Fermat's Little Theorem: A Proof by Function Iteration

LIONEL LEVINE Harvard University Cambridge, MA 02138

It is a beautiful property of prime numbers, first proved more than three centuries ago by Fermat, that $k^p \equiv k \pmod p$ for all prime numbers p and all integers k. Here we present a simple proof of Fermat's "little" theorem by considering iterates of the function $f(z) = z^k$ on the complex plane. The method of proof has the advantage of generalizing the theorem to composite exponents: for every n we find a degree-n polynomial, with coefficients ± 1 , that is always divisible by n. This is different from Euler's generalization $(k^{\phi(n)}) \equiv 1 \pmod n$ for k and k coprime. The method of proof is potentially more general still, since it is easily adapted to other functions k. Indeed, for any set k, every function k satisfying a certain property corresponds to a divisibility result similar to Fermat's little theorem.

Let k be a positive integer and p be prime. Consider the function $f(z) = z^k$ for complex z. The pth iterate of f is evidently $f^p(z) = z^{k^p}$. Let P_p be the set of those z that are fixed under f^p but not under f itself. Then $|P_p| = k^p - k$. But if $z \in P_p$, then $f^i(z) \in P_p$ for every $i = 0, 1, \ldots, p-1$; and since p is prime, the p values $z, f(z), \ldots, f^{p-1}(z)$ are all distinct. Hence, we can partition P_p into equivalence classes, each containing p elements, obtaining

$$p|k^p - k, \tag{1}$$

Fermat's little theorem! The advantage to such an unusual approach is that it allows us to see a generalization that we might have missed otherwise. In general, if $f^n(z) = z$, then there must be some least positive integer d such that $f^d(z) = z$. Then d|n. Call this d the order of z. Let P_n be the set of all z of order n. As before, if $z \in P_n$ then $f^i(z) \in P_n$ for all $i = 0, 1, \ldots, n-1$; and the n values $z, f(z), \ldots, f^{n-1}(z)$ are all distinct because n is the least positive integer such that $f^n(z) = z$. Hence

$$n||P_n| \tag{2}$$

for all positive integers n. In the case when n is prime, (2) reduces to (1), Fermat's little theorem. But when n is composite, (2) gives a different degree-n polynomial, instead of $k^n - k$, that n must divide.

To illustrate what happens for general n, consider first the case n = pq, where p and q are distinct primes. There are k^{pq} values of z fixed under f^{pq} , and each such z has order d for exactly one d dividing pq. So

$$\left|P_{pq}\right| + \left|P_{p}\right| + \left|P_{q}\right| + \left|P_{1}\right| = k^{pq}.$$

Substituting $|P_p| = k^p - k$, $|P_q| = k^q - k$, and $|P_1| = k$, and solving for $|P_{pq}|$, we get

$$|P_{pq}| = k^{pq} - k^p - k^q + k,$$

so by (2), $pq|k^{pq}-k^p-k^q+k$. So the polynomial $k^{pq}-k^p-k^q+k$ in the case n=pq is the counterpart of the Fermat polynomial k^p-k in the case n=p. For

general n, there are k^n values of z fixed under f^n and every such z has order d for exactly one d dividing n, so

$$\sum_{d\mid n} |P_d| = k^n. \tag{3}$$

In their current form, the equations (3)—there is one equation for each $n=1,2,3,\ldots$ —give an explicit formula for k^n in terms of the values $|P_d|$. What we'd like to do is "invert" (3) into an explicit formula for each $|P_n|$ in terms of the powers of k. By (2), this will yield for each n a polynomial in k that is always divisible by n. The technique that accomplishes this task is called *Mobius inversion*:

Given two sequences $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ such that $\sum_{d\mid n}a_d=b_n$, Mobius inversion says that $a_n=\sum_{d\mid n}\mu\Big(\frac{n}{d}\Big)b_d$, where the function μ is defined by $\mu(p)=-1$ for p prime, $\mu(p^m)=0$ for $m\geq 2$, and $\mu(ab)=\mu(a)\mu(b)$ for a,b coprime. (For further explanation of the Mobius function μ and a proof of Mobius inversion, see [2].) Letting $a_n=|P_n|$ and $b_n=k^n$ in (3), we get $|P_n|=\sum_{d\mid n}\mu\Big(\frac{n}{d}\Big)k^d$, so by (2), we obtain our main result:

THEOREM (generalized form of Fermat's little theorem). For all positive integers n and k, $n|\sum_{d|n} \mu\binom{n}{d}k^d$.

The method we used to prove this theorem can also be used to prove other such results. We applied the equation $n||P_n|$ to the particular function $f(z)=z^k$; but in fact, the same argument shows that $n||P_n|$ holds whenever P_n is the set of points of order n for any function f. Let f be any function from a set S to itself such that f^n has finitely many fixed points for every n. If T(n) is the number of points fixed under f^n , then

$$n \left| \sum_{d \mid n} \mu \left(\frac{n}{d} \right) T(d) \right| \tag{4}$$

for all positive integers n.

A final question: We have shown that (4) is a necessary condition for the sequence $\{T(n)\}_{n\geq 1}$ to be of the form $T(n)=|\{z\in S|f^n(z)=z\}|$ for some function $f:S\to S$. Is (4) a sufficient condition as well? In other words, given any sequence of nonnegative integers $\{T(n)\}_{n\geq 1}$ satisfying (4), does there exist a function $f:S\to S$ such that f^n has T(n) fixed points for every positive integer n?

REFERENCES

- 1. R. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley, Reading, MA, 1992.
- 2. W. LeVeque, Fundamentals of Number Theory, Dover, Mineola, NY, 1977.