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It is a beautiful property of prime numbers, first proved more than three centuries ago
by Fermat, that k¥ =k (mod p) for all prime numbers p and all integers k. Here we
present a simple proof of Fermat’s “little” theorem by considering iterates of the
function f(z)=z" on the complex plane. The method of proof has the advantage of
generalizing the theorem to composite exponents: for every n we find a degree-n
polynomial, with coefficients +1, that is always divisible by n. This is different from
Euler’s generalization (k¢ =1 (mod n) for k and n coprime). The method of proof
is potentially more general still, since it is easily adapted to other functions f. Indeed,
for any set S, every function f:S — S satisfying a certain property corresponds to a
divisibility result similar to Fermat’s little theorem.

Let k be a positive integer and p be prime. Consider the function f(z)=z* for
complex z. The pth iterate of f is evidently f7(z) =z*". Let P, be the set of those z
that are fixed under f7 but not under f itself. Then |Pp| =k?—k. Butif z€ P,
then f(z) €P, for every i=0,1,...,p —1; and since p is prime, the p values
z, f(z),..., fP"1(z) are all distinct. Hence, we can partition P, into equivalence
classes, each containing p elements, obtaining

plk? —k, (1)

Fermat’s little theorem! The advantage to such an unusual approach is that it allows us
to see a generalization that we might have missed otherwise. In general, if f"(z) =z,
then there must be some least positive integer d such that f 4(z) = z. Then d|n. Call
this d the order of z. Let P, be the set of all z of order n. As before, if z € P, then
fi(z)eP, for all i=0,1,...,n—1; and the n values z, f(2),...,f" '(z) are all
distinct because n is the least positive integer such that f"(z) = z. Hence

n|| B, (2)

for all positive integers n. In the case when n is prime, (2) reduces to (1), Fermats
little theorem. But when n is composite, (2) gives a different degree-n polynomial,
instead of k™ — k, that n must divide.

To illustrate what happens for general n, consider first the case n = pq, where p
and ¢ are distinct primes. There are k77 values of z fixed under 79, and each such
z has order d for exactly one d dividing pgq. So

|P

Pf/|+|Pp|+|Pt/|+|P1|=kPq.

Substituting |Ppl =k?—k, quI =k7—k, and |P,| =k, and solving for IPqu, we get

|pr/

| =kri—k? —k9 +k,

so by (2), pglk?? —k? —k9+k. So the polynomial k?? —k? —k9+k in the case
n=pq is the counterpart of the Fermat polynomial k? —k in the case n=p. For
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general n, there are k" values of z fixed under f" and every such z has order d for
exactly one d dividing n, so

2| Py =k". (3)

dln

In their current form, the equations (3)—there is one equation for eachn=1,2,3, ...
—give an explicit formula for k" in terms of the values |P;|. What we’d like to do is
“invert” (3) into an explicit formula for each |P,| in terms of the powers of k. By (2),
this will yield for each n a polynomial in k that is always divisible by n. The technique
that accomplishes this task is called Mobius inversion:

Given two sequences {a,}, ., and {b,}, ., such that ¥, ,a, = b,, Mobius inversion
says that @, =X, M(%)bd, where the function u is defined by u(p)= —1 for p
prime, u(p™) =0 for m>2, and w(ab) = w(a)u(b) for a,b coprime. (For further
explanation of the Mobius function u and a proof of Mobius inversion, see [2])
Letting a, = |P,| and b, =k" in (3), we get |P,| =X, ,u(%)kd, so by (2), we obtain
our main result:

THEOREM (generalized form of Fermat’s little theorem). For all positive integers n
and k, n|Z,, ,u(%)k".

The method we used to prove this theorem can also be used to prove other such
results. We applied the equation n||P,| to the particular function f(z)=2z*; but in
fact, the same argument shows that n|| P, | holds whenever P, is the set of points of
order n for any function f. Let f be any function from a set S to itself such that f"
has finitely many fixed points for every n. If T(n) is the number of points fixed under

f", then

n

Y u(g)r() (4)

d|n

for all positive integers n.

A final question: We have shown that (4) is a necessary condition for the sequence
{T(n)}, ., to be of the form T(n) = [{z € S|f"(z) =z}| for some function f:S — S.
Is (4) a sufficient condition as well? In other words, given any sequence of nonnega-
tive integers {T'(n)}, . ; satisfying (4), does there exist a function f: S — S such that f"
has T(n) fixed points for every positive integer n?
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