
LAPLACIAN GROWTH, SANDPILES AND SCALING LIMITS

LIONEL LEVINE AND YUVAL PERES

Abstract. Laplacian growth is the study of interfaces that move in proportion
to harmonic measure. Physically, it arises in fluid flow and electrical problems
involving a moving boundary. We survey progress over the last decade on
discrete models of (internal) Laplacian growth, including the abelian sandpile,
internal DLA, rotor aggregation, and the scaling limits of these models on the
lattice εZd as the mesh size ε goes to zero. These models provide a window
into the tools of discrete potential theory: harmonic functions, martingales,
obstacle problems, quadrature domains, Green functions, smoothing. We also
present one new result: rotor aggregation in Zd has O(log r) fluctuations around
a Euclidean ball, improving a previous power-law bound. We highlight several
open questions, including whether these fluctuations are O(1).

1. The abelian sandpile model

Start with n particles at the origin in the square grid Z2, and let them spread
out according to the following rule: whenever any site in Z2 has 4 or more particles,
it gives one particle to each of its 4 nearest neighbors (North, East, South and
West). The final configuration of particles does not depend on the order in which
these moves are performed (which explains the term “abelian”; see Lemma 1.1
below).

This model was invented in 1987 by the physicists Bak, Tang and Wiesenfeld
[7]. While defined by a simple local rule, it produces self-similar global patterns
that call for an explanation. Dhar [16] extended the model to any base graph and
discovered the abelian property. The abelian sandpile was independently discov-
ered by combinatorialists [10], who called it chip-firing. Indeed, in the last two
decades the subject has been enriched by an exhilarating interaction of numerous
areas of mathematics, including statistical physics, combinatorics, free boundary
PDE, probability, potential theory, number theory and group theory. More on
this below. There are also connections to algebraic geometry [51, 8, 62], commu-
tative algebra [54, 55] and computational complexity [57, 6, 12]. For software for
experimenting with sandpiles, see [63].

Let G = (V,E) be a locally finite connected graph. A sandpile on G is a
function s : V → Z. We think of a positive value s(x) > 0 as a number of sand
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n = 105 n = 106

Figure 1. Sandpiles in Z2 formed by stabilizing 105 and 106 par-
ticles at the origin. Each pixel is colored according to the number
of sand grains that stabilize there (white 0, red 1, purple 2, blue 3).
The two images have been scaled to have the same diameter.

grains (or “particles”) at vertex x, and negative value as a hole that can be filled
by particles. Vertex x is unstable if s(x) ≥ deg(x), the number of edges incident
to x. Toppling x is the operation of sending deg(x) particles away from x, one
along each incident edge. We say that a sequence of vertices x = (x1, . . . , xm) is
legal for s if si(xi) ≥ deg(xi) for all i = 1, . . . ,m, where si is the sandpile obtained
from s by toppling x1, . . . , xi−1; we say that x is stabilizing for s if sm ≤ deg−1.
(All inequalities between functions are pointwise.)

Lemma 1.1. Let s : V → Z be a sandpile, and suppose there exists a sequence
y = (y1, . . . , yn) that is stabilizing for s.

(i) Any legal sequence x = (x1, . . . , xm) for s is a permutation of a subsequence
of y.

(ii) There exists a legal stabilizing sequence for s.
(iii) Any two legal stabilizing sequences for s are permutations of each other.

Proof. Since x is legal for s we have s(x1) ≥ deg(x1). Since y is stabilizing for s
it follows that yi = x1 for some i. Toppling x1 yields a new sandpile s′. Removing
x1 from x and yi from y yields shorter legal and stabilizing sequences for s′, so (i)
follows by induction.

Let x be a legal sequence of maximal length, which is finite by (i). Such x must
be stabilizing, which proves (ii).

Statement (iii) is immediate from (i). �
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We say that s stabilizes if there is a sequence that is stabilizing for s. If s
stabilizes, we define its odometer as the function on vertices

u(x) = number of occurrences of x in any legal stabilizing sequence for s.

The stabilization ŝ of s is the result of toppling a legal stabilizing sequence for
s. The odometer determines the stabilization, since

ŝ = s+ ∆u (1)

where ∆ is the graph Laplacian

∆u(x) =
∑
y∼x

(u(y)− u(x)). (2)

Here the sum is over vertices y that are neighbors of x.
By Lemma 1.1(iii), both the odometer u and the stabilization ŝ depend only on

s, and not on the choice of legal stabilizing sequence, which is one reason the model
is called abelian (another is the role played by an abelian group; see Section 7).

What does a very large sandpile look like? The similarity of the two sandpiles in
Figure 1 suggests that some kind of limit exists as we take the number of particles
n → ∞ while “zooming out” so that each square of the grid has area 1/n. The
first step toward making this rigorous is to reformulate Lemma 1.1 in terms of the
Laplacian as follows.

Least Action Principle. If there exists w : V → N such that

s+ ∆w ≤ deg−1 (3)

then s stabilizes, and w ≥ u where u is the odometer of s. Thus,

u(x) = inf{w(x) |w : V → N satisfies (3)}. (4)

Proof. If such w exists, then any sequence y such that w(x) = #{i : yi = x} for
all x is stabilizing for s. The odometer is defined as u(x) = #{i : xi = x} for a
legal stabilizing sequence x, so w ≥ u by part (i) of Lemma 1.1. The last line now
follows from (1). �

The Least Action Principle expresses the odometer as the solution to a varia-
tional problem (4). In the next section we will see that the same problem, without
the integrality constraint on w, arises from a variant of the sandpile which will be
easier to analyze.

2. Relaxing Integrality: The Divisible Sandpile

Let Zd be the set of points with integer coordinates in d-dimensional Euclidean
space Rd, and let e1, . . . , ed be its standard basis vectors. We view Zd as a graph
in which points x and y are adjacent if and only if x − y = ±ei for some i. For
example, when d = 1 this graph is an infinite path, and when d = 2 it is an infinite
square grid.

In the divisible sandpile model, each point x ∈ Zd has a continuous amount of
mass σ(x) ∈ R≥0 instead of a discrete number of particles. Start with mass m
at the origin and zero elsewhere. At each time step, choose a site x ∈ Zd with
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mass σ(x) > 1 where σ is the current configuration, and distribute the excess mass
σ(x) − 1 equally among the 2d neighbors of x. We call this a toppling. Suppose
that these choices are sufficiently thorough in the sense that whenever a site
attains mass > 1, it is eventually chosen for toppling at some later time. Then we
have the following version of the abelian property.

Lemma 2.1. For any initial σ0 : Zd → R with finite total mass, and any thorough
sequence of topplings, the mass function converges pointwise to a function σ∞ :
Zd → R satisfying 0 ≤ σ∞ ≤ 1. Any site z satisfying σ0(z) < σ∞(z) < 1 has a
neighboring site y satisfying σ∞(y) = 1.

Proof. Let uk(x) be the total amount of mass emitted from x during the first k
topplings, and let σk = σ0 + ∆uk be the resulting mass configuration. Since uk is
increasing in k, we have uk ↑ u∞ for some u∞ : V → [0,∞]. To rule out the value
∞, consider the quadratic weight

Q(σk) :=
∑
x∈Zd

(σk(x)− σ0(x))|x|2 =
∑
x∈Zd

uk(x).

To see the second equality, note that Q increases by h every time we topple mass
h. The set {σk ≥ 1} is connected and contains 0, and has cardinality bounded by
the total mass of σ0, so it is bounded. Moreover, every site z with σk(z) > σ0(z)
has a neighbor y with σk(y) ≥ 1. Hence supkQ(σk) <∞, which shows that u∞ is
bounded.

Finally, σ∞ := limσk = lim(σ0 + ∆uk) = σ0 + ∆u∞. By thoroughness, for each
x ∈ Zd we have σk(x) ≤ 1 for infinitely many k, so σ∞ ≤ 1. �

The picture is thus of a set of “filled” sites (σ∞(z) = 1) bordered by a strip of
partially filled sites (σ0(z) < σ∞(z) < 1). Every partially filled site has a filled
neighbor, so the thickness of this border strip is only one lattice spacing. Think of
pouring maple syrup over a waffle: most squares receiving syrup fill up completely
and then begin spilling over into neighboring squares. On the boundary of the
region of filled squares is a strip of squares that fill up only partially (Figure 3).

The limit u∞ is called the odometer of σ0. The preceding proof did not show
that u∞ and σ∞ are independent of the thorough toppling sequence. This is a
consequence of the next result.

Least Action Principle For The Divisible Sandpile. For any σ0 : Z2 →
[0,∞) with finite total mass, and any w : V → [0,∞) such that

σ +
1

2d
∆w ≤ 1 (5)

we have w ≥ u∞ for any thorough toppling sequence. Thus,

u∞(x) = inf{w(x) : w : V → [0,∞) satisfies (5)}. (6)

Proof. With the notation of the preceding proof, suppose for a contradiction that
uk 6≤ w for some k. For the minimal such k, the functions uk and uk−1 agree
except at xk, hence

1 =
(
σ +

1

2d
∆uk

)
(xk) <

(
σ +

1

2d
∆w
)

(xk) ≤ 1 ,
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Figure 2. The obstacles γ corresponding to starting mass 1 on
each of two overlapping disks (top) and mass 100 on each of two
nonoverlapping disks.

which yields the required contradiction. �

2.1. The superharmonic tablecloth. The variational problem (6) has an equiv-
alent formulation:

Lemma 2.2. Let γ : Zd → R satisfy 1
2d∆γ = σ0− 1. Then the odometer u of (6)

is given by
u = s− γ

where
s(x) = inf{f(x) | f ≥ γ and ∆f ≤ 0}. (7)

Proof. f is in the set on the right side of (7) if and only if w := f − γ is in the set
on the right side of (6). �

The function γ is sometimes called the obstacle, and the minimizing function s
in (7) called the solution to the obstacle problem. To explain this terminology,
imagine the graph of γ as a fixed surface (for instance, the top of a table), and the
graph of f as a surface that can vary (a tablecloth). The tablecloth is constrained
to stay above the table (f ≥ γ) and is further constrained to be superharmonic
(∆f ≤ 0), which in particular implies that f has no local minima. Depending on
the shape of the table γ, these constraints may force the tablecloth to lie strictly
above the table in some places.

The solution s is the lowest possible position of the tablecloth. The set where
strict inequality holds

D := {x ∈ Zd : s(x) > γ(x)}.
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is called the noncoincidence set. In terms of the divisible sandpile, the odometer
function u is the gap s − γ between tablecloth and table, and the set {u > 0} of
sites that topple is the noncoincidence set.

2.2. Building the obstacle. The reader ought now to be wondering, given a
configuration σ0 : Zd → [0,∞) of finite total mass, what the corresponding obstacle
γ : Zd → R looks like. The only requirement on γ is that it has a specified discrete
Laplacian, namely

1

2d
∆γ = σ0 − 1.

Does such γ always exist?
Given a function f : Zd → R we would like to construct a function F such that

∆F = f . The most straightforward method is to assign arbitrary values for F on
a pair of parallel hyperplanes, from which the relation ∆F = f determines the
other values of F uniquely.

This method suffers from the drawback that the growth rate of F is hard to
control. A better method uses what is called the Green function or fundamen-
tal solution for the discrete Laplacian ∆. This is a certain function g : Zd → R
whose discrete Laplacian is zero except at the origin.

1

2d
∆g(x) = −δ0(x) =

{
−1 x = 0

0 x 6= 0.
(8)

If f has finite support, then we can construct F as a convolution

F (x) = −f ∗ g := −
∑
y∈Zd

f(y)g(x− y)

in which only finitely many terms are nonzero. (The condition that f has finite
support can be relaxed to fast decay of f(x) as |x| → ∞, but we will not pursue
this.) Then for all x ∈ Zd we have

∆F (x) =
∑
y∈Zd

f(y)δ0(x− y) = f(x)

as desired. By controlling the growth rate of the Green function g, we can control
the growth rate of F . The minus sign in equation (8) is a convention: as we will
now see, with this sign convention g has a natural definition in terms of random
walk.

Let ξ1, ξ2, . . . be a sequence of independent random variables each with the
uniform distribution on the set E = {±e1, . . . ,±ed}. For x ∈ Zd, the sequence

Xn = ξ1 + . . .+ ξn, n ≥ 0

is called simple random walk started from the origin in Zd: it is the location
of a walker who has wandered from 0 by taking n independent random steps,
choosing each of the 2d coordinate directions ±ei with equal probability 1/2d at
each step.
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In dimensions d ≥ 3 the simple random walk is transient: its expected number
of returns to the origin is finite. In these dimensions we define

g(x) :=
∑
n≥0

P(Xn = x),

a function known as the Green function of Zd. It is the expected number of
visits to x by a simple random walk started at the origin in Zd. The identity

− 1

2d
∆g = δ0 (9)

is proved by conditioning on the first step X1 of the walk:

g(x) = P (X0 = x) +
∑
n≥1

∑
e∈E

P (Xn = x|X1 = e)P (X1 = e).

= δ0(x) +
∑
n≥1

∑
e∈E

P (Xn−1 = x− e) 1

2d

Interchanging the order of summation, the second term on the right equals 1
2d

∑
y∼x g(y),

and (9) now follows by the definition of the Laplacian ∆.
The case d = 2 is more delicate because the simple random walk is recurrent:

with probability 1 it visits x infinitely often, so the sum defining g(x) diverges. In
this case, g is defined instead as

g(x) =
∑
n≥0

(P(Xn = x)− P(Xn = 0)) .

One can show that this sum converges and that the resulting function g : Z2 → R
satisfies (9); see [74]. The function −g is called the recurrent potential kernel
of Z2.

Convolving with the Green function enables us to construct functions on Zd
whose discrete Laplacian is any given function with finite support. But we want
more: In Lemma 2.2 we seek a function γ satisfying ∆γ = σ − 1, where σ has
finite support. Fortunately, there is a very nice function whose discrete Laplacian
is a constant function, namely the squared Euclidean norm

q(x) = |x|2 :=
d∑
i=1

x2i .

(In fact, we implicitly used the identity 1
2d∆q ≡ 1 in the quadratic weight argument

for Lemma 2.1.) We can therefore take as our obstacle the function

γ = −q − (g ∗ σ). (10)

In order to determine what happens when we drape a superharmonic tablecloth
over this particular table γ, we should figure out what γ looks like! In particular,
we would like to know the asymptotic order of the Green function g(x) when x is
far from the origin. It turns out [23, 39, 75] that

g(x) = G(x) +O(|x|−d) (11)
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Figure 3. Divisible sandpile in Z2 started from mass m = 1600
at the origin. Each square is colored blue if it fills completely, red
if it fills only partially. All red squares are contained in a thin
annulus centered at the origin of radii r ± c where πr2 = m. This
is illustrated above with c = 2.

where G is the spherically symmetric function

G(x) :=

{
− 2
π log |x| − a2, d = 2;

ad|x|2−d, d ≥ 3.
(12)

(For d ≥ 3 the constant ad = 2
(d−2)ωd

where ωd is the volume of the unit ball in

Rd. The constant a2 = 2γ+log 8
π , where γ is Euler’s constant.) As we will now see,

this estimate in combination with − 1
2d∆g = δ0 is a powerful package. We start

by analyzing the initial condition σ = mδ0 for large m.

2.3. Point sources. Pour m grams of maple syrup into the center square of a
very large waffle. Each square can hold just 1 gram of syrup before it overflows,
distributing the excess equally among the four neighboring squares. What is the
shape of the resulting set of squares that fill up with syrup?

Figure 3 suggests the answer is “very close to a disk”. Being mathematicians,
we wish to quantify “very close”, and why stop at two-dimensional waffles? Let
B(0, r) be the Euclidean ball of radius r centered at the origin in Rd.

Theorem 2.3. [48] Let Dm = {σ∞ = 1} be the set of fully occupied sites for the
divisible sandpile started from mass m at the origin in Zd. There is a constant
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c = c(d), such that

B(0, r − c) ∩ Zd ⊂ Dm ⊂ B(0, r + c)

where r is such that B(0, r) has volume m. Moreover, the odometer u∞ satisfies

u∞(x) = mg(x) + |x|2 −mg(re1)− r2 +O(1) (13)

for all x ∈ B(0, r + c) ∩ Zd, where the constant in the O depends only on d.

The idea of the proof is to use Lemma 2.2 to write the odometer function as

u∞ = s− γ

for an obstacle γ with discrete Laplacian 1
2d∆γ = mδ0 − 1. What does such an

obstacle look like?
Recalling that the Euclidean norm |x|2 and the discrete Green function g have

discrete Laplacians 1 and −δ0, respectively, a natural choice of obstacle is

γ(x) = −|x|2 −mg(x). (14)

The claim of (13) is that u(x) is within an additive constant of γ(re1)− γ(x). To
prove this one uses two properties of γ: it is nearly spherically symmetric (because
g is!) and it is maximized near |x| = r. From these properties one deduces that s
is nearly a constant function, and that {s > γ} is nearly the ball B(0, r) ∩ Zd.

The Euclidean ball as a limit shape is an example of universality: Although
our topplings took place on the cubic lattice Zd, if we take the total mass m→∞
while zooming out so that the cubes of the lattice become infinitely small, the
divisible sandpile assumes a perfectly spherical limit shape. Figure 1 strongly
suggests that the abelian sandpile, with its indivisible grains of sand, does not
enjoy such universality. However, discrete particles are not incompatible with
universality, as the next two examples show.

3. Internal DLA

Let m ≥ 1 be an integer. Starting with m particles at the origin in the d-
dimensional integer lattice Zd, let each particle in turn perform a simple random
walk until reaching an unoccupied site; that is, the particle repeatedly jumps to
an nearest neighbor chosen independently and uniformly at random, until it lands
on a site containing no other particles.

This procedure, known as internal DLA, was proposed by Meakin and Deutch
[56] and independently by Diaconis and Fulton [19]. It produces a random set Im
of m occupied sites in Zd. This random set is close to a ball, in the following sense.
Let r be such that the Euclidean ball B(0, r) of radius r has volume m. Lawler,
Bramson and Griffeath [43] proved that for any ε > 0, with probability 1 it holds
that

B(0, (1− ε)r) ∩ Zd ⊂ Im ⊂ B(0, (1 + ε)r) for all sufficiently large m.

A sequence of improvements followed, showing that in dimensions d ≥ 2 the
fluctuations of Im around B(0, r) are logarithmic in r [41, 2, 3, 4, 32, 33, 34].
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Figure 4. An internal DLA cluster in Z2. The colors indicate
whether a point was added to the cluster earlier or later than ex-
pected: the random site x(j) where the j-th particle stops is colored
red if π|x(j)|2 > j, blue otherwise.

4. Rotor-routing: derandomized random walk

In a rotor walk on a graph, each vertex v serves its neighbors in a prescribed
periodic sequence. This periodic sequence is called the rotor mechanism at v.
We say that the rotor mechanism at v is simple if each neighbor of v occurs
exactly once per period. To visualize a rotor walk, label each vertex by an arrow
(“rotor”) pointing toward one of its neighbors. At each time step, the walker first
advances the rotor at its current location to point to the next neighbor in the
periodic sequence, and then the walker moves to that neighbor.

Rotor walk has been studied in [77] as a model of mobile agents exploring a
territory, and in [67] as a model of self-organized criticality. Propp [69] proposed
rotor walk as a derandomization of random walk, a perspective explored in [15, 29].

In rotor aggregation, we start with n walkers at the origin; each in turn
performs rotor-router walk until it reaches a site not occupied by any other walkers.
Importantly, we do not reset the rotors between walks! Let Rn denote the resulting
region of n occupied sites. For example, in Z2 with the clockwise rotor mechanism
whose fundamental period is North, East South West, the sequence will begin
R1 = {0}, R2 = {0, e1}, R3 = {0, e1,−e2}. The region R106 is pictured in
Figure 5.
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Figure 5. Rotor aggregate of one million particles started at the
origin in Z2. All rotors initially pointed North and followed the
clockwise mechanism: each rotor repeatedly cycles through the
directions North, East, South, West. Each pixel represents a site
of Z2, and its color indicates the final direction of its rotor.

Theorem 4.1. There is a constant C depending only on the dimension d, such
that for any initial rotor configuration and any simple rotor mechanism on Zd, the
rotor aggregate Rn formed from n =

⌊
ωdr

d
⌋

particles started at 0 satisfies

B(0, r − C log r) ∩ Zd ⊂ Rn ⊂ B(0, r + C log r). (15)

The inner bound was proved in [48], which also included a weaker outer bound

Rωdrd
⊂ B(0, r + Cr(d−1)/d log r). The rest of this section is devoted to the proof

of the stronger outer bound (15), which builds on ideas of Holroyd-Propp [29] and
Jerison-Levine-Sheffield [32, 33].
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4.1. No thin tentacles. The first step in the proof of Theorem 4.1 is to rule out
“thin tentacles” on the boundary of the rotor aggregate Rn. Namely, according
to the following proposition, for any point z0 ∈ Rn at least a constant fraction of
the lattice sites in a ball around z0 must also belong to Rn. An analogous result
for internal DLA appears in [32, Lemma A].

Proposition 4.2. (No Thin Tentacles) There is a positive constant c depending
only on the dimension d, such that for any initial rotor configuration and any
simple rotor mechanism in Zd, and for any z0 ∈ Rn and ρ < |z0|, we have

#(B(z0, ρ) ∩Rn) ≥ cρd.

The proof of Proposition 4.2 uses the odometer function u = un : Zd → N
defined by

u(x) := total number of exits from x by all n particles during rotor aggregation.

If the same particle exits x several times then we include all of its exits in the
count.

We first compare the gradient of u with the net number of crossings of an edge.
For each directed edge (x, y) of Zd let

θ(x, y) := N(x, y)−N(y, x)

where N(x, y) is the total number of exits from x to y by all n particles in rotor-
router aggregation.

Lemma 4.3. For all directed edges (x, y) of Zd,

u(x)− u(y) = 2d θ(x, y) + β(x, y) (16)

for a function β on directed edges of Zd which satisfies

|β(x, y)| ≤ 4d− 2.

Proof. Note that u(x) =
∑

y∼xN(x, y). There are 2d terms in this sum, and the
definition of a simple rotor mechanism implies that any two of them differ by at
at most 1, so for x ∼ y,

|u(x)− 2dN(x, y)| ≤ 2d− 1 .

By the triangle inequality,

|u(x)− u(y)− 2d θ(x, y)| ≤ |u(x)− 2dN(x, y)|+ |u(y)− 2dN(y, x)|
≤ 4d− 2. �

Next consider the discrete Laplacian of the odometer function u. Since the net
effect of all rotor moves is to transport n particles at the origin to one particle at
each site of Rn, we would like to say that “ 1

2d∆u = 1Rn − nδ0 on average”. (This
equality holds exactly in a special case: namely, if every rotor makes an integer
number of full turns, so that N(x, y) depends only on x, then 1

2d∆u(x) equals the
total number of entries to x minus the total number of exits from x.) One way to
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make a precise statement of this form is to smooth u by averaging its values over
a small ball

B(x, k) := B(x, k) ∩ Zd.
The proof of the next lemma is a discrete version of ∆ = div∇.

Lemma 4.4. Fix an integer k > 1. For f : Zd → R, write

Skf(x) :=
1

#B(x, k)

∑
y∈B(x,k)

f(y).

For all x such that B(x, k) ⊂ Rn − {0}, the odometer u = un satisfies

1

2d
∆Sku(x) = 1 +O(

1

k
)

where the implied constant depends only on the dimension d.

Proof. Note that ∆Sk = Sk∆. Hence

1

2d
∆Sku(x) =

1

#B(x, k)

∑
y∈B(x,k)

1

2d
∆u(y).

Writing the Laplacian ∆u(y) as
∑

z∼y(u(z)−u(y)), we see that the interior terms

with y, z ∈ Q cancel, leaving (by Lemma 4.3)

1

#B(x, k)

∑
y∈B(x,k), z /∈B(x,k), z∼y

(θ(z, y) +
1

2d
β(z, y)).

The sum of the θ terms is the net number of particles entering B(x, k), which is
exactly #B(x, k): the ball starts empty and ends with exactly one particle per
site, since B(x, k) ⊂ Rn − {0}. Each β term is O(1) by Lemma 4.3, and there
are O(kd−1) terms in all (one for each boundary edge of B(x, k)). Dividing by
#B(x, k) leaves 1 +O(1/k). �

The above proof without any smoothing gives something much cruder. Namely,
if x ∈ Zd−{0} then the net number of particles entering x is

∑
y θ(y, x) = 1x∈Rn ,

so ∣∣∣∣ 1

2d
∆u(x)− 1x∈Rn

∣∣∣∣ =

∣∣∣∣∣ 1

2d

∑
y∼x

(u(y)− u(x)− 2d θ(y, x))

∣∣∣∣∣ ≤ 4d− 2

by Lemma 4.3. In particular,

|∆u| ≤ 8d2 on Zd − {0} (17)

We will use Lemma 4.4 for a fixed k = k(d), chosen large enough so that∣∣∣∣ 1

2d
∆Sku(x)− 1

∣∣∣∣ < 1

4
(18)

for all x such that B(x, k) ⊂ Rn − {0}.
Next we record the following lemma, which is proved by applying the Harnack

inequality to the harmonic extensions of the functions f(x) ± |x|2 in B(0, r); see
the proof of Lemma 2.17 in section 7 of [49].
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Lemma 4.5. Fix r > 1, and let f be a nonnegative function on Zd satisfying
f(0) = 0 and |∆f | ≤ 1 on B(0, 2r). There is a constant A0 depending only on d,
such that

f(x) ≤ A0|x|2

for all x ∈ B(0, r) ∩ Zd.

The next lemma shows that if the odometer is large at x, then the cluster Rn
contains a ball centered at x.

Lemma 4.6. Let A = 8d2A0. If u(x) > Ak2 and |x| > 3k, then B(x, k) ⊂ Rn.

Proof. We prove the contrapositive: if B(x, k) 6⊂ Rn, then there is a y ∈ B(x, k)
such that u(y) = 0. Since u ≥ 0, and ∆u is bounded by 8d2 on B(y, 2k) (here we
use that 0 /∈ B(x, 3k)), it follows from Lemma 4.5 that u(x) ≤ Ak2. �

Lemma 4.7. If Sku(x) > 4Ak2 and |x| > 7k, then B(x, k) ⊂ Rn.

Proof. Since Sku(x) is the average of u over B(x, k), there exists x′ ∈ B(x, k) with
u(x′) ≥ Sku(x). Now Lemma 4.6 implies that B(x, k) ⊂ B(x′, 3k) ⊂ Rn. �

The next two lemmas follow [49, Lemmas 4.9 and 4.10]. For x ∈ Zd and ρ > 0,
let

N(x, ρ) := #(B(x, ρ) ∩Rn)

be the number of occupied sites within distance ρ of x.

Lemma 4.8. Fix x ∈ Rn and ρ < |x|. Let m := max∂B(x,ρ) u. Then N(x, ρ+1) ≥
(1 + 1

m)N(x, ρ).

Proof. Note that m ≥ 1 since x ∈ Rn. Since ρ < |x|, no particles start in B(x, ρ).
Each particle entering B(x, ρ) must pass through the external vertex boundary
∂B(x, ρ), so

N(x, ρ) ≤
∑

y∈∂B(x,ρ)

u(y).

The sum on the right has at most N(x, ρ + 1) − N(x, ρ) nonzero terms, since
∂B(x, ρ) ⊂ B(x, ρ+ 1)− B(x, ρ). Each term is at most m, so

N(x, ρ) ≤ mN(x, ρ+ 1)−mN(x, ρ). �

Fix k large enough that (18) holds, and let

Rn,k = {x ∈ Zd : B(x, k) ⊂ Rn}.

Lemma 4.9. There are constants n0 and ρ0 depending only on d, such that for
all n > n0 the following holds. For each z0 ∈ Rn there exists z1 ∈ Rn,k with
|z0 − z1| < ρ0 and Sku(z1) > 4Ak2. (Recall that u = un.)

Proof. Since n particles start at 0, we have u(0) ≥ n− 1. Choose n0 large enough
that Sku(0) > 4Ak2. Take ρ0 := Dkd+3 where the constant D is chosen below. If
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|z0| ≤ ρ0 then take z1 = 0. Otherwise, setting m := maxB(z0,ρ0) u, we iteratively
apply Lemma 4.8 to obtain (

1 +
1

m

)ρ0
≤ N(z0, ρ0)

(here we have used that z0 ∈ Rn so that N(z0, 0) = 1 and m ≥ 1). By definition,
the right side is at most #B(z0, ρ0). Taking the logarithm of both sides yields

ρ0
m
≤ C log ρ0

for a constant C depending only on d. Taking D large enough in the choice of
ρ0 above, it follows that m > 4Ak2#B(z0, k), so there exists z1 ∈ B(z0, ρ) with
Sku(z1) > 4Ak2. By Lemma 4.6 it follows that z1 ∈ Rn,k. �

Lemma 4.9 shows that near each point in Rn is a point in Rn,k. Next we show
that for each point in Rn,k there is a nearby point with large odometer. The proof
is by the maximum principle, using an idea of Caffarelli [11].

Lemma 4.10. If Sku(z1) > 4Ak2, then for every ρ satisfying k < ρ < |z1| − 4k,
there exists z2 ∈ B(z1, ρ) such that

Sku(z2) >
1

2
ρ2.

Proof. Note that for every x ∈ A := B(z1, ρ) ∩ Rn,k we have B(x, k) ⊂ Rn − {0},
so by (18) the function

f(x) := Sku(x)− 1

2
|x− z1|2.

is subharmonic in A. By the maximum principle,

max
x∈A∪∂A

f(x) = max
x∈∂A

f(x) (19)

where ∂A := {x ∈ Ac : x ∼ y for some y ∈ A}. Note that z1 ∈ A, and for all
x ∈ Rcn,k ∩ ∂A, Lemma 4.7 implies that

f(x) ≤ Sku(x) ≤ 4Ak2 < f(z1) ,

so the maximum (19) must be attained at some x ∈ Rn,k ∩ ∂A. It follows that
x /∈ B(z1, ρ), so

Sku(x) >
1

2
|x− z1|2 >

1

2
ρ2. �

Proof of Proposition 4.2. Fix k = k(d) so that (18) holds. By taking c sufficiently
small, we may assume that ρ > ρ0, where ρ0 was defined in Lemma 4.9. By that
lemma, there is a point z1 ∈ Rn,k with |z1− z0| < ρ/4. Now by Lemma 4.10 there

is a point z2 with Sku(z2) >
1
2ρ

2 and |z2−z1| < ρ/2. It follows by Lemma 4.7 that

Rn contains a ball B(z2, ρ/C). Since this ball has volume cρd, and |z2−z0| < 3ρ/4,
the proof is complete. �



16 LIONEL LEVINE AND YUVAL PERES

4.2. Holroyd-Propp bound; Probe functions. If h is a function on Zd and
A ⊂ Zd is a finite set, write h[A] :=

∑
x∈A h(x).

Lemma 4.11. (Holroyd-Propp Bound) [29] For any initial rotor configuration
and any simple rotor mechanism on Zd, if h : Zd → R is discrete harmonic on
Rn, then

|h[Rn]− nh(0)| ≤
∑
x∈Rn

∑
y∼x
|h(x)− h(y)|. (20)

Proof. For each vertex v ∈ Rn, let v1, . . . , v2d be the neighbors of v in Zd in the
order they appear in v’s rotor mechanism. We assign a “weight” wi(v) ∈ R to a
rotor pointing from v to vi, so that w1(v) = 0 and

wi(v)− wi−1(v) = h(v)− h(vi)

for each i = 1, . . . , 2d (taking indices modulo 2d). These assignments are consistent
since h is discrete harmonic:

∑
i(h(v) − h(vi)) = 0. We also assign weight h(v)

to a walker located at v. The sum of rotor and walker weights is unchanged by
each step of rotor walk. Initially, the sum of all walker weights is nh(0). After
all walkers have stopped, the sum of all walker weights is h[Rn]. Their difference
is thus at most the change in rotor weights, which is bounded above by the right
side of (20). �

Next we describe our choice of discrete harmonic function h, which is a variant
of the ones used in [32, 33]. The idea is that for each point y slightly outside
B(0, r) we can build a discrete harmonic “probe function” h = hy whose sum
h[Rn] measures how close the cluster Rn comes to y. A good choice of h turns out
to be a discrete derivative of Green’s function in the radial direction: the essential
properties of this h are that it is nonnegative in a neighborhood of the ball B(0, r)
and it decays rapidly away from y.

In the next lemma, J,K,L,M are constants depending only on the dimension
d.

Lemma 4.12. (Probe Function) Fix r > ρ > J . For each y ∈ Zd with r + 2ρ <
|y| < r + 3ρ there exists a function h : Zd → R with the following properties.

(i) h is discrete harmonic and nonnegative on B(0, r + ρ).
(ii) h(x) < K|x− y|1−d.

(iii) h(x) > 1
4ρ

1−d for all x ∈ B(0, r + ρ) ∩ B(y, 2ρ).
(iv)

∑
x∈B(0,r+ρ)

∑
z∼x |h(x)− h(z)| < L log r.

(v) h[B(0, r)] > (#B(0, r))h(0)−M log r.

Proof. Let

h(x) := b

d∑
i=1

yi
|y|

[g(x− y + ei)− g(x− y)].

where g is the Green function of Zd defined in Section 2.2, and b is a small constant
we will choose later.
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Since g is discrete harmonic on Zd−{0}, the function h is discrete harmonic on
Zd − B(y, 1). To show that h is nonnegative and prove (ii)-(v), we approximate g
by its continuum analogue G of (11), which yields

h(x) = b
d∑
i=1

yi
|y|

[G(x− y + ei)−G(x− y)] +O(|x− y|−d). (21)

Next observe that
∂G

∂xi
(x) = − 2

ωd

xi
|x|d

in all dimensions d ≥ 2, and the second derivatives of G are O(|x|−d). (We remark
that G also has a simple physical interpretation as the Newtonian potential of a
mass at the origin in Rd. The gradient of G is the gravitational force exerted by a
mass at 0 on a mass at x.) A first order Taylor expansion of G around x− y gives

h(x) = b

d∑
i=1

yi
|y|

[
2

ωd

yi − xi
|y − x|d

]
+O(|y − x|−d)

where the implied constant in the error term depends only on d. Take b = ωd/2
so that

h(x) =
〈y, y − x〉
|y||y − x|

|y − x|1−d +O(|y − x|−d). (22)

(i) Setting z = (r + ρ) y
|y| , we have for all x ∈ B(0, r + ρ)

〈y, y − x〉 ≥ 〈y, y − z〉 > ρ|y| (23)

so that

h(x) > (ρ−O(1))|y − x|−d > 0

on B(0, r + ρ) (take J large enough to beat the O(1)).
(ii) By Cauchy-Schwarz, the prefactor in equation (22) is at most 1.
(iii) For x ∈ B(y, 2ρ) ∩ B(0, r + ρ) we have by (22) and (23)

h(x) >
ρ|y|
2ρ|y|

ρ1−d −O(ρ−d).

Take J > 4 to ensure that (iii) holds.
(iv) This follows from (11).
(v) Writing H(x) for the main term of (21), we have∫

B(0,r)
h(x) dx =

∫
B(0,r)

H(x) dx+O(log r) = ωdr
dH(0) +O(log r).

Write B� for the union of closed unit cubes centered at the points of B(0, r). Then∑
x∈B(0,r)

h(s) =

∫
B�

H(x) dx+O(log r).

Moreover since h(x) < K|x− y|1−d we have
∫
B� H −

∫
B(0,r)H = O(log r). �
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Now we prove the main result of this section. As in [32, 33] the idea is to
amplify the ability of h[Rn] to detect fluctuations in Rn: The absence of thin
tentacles (Proposition 4.2) implies that if Rn has a point within distance ρ of y
then Rn has a substantial number of points (at least cρd) within distance 2ρ of
y. Each of these points contributes substantially to the sum h[Rn], but if ρ is
on the order of log r then cρd is very small compared to n. To show that their
contribution is not swamped by the rest of Rn, we use the inner bound of (15)
and the discrete mean value property Lemma 4.12(v).

Proof of Theorem 4.1. The inner bound was proved in [48]. To prove the outer
bound, let

ρ := max(J, max
x∈Rn

|x| − r).

By [48] we have ρ < r (in fact ρ < r(d−1)/d log r).
We may assume that ρ > J . Fix y ∈ ∂B(0, r+2ρ) such that B(y, 3ρ/2) intersects

Rn, and let h be as in Lemma 4.12. By Proposition 4.2, #(Rn ∩B(y, 2ρ)) ≥ cρd.
Since Rn ⊂ B(0, r + ρ) and |y| > r + 2ρ, it follows that Rn ∩ B(y, 2ρ) ⊂ A :=
B(y, 2ρ)−B(y, ρ). By Lemma 4.12(iii) we have

h[Rn ∩A] > (
1

4
ρ1−d)(cρd) =

c

4
ρ.

By the discrete mean value property, Lemma 4.12(v), writing n1 = #B(0, r −
C log r) we have

h[B(0, r − C log r)] > n1h(0)−M log r.

By Lemma 4.12(i) we have h ≥ 0 on Rn. Now we throw away the terms h(x) for
x /∈ A∪B(0, r−C log r) and use the inner bound B(0, r−C log r) ⊂ Rn, obtaining

h[Rn]− nh(0) > h[Rn ∩A]−M log r − (n− n1)h(0).

The left side is at most L log r, by the Holroyd-Propp Lemma 4.11 and Lemma 4.12(iv).
Using n1 > (r − 2C log r)d, we get

(L+M) log r >
c

4
ρ− (2Cdrd−1 log r)h(0).

Finally, since h(0) < Kr1−d by Lemma 4.12(ii), we conclude that

ρ < C ′ log r

as desired, with C ′ = 4
c (2CKd+ L+M). �

5. Multiple sources; Quadrature domains

The Euclidean ball as a limiting shape is not too hard to guess. But what if
the particles start at two different points of Zd? For example, fix an integer r ≥ 1
and a positive real number a, and start with m =

⌊
ωd(ar)

d
⌋

particles at each of
re1 and −re1. Alternately release a particle from re1 and let it perform simple
random walk until it finds an unoccupied site, and then release a particle from
−re1 and let it perform simple random walk until it finds an unoccupied site. The
result is a random set Im,m consisting of 2m occupied sites in Zd.
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Figure 6. Rotor-router aggregation started from two point
sources in Z2. Its scaling limit is a two-point quadrature domain
in R2, satisfying (26).

If a < 1, then the distance between the source points ±re1 is so large compared
to the number of particles that with high probability, the particles starting at re1
do not interact with those starting at −re1. In this case Im,m is a disjoint union
of two ball-shaped clusters each of size m. On the other hand, if a � 1, so that
the two source points are very close together relative to the number of particles
released, then the cluster Im,m will look like a single ball of size 2m. What happens
in between these extreme cases?

Theorem 5.1. [49] For each a > 0 there exists a deterministic domain D ⊂ Rd
such that with probability 1

1

r
Im,m → D (24)

as r →∞.

The precise meaning of the convergence of domains in (24) is the following:
given Dr ⊂ 1

rZ
d and Ω ⊂ Rd, we write Dr → Ω if for all ε > 0 we have

Ωε ∩
1

r
Zd ⊂ Dr ⊂ Ωε (25)

for all sufficiently large r, where

Ωε := {x ∈ Ω | B(x, ε) ⊂ Ω}
and

Ωε := {x ∈ Rd | B(x, ε) 6⊂ Ωc}
are the inner and outer ε-neighborhoods of D.
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The limiting domain D is called a quadrature domain because it satisfies

1

ωdad

∫
D
hdx = h(−e1) + h(e1) (26)

for all integrable harmonic functions h on D, whre dx is Lebesgue measure on
Rd. This identity is analogous to the mean value property

∫
B hdx = h(0) for

integrable harmonic functions on the ball B of unit volume centered at the origin.
In dimension d = 2, the domain D has a more explicit description: For a ≥ 1

its boundary in R2 is the quartic curve(
x2 + y2

)2 − 2a2
(
x2 + y2

)
− 2(x2 − y2) = 0. (27)

When a = 1 this factors as

(x2 + y2 − 2x)(x2 + y2 + 2x) = 0

which describes the union of two unit circles centered at ±e1 and tangent at the
origin. This case corresponds to two clusters that just barely interact, whose
interaction is small enough that we do not see it in the limit. When a � 1, the
term 2(x2−y2) is much smaller than the others, so the curve (27) is approximately
the circle

x2 + y2 − 2a2 = 0.

This case corresponds to releasing so many particles that the effect of releasing
them alternately at ±re1 is nearly the same as releasing them all at the origin.

Theorem 5.1 extends to the case of any k point sources in Rd as follows.

Theorem 5.2. [49] Fix x1, . . . , xk ∈ Rd and a1, . . . , ak > 0. Let x::i be a closest
site to xi in the lattice 1

nZ
d, and let

Dn = {occupied sites for the divisible sandpile}
Rn = {occupied sites for rotor aggregation}
In = {occupied sites for internal DLA}

started in each case from
⌊
ain

d
⌋

particles at each site x::i in 1
nZ

d.

Then there is a deterministic set D ⊂ Rd such that

Dn, Rn, In → D

where the convergence is in the sense of (25); the convergence for Rn holds for
any initial setting of the rotors; and the convergence for In is with probability 1.

The limiting set D is called a k-point quadrature domain. It is characterized
up to measure zero by the inequalities∫

D
hdx ≤

k∑
i=1

aih(xi)

for all integrable superharmonic functions h on D, where dx is Lebesgue measure
on Rd. The subject of quadrature domains in the plane begins with Aharonov and
Shapiro [1] and was developed by Gustafsson [25], Sakai [71, 72] and others. The
boundary of a k-point quadrature domain in the plane lies on an algebraic curve
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of degree 2k. In dimensions d ≥ 3, it is not known whether the boundary of D is
an algebraic surface!

6. Scaling limit of the abelian sandpile on Z2

Now that we have seen an example of a universal scaling limit, let us return to
our very first example, the abelian sandpile with discrete particles.

Take as our underlying graph the square grid Z2, start with n particles at
the origin and stabilize. The resulting configuration of sand appears to be non-
circular (Figure 1)—so we do not the scaling limit to be universal like the one in
Theorem 5.2. In a breakthrough work [60], Pegden and Smart proved existence of
its scaling limit as n→∞. To state their result, let

sn = nδ0 + ∆un

be the sandpile formed from n particles at the origin in Zd, and consider the
rescaled sandpile

s̄n(x) = sn(n1/dx).

Theorem 6.1. [60] There is a function s : Rd → R such that s̄n → s weakly-∗ in
L∞(Rd).

The weak-∗ convergence of s̄n in L∞ means that for every ball B(x, r), the

average of sn over Zd ∩ n1/dB(x, r) tends as n → ∞ to the average of s over
B(x, r).

The limiting sandpile s is lattice dependent. Examining the proof in [60] reveals
that the lattice dependence enters in the following way. Each real symmetric d×d
matrix A defines a quadratic function qA(x) = 1

2x
TAx and an associated sandpile

sA : Zd → Z
sA = ∆ dqAe .

For each matrix A, the sandpile sA either stabilizes locally (that is, every site
of Zd topples finitely often) or fails to stabilize (in which case every site topples
infinitely often). The set of allowed Hessians Γ(Zd) is defined as the closure
(with respect to the Euclidean norm ‖A‖22 = Tr(ATA)) of the set of matrices A
such that sA stabilizes locally.

One can convert the Least Action Principle into an obstacle problem analogous
to Lemma 2.2 with an additional integrality constraint. The limit of these discrete
obstacle problems on 1

nZ
d as n→∞ is the following variational problem on Rd.

Limit of the least action principle.

u = inf
{
w ∈ C(Rd) | w ≥ −G and D2(w +G) ∈ Γ(Zd)

}
. (28)

Here G is the fundamental solution of the Laplacian in Rd. The infimum is
pointwise, and the minimizer u is related to the the sandpile odometers un by

lim
n→∞

1

n
un(n1/2x) = u(x) +G(x).
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(i) (ii) (iii)

Figure 7. (i) According to the main theorem of [47], the set of
allowed Hessians Γ(Z2) is the union of slope 1 cones based at the
circles of an Apollonian circle packing in the plane of 2 × 2
real symmetric matrices of trace 2. (ii) The same set viewed
from above: Color of point (a, b) indicates the largest c such that(
c−a b
b c+a

)
∈ Γ(Z2) The rectangle shown, (a, b) ∈ [0, 2] × [0, 4], ex-

tends periodically to the entire plane. (iii) Close-up of the lower
left corner (a, b) ∈ [0, 1]× [0, 2].

The Hessian constraint in (28) is interpreted in the sense of viscosity:

D2ϕ(x) ∈ Γ(Zd)

whenever ϕ is a C∞ function touching w + G from below at x (that is, ϕ(x) =
w(x) +G(x) and ϕ− (w +G) has a local maximum at x).

The obstacle G in (28) is a spherically symmetric function on Rd, so the lattice-
dependence arises solely from Γ(Zd). Put another way, the set Γ(Zd) is a way
of quantifying which features of the lattice Zd are still detectable in the limit of
sandpiles as the lattice spacing shrinks to zero.

An explicit description of Γ(Z2) appears in [47] (see Figure 7), and explicit
fractal solutions of the sandpile PDE

D2u ∈ ∂Γ(Z2)

are constructed in [46]. See [61] for images of Γ(L) for some other two-dimensional
lattices L.

7. The sandpile group of a finite graph

Let G = (V,E) be a finite connected graph and fix a sink vertex z ∈ V . A
stable sandpile is now a map s : V \ {z} → N satisfying s(x) < deg(x) for all
x ∈ V \ {z}. As before, sites x with s(x) ≥ deg(x) topple by sending one particle
along each edge incident to x, but now particles falling into the sink disappear.
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Figure 8. Identity elements of the sandpile group Rec([0, n]2, z)
of the n × n grid graph with sink at the wired boundary (i.e., all
boundary vertices are identified to a single vertex z), for n = 198
(left) and n = 521.

Define a Markov chain on the set of stable sandpiles as follows: at each time
step, add one sand grain at a vertex of V \ {z} selected uniformly at random, and
then perform all possible topplings until the sandpile is stable. Recall that a state
s in a finite Markov chain is called recurrent if whenever s′ is reachable from
s then also s is reachable from s′. Dhar [16] observed that the operation ax of
adding one particle at vertex x and then stabilizing is a permutation of the set
Rec(G, z) of recurrent sandpiles. These permutations obey the relations

axay = ayax and adeg(x)x =
∏
u∼x

au

for all x, y ∈ V \{z}. The subgroupK(G, z) of the permutation group Sym(Rec(G, z))
generated by {ax}x 6=z is called the sandpile group of G. Although the set
Rec(G, z) depends on the choice of sink vertex, the sandpile groups for different
choices of sink are isomorphic (see, e.g., [28, 30]).

The sandpile groupK(G, z) has a free transitive action on Rec(G, z), so #K(G, z) =
#Rec(G, z). One can use rotor-routing to define a free transitive action of K(G, z)
on the set of spanning trees of G [28]. In particular, the number of spanning trees
also equals #K(G, z). The most important bijection between recurrent sandpiles
and spanning trees uses Dhar’s burning algorithm [16, 53].

A group operation ⊕ can also be defined directly on Rec(G, z), namely s ⊕ s′

is the stabilization of s + s′. Then s 7→
∏
x a

s(x)
x defines an isomorphism from

(Rec(G, z),⊕) to the sandpile group.
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8. Loop erasures, Tutte polynomial, Unicycles

Fix an integer d ≥ 2. The looping constant ξ = ξ(Zd) is defined as the
expected number of neighbors of the origin on the infinite loop-erased random
walk in Zd. In dimensions d ≥ 3, this walk can be defined by erasing cycles from
the simple random walk in chronological order. In dimension 2, one first defines
the loop erasure of the simple random walk stopped on exiting the box [−n, n]2

and shows that the resulting measures converge weakly [40, 42].
A unicycle is a connected graph with the same number of edges as vertices.

Such a graph has exactly one cycle (Figure 9). If G is a finite (multi)graph, a
spanning subgraph of G is a graph containing all of the vertices of G and a subset
of the edges. A uniform spanning unicycle (USU) of G is a spanning subgraph
of G which is a unicycle, selected uniformly at random.

An exhaustion of Zd is a sequence V1 ⊂ V2 ⊂ · · · of finite subsets such that⋃
n≥1 Vn = Zd. Let Gn be the multigraph obtained from Zd by collapsing V c

n to
a single vertex zn, and removing self-loops at zn. We do not collapse edges, so
Gn may have edges of multiplicity greater than one incident to zn. Theorem 8.1,
below, gives a numerical relationship between the looping constant ξ and the mean
unicycle length

λn = E [length of the unique cycle in a USU of Gn] .

as well as the mean sandpile height

ζn = E [number of particles at 0 in a uniformly random recurrent sandpile on Vn] .

To define the last quantity of interest, recall that the Tutte polynomial of a
finite (multi)graph G = (V,E) is the two-variable polynomial

T (x, y) =
∑
A⊂E

(x− 1)c(A)−1(y − 1)c(A)+#A−n

where c(A) is the number of connected components of the spanning subgraph
(V,A). Let Tn(x, y) be the Tutte polynomial of Gn. The Tutte slope is the ratio

τn =

∂Tn
∂y (1, 1)

(#Vn)Tn(1, 1)
.

A combinatorial interpretation of τn is the number of spanning unicycles of Gn
divided by the number of rooted spanning trees of Gn.

For a finite set V ⊂ Zd, write ∂V for the set of sites in V c adjacent to V .

Theorem 8.1. [50] Let {Vn}n≥1 be an exhaustion of Zd such that V1 = {0},
#Vn = n, and #(∂Vn)/n → 0. Let τn, ζn, λn be the Tutte slope, sandpile mean
height and mean unicycle length in Vn. Then the following limits exist:

τ = lim
n→∞

τn, ζ = lim
n→∞

ζn, λ = lim
n→∞

λn.

Their values are given in terms of the looping constant ξ = ξ(Zd) by

τ =
ξ − 1

2
, ζ = d+

ξ − 1

2
, λ =

2d− 2

ξ − 1
. (29)
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Figure 9. A spanning unicycle of the 8 × 8 square grid. The
unique cycle is shown in red.

Dimension two is especially intriguing, because the quantities ξ, τ, ζ, λ turn out
to be rational numbers.

Corollary 8.2. In the case d = 2, we have [38, 68, 14]

ξ =
5

4
and ζ =

17

8
.

Hence by Theorem 8.1,

τ =
1

8
and λ = 8.

The value ζ(Z2) = 17
8 was conjectured by Grassberger (see [17]). Poghosyan

and Priezzhev [64] observed the equivalence of this conjecture with ξ(Z2) = 5
4 , and

shortly thereafter three proofs [68, 38, 14] appeared.
The proof that ζ(Z2) = 17

8 by Kenyon and Wilson [38] uses the theory of
vector bundle Laplacians [37], while the proof by Poghosyan, Priezzhev and Ruelle
[68] uses monomer-dimer calculations. Earlier, Jeng, Piroux and Ruelle [31] had
reduced the computation of ζ(Z2) to evaluation of a certain multiple integral which
they evaluated numerically as 0.5± 10−12. This integral was proved to equal 1

2 by
Caracciolo and Sportiello [14], thus providing another proof.

All three proofs involve powers of 1/π which ultimately cancel out. For i =
0, 1, 2, 3 let pi be the probability that a uniform recurrent sandpile in Z2 has
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exactly i grains of sand at the origin. The proof of the distribution

p0 =
2

π2
− 4

π3

p1 =
1

4
− 1

2π
− 3

π2
+

12

π3

p2 =
3

8
+

1

π
− 12

π3

p3 =
3

8
− 1

2π
+

1

π2
+

4

π3

is completed in [68, 38, 14], following work of [53, 66, 31]. In particular, ζ(Z2) =
p1 + 2p2 + 3p3 = 17

8 .

Kassel and Wilson [36] give a new and simpler method for computing ζ(Z2),
relying on planar duality, which also extends to other lattices. For a survey of
their approach, see [35].

These objects on finite subgraphs of Zd also have “infinite-volume limits” de-
fined on Zd itself: Lawler [40] defined the infinite loop-erased random walk, Pe-
mantle [59] defined the uniform spanning tree in Zd, and Athreya and Járai [5]
defined the infinite-volume stationary measure for sandpiles in Zd. The latter limit
uses the burning bijection of Majumdar and Dhar [53] and the one-ended property
of the trees in the uniform spanning forest [59, 9]. As for the Tutte polynomials
Tn of finite subgraphs of Zd, the limit

t(x, y) := lim
n→∞

1

n
log Tn(x, y)

can be expressed in terms of the pressure of the Fortuin-Kasteleyn random cluster
model. By a theorem of Grimmett (see [24, Theorem 4.58]) this limit exists for all
real x, y > 1. Theorem 8.1 concerns the behavior of this limit as (x, y) → (1, 1);
indeed, another expression for the Tutte slope is

τn =
∂

∂y

[
1

n
log Tn(x, y)

]∣∣∣∣
x=y=1

.

9. Open problems

We conclude by highlighting a few of the key open problems in this area.

(1) Suppose s(x)x∈Z2 are independent and identically distributed random vari-
ables taking values in {0, 1, 2, 3, 4}. Viewing s as a sandpile, the event that
every site of Z2 topples infinitely often is invariant under translation, so it
has probability 0 or 1. We do not know of an algorithm to decide whether
this probability is 0 or 1! See [20, 45].

(2) Does the rotor-router walk in Z2 with random initial rotors (independently
North, East, South, or West, each with probability 1

4) return to the origin
with probability 1? The number of sites visited by such a walk in n steps
is predicted to be of order n2/3 [65]. For a lower bound of that order, see
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[22]. As noted there, even an upper bound of o(n) would imply recurrence,
which is not known!

(3) Recall that the weak-∗ convergence in Theorem 6.1, proved by Pegden
and Smart [60], means that the average height of the sandpile sn in any
ball converges as the lattice spacing shrinks to zero. A natural refinement
would be to show that for any ball B and any integer j, the fraction of
sites in B with j particles converges. Understanding the scaling limit of
the sandpile identity elements (Figure 8) is another appealing problem,
solved in a special case by Caracciolo, Paoletti and Sportiello [13].

(4) As proved in [47] (and illustrated in Figure 7), the maximal elements of
Γ(Z2) correspond to the circles in the Apollonian band packing of R2.
Because the radius and the coordinates of the center of each such circle
are rational numbers, each maximal element of Γ(Z2) is a matrix with
rational entries. Describe the maximal elements of Γ(Zd) for d ≥ 3. Are
they isolated? Do they have rational entries?
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[10] Anders Björner, László Lovász and Peter Shor, Chip-firing games on graphs, European J.
Combin. 12(4):283–291, 1991.

[11] Luis A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), no. 4-5,
383–402.

[12] Hannah Cairns, Some halting problems for abelian sandpiles are undecidable in dimension
three. arXiv:1508.00161

[13] Sergio Caracciolo, Guglielmo Paoletti and Andrea Sportiello, Explicit characterization of the
identity configuration in an abelian sandpile model. J. Phys. A: Math. Theor. 41.49 (2008):
495003.

[14] Sergio Caracciolo and Andrea Sportiello, Exact integration of height probabilities in the
abelian sandpile model, J. Stat. Mech. 2012.09 (2012): P09013.

http://people.cs.uchicago.edu/~laci/REU05/#problem
http://people.cs.uchicago.edu/~laci/REU05/#problem
http://arxiv.org/abs/1508.00161


28 LIONEL LEVINE AND YUVAL PERES

[15] Joshua N. Cooper and Joel Spencer, Simulating a random walk with constant error, Combin.
Probab. Comput. 15 (2006) 815–822. arXiv:math.CO/0402323.

[16] Deepak Dhar (1990): Self-organized critical state of sandpile automaton models, Phys. Rev.
Lett. 64, 1613.

[17] Deepak Dhar (2006): Theoretical studies of self-organized criticality, Physica A 369: 29–70.
See also arXiv:cond-mat/9909009

[18] Deepak Dhar, Tridib Sadhu and Samarth Chandra (2009): Pattern formation in growing
sandpiles, Europhys. Lett. 85, 48002. arXiv:0808.1732

[19] Persi Diaconis and William Fulton (1991): A growth model, a game, an algebra, Lagrange
inversion, and characteristic classes, Rend. Sem. Mat. Univ. Pol. Torino 49, no. 1, 95–119.

[20] Anne Fey-den Boer, Ronald Meestera and Frank Redig (2009): Stabilizability and percola-
tion in the infinite volume sandpile model, Ann. Probab. 37, no. 2, 654–675. arXiv:0710.0939

[21] Anne Fey, Lionel Levine and Yuval Peres, Growth rates and explosions in sandpiles, J. Stat.
Phys. 138: 143–159, 2010. arXiv:0901.3805

[22] Laura Florescu, Lionel Levine and Yuval Peres, The range of a rotor walk, 2014.
arXiv:1408.5533
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