sandpile Rotor-Router Model
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Steps of the Proof

convergence of densities

⇓
convergence of obstacles

⇓
convergence of odometer functions

⇓
convergence of domains.
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Multiple Point Sources

I Fix centers x1, . . . ,xk ∈ Rd and λ1, . . . ,λk > 0.

I Theorem (L.-Peres) With probability one

Dn,Rn, In→ D as n→ ∞,

where
I Dn, Rn, In are the domains of occupied sites δnZd , if bλiδ

−d
n c

particles start at each site x ::
i and perform divisible sandpile,

rotor-router, and Diaconis-Fulton dynamics, respectively.
I D is the smash sum of the balls B(xi , ri ), where λi = ωd rd

i .

I Follows from the main result and the case of a single point
source.
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A Quadrature Identity

I If h is harmonic on δnZd , then

Mt = ∑
j

h(X j
t )

is a martingale for internal DLA, where (X j
t )t≥0 is the random

walk performed by the j-th particle.

I Optional stopping:

E ∑
x∈In

h(x) = EMT = M0 =
k

∑
i=1

bλiδ
−d
n ch(xi ).

I Therefore if In→D, we expect the limiting domain D ⊂Rd to
satisfy Z

D
h(x)dx =

k

∑
i=1

λih(xi ).

for all harmonic functions h on D.
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Quadrature Domains

I Given x1, . . .xk ∈ Rd and λ1, . . . ,λk > 0.

I D ⊂ Rd is called a quadrature domain for the data (xi ,λi ) if

Z
D

h(x)dx ≤
k

∑
i=1

λih(xi ).

for all superharmonic functions h on D.

I The smash sum B1⊕ . . .⊕Bk is such a domain, where Bi is
the ball of volume λi centered at xi .

I Generalizes the mean value property of superharmonic
functions.

I The boundary of B1⊕ . . .⊕Bk lies on an algebraic curve of
degree 2k .
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ZZ
D

h(x ,y)dx dy = h(−1,0) +h(1,0)
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Two Mystery Shapes

Cardioid? ?
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