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The broad goal of my research is to understand how large-scale forms and complex patterns
emerge from simple local rules. My approach is to analyze specific mathematical models which
isolate just one or a few features of pattern formation. A good model is one that captures some
aspect of “scaling up” from local to global, yet is tractable enough to prove theorems about! Some
of the models I’m working on include

• Abelian sandpiles [BTW87], a model of self-organization and pattern formation.
• Parallel chip-firing [BG92], a model of mode-locking and synchronization.
• Internal DLA [LBG92], a model of fluid flow and random interfaces.
• Rotor-router aggregation [LP09], a model based on derandomizing random walks.

Abelian networks, invented by Deepak Dhar [Dha06], tie these models and many others together
in a common mathematical framework. The mathematics involved is a mixture of probability and
combinatorics, draws on techniques that originated in the study of partial differential equations,
and has close connections with statistical physics and computer science.

Figure 1. Pattern formation in a stable sandpile (left) and an exploding sandpile
(right) in Z2. Each site is colored according to the number of sand grains present.

Synchronization and pattern formation have fascinated generations of physicists and mathe-
maticians. One of the simplest systems known that forms complex patterns from local rules is the
Bak-Tang-Wiesenfeld abelian sandpile model [BTW87], pictured in Figure 1. Over the past few
years, beginning with the “least action principle” of [FLP10], my coauthors Fey, Friedrich, Kager,
Peres and I have developed new variational tools for the abelian sandpile and related models. I
survey a selection of results and open problems in §1-§3 and discuss some new directions in §4.

1. Mode-locking and synchronization in parallel chip-firing

Mode-locking, defined as the “tendency of weakly coupled oscillators to synchronize their motion”
[Lag92], is a widespread phenomenon in dynamical systems in the physical and biological sciences.
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n = 100 n = 1000 n = 10000 devil’s staircase

an(λ)
n→∞−→ s(λ)

Figure 2. As the density of chips λ increases, the activity an(λ) of a parallel chip-
firing system on Kn has long intervals of constancy punctuated by sudden jumps.
According to Theorem 1, as n→∞ the function an(λ) tends to a limit s(λ) whose
graph has a flat horizontal segment at height y for each rational number y in the
interval [0, 1]. Within each box above, λ runs from 0 to 1 on the horizontal axis,
and the activity runs from 0 to 1 on the vertical axis.

A familiar example is the dark side of the moon, which is never visible from earth because the moon’s
two modes of oscillation — its revolution around the earth and rotation about its own axis — are
synchronized. This synchronization arose over millions of years from a weak coupling caused by
action of the earth’s tidal forces on the moon. A telltale sign of mode-locking in a dynamical system
is the appearance of a devil’s staircase dependence of an observable on a parameter (Figure 2): as
the parameter varies, the observable has long intervals of constancy punctuated by sudden jumps.

In [Lev10a] I studied parallel chip-firing as a combinatorial model of mode-locking. This is a
discrete dynamical system whose state space consists of functions σ : V → N, where V is the vertex
set of a fixed finite undirected graph G. We interpret σ(v) as the number of “chips” at vertex v. If
σ(v) is at least the number of edges incident to v, then v is called unstable and can fire by sending
one chip along each incident edge. A single time step of the system consists of firing all unstable
vertices in parallel. For background, see [BG92, Pri94].

Parallel chip-firing has a natural control parameter, the average number of chips per vertex
λ = 1

n

∑
v σ(v). Here n = |V | is the number of vertices. It also has a natural observable, the

activity, defined by

a = lim
t→∞

αt
nt

where αt is the total number of firings before time t. In numerical experiments, Bagnolli et
al. [BCFV03] discovered the telltale devil’s staircase: as we vary λ by adding additional chips
to the system, the activity a remains constant for long intervals punctuated by sudden jumps. My
motivation in [Lev10a] was to prove a theorem that would explain these experimental findings. For
each n ≥ 2 let σn be a stable chip configuration on the complete graph Kn, and let an(λ) be the
activity of the configuration σn + λn.

Theorem 1. [Lev10a] Under mild hypotheses on σn there exists a function s : [0, 1] → [0, 1] such
that for each λ ∈ [0, 1]

an(λ)→ s(λ) as n→∞.
The function s is continuous and nondecreasing. Moreover,

• If y ∈ [0, 1] is irrational, then s−1(y) is a single point.
• If y ∈ [0, 1] is rational, then s−1(y) is an interval of positive length.

I prove this theorem in [Lev10a] by constructing, for any chip configuration σ on Kn, a circle
map fσ : S1 → S1 whose Poincaré rotation number equals the activity of σ. This construction
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reveals a connection between certain discrete and continuous dynamical systems ripe for further
exploration. I believe that the right way to extend this correspondence to general graphs is by
replacing the circle with a higher-dimensional torus.

Problem 1. Generalize the circle map construction of [Lev10a] to model parallel chip-firing on a
general graph G by iteration of a torus map Tn → Tn.

A second manifestation of mode-locking is the prevalence of short period attractors. Bitar made
a striking conjecture about parallel chip-firing in 1989.

Conjecture 1. [Bit89] Any parallel chip-firing configuration on a connected undirected n-vertex
graph G has eventual period at most n.

To see what is striking about this conjecture, note that as a deterministic system with a finite
state space, parallel chip-firing must eventually settle into a periodic cycle; but the number of
distinct states is superexponential in n, so in principle the period could be extremely long. Bitar’s
conjecture posits that such long periods do not occur.

Kiwi et al. [KNTG94] constructed a counterexample to Bitar’s conjecture by making the graph
extremely thinly connected: G is a disjoint union of cycles each connected by a single edge to a
central hub vertex. To date the only known counterexamples are of this type.

Question 1. How “well connected” must G be in order for Bitar’s conjecture to hold?

Theorem 2 shows that Bitar’s conjecture holds when G is a complete graph.

Theorem 2. [Lev10a]

• Every parallel chip-firing configuration on Kn has eventual period at most n.
• Every parallel chip-firing configuration on Kn with strictly between n2−n and n2 chips has

eventual period 2.
• For each integer k = 1, . . . , n there exists a parallel chip-firing configuration on Kn of

period k.

Jiang [Jia10] has extended the methods of [Lev10a] to prove Bitar’s conjecture for complete
bipartite graphs, and recently he proposed to me some novel ideas for attacking the case of grid
graphs Za × Zb.

2. Abelian Sandpile Model

In joint work with Fey and Peres, I prove bounds on the growth rate of the abelian sandpile
model in the integer lattice Zd. The model starts from a stable background configuration in which
each site x ∈ Zd (d ≥ 1) has a pile of σ(x) ≤ 2d− 1 chips. To this background, n chips are added
at the origin. Typically, n is large. We stabilize this configuration by toppling every unstable site;
that is, every site with at least 2d chips gives one chip to each of its neighbors, until there are no
more unstable sites. For more background, see [BTW87, BLS91, Dha90].

Theorem 3. [LP09, FLP10] For any h ≤ 2d−2, if h chips start at every site of Zd and n additional
chips start at the origin, then the number of sites that topple is of order n, and the diameter of the
set of sites that topple is of order n1/d.

The main tool used in the proof is the least action principle characterizing the odometer function
u(x), which is defined as the number of times x topples. We say that a function f : Zd → Z is
stabilizing for a sandpile σ if the inequality

σ + ∆f ≤ 2d− 1

holds pointwise on Zd. Here ∆ is the discrete Laplacian on functions on Zd, defined by ∆f(x) =∑
y∼x f(y)− 2df(x), where the sum is over the 2d neighbors of x.
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Lemma 4. [FLP10] (Least Action Principle) The odometer function is the pointwise minimum of
all nonnegative stabilizing functions f : Zd → Z.

The least action principle states that sandpiles are “efficient” in a certain strong sense: each
vertex performs exactly the minimum amount of work required of it in order to produce a globally
stable configuration.

In [FLP10] we extended Theorem 3 to certain backgrounds in which an arbitrarily high proportion
of sites start with 2d− 1 chips. On the other hand, the next result shows that the density of chips
in the background is not the only controlling parameter: if just a few extra chips are placed at
random on the background 2d− 2, then it has a dramatically different behavior.

Theorem 5. [FLP10] Fix ε > 0, and let (β(x))x∈Zd be independent Bernoulli random variables
with P(β(x) = 1) = ε. Then with probability 1, there exists n <∞ such that adding n chips at the
origin to the background 2d− 2 + β causes every site in Z2 to topple infinitely often.

Certain notable features of the patterns formed by sandpiles call out for a mathematical expla-
nation.

slice of a 3-dimensional sandpile 2-dimensional sandpile
(n = 5 000 000, h = 4) (n = 47 465, h = 2)

Figure 3. Illustration of the dimensional reduction conjecture. Left: The z = 0
slice of a sandpile in Z3. Right: a sandpile in Z2. Each site is colored according
to the number of chips present. Remarkably, the two pictures agree pixel-for-pixel
except in a region near the center.

Dimensional reduction conjecture. Dhar observed that despite the difference between sandpile
dynamics in different dimensions, sandpiles in Zd intersected with a coordinate hyperplane look
remarkably similar to sandpiles in Zd−1 (Figure 3). In [FLP10] we formalized Dhar’s observation
as a dimensional reduction conjecture: Amazingly, large portions of the two pictures in Figure 3
match up exactly pixel-for-pixel. At the same time, our conjecture was cumbersome to state due to
the need to carve out exceptions for regions where the two pictures do not agree. Karl Mahlburg
recently discovered a variant of the initial configuration which causes the two pictures match up
exactly, with only a single exceptional pixel at the origin. For this variant, I am working with
Holroyd and Mahlburg to prove the dimensional reduction conjecture.

Unexpected symmetries. Mahlburg’s configuration has another remarkable property: extra
symmetries appear in the final configuration that were not present in the initial configuration.
Using the least action principle, we have succeeded in proving one of these extra symmetries in the
two-dimensional case and are investigating whether they also appear in higher dimensions.
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3. Aggregation: Limit shapes, fluctuations, and fast simulation

Starting with n particles at the origin in Z2, let each particle in turn perform simple random walk
until reaching a site where no other particles are present. The resulting random set A(n), consisting
of n occupied sites, is called internal diffusion-limited aggregation (IDLA). Lawler, Bramson and
Griffeath [LBG92] showed that with high probability A(n) is close to a disk. In joint work with
Jerison and Sheffield, we address the question “how close”?

Theorem 6. [JLS10] Let Br denote the set of lattice points in the disk of radius r centered at 0.
There is an absolute constant C such that

P
{
Br−C log r ⊂ A(πr2) ⊂ Br+C log r for all sufficiently large r

}
= 1. (1)

This answers a question posed by Lawler [Law95] and confirms numerical predictions of Meakin
and Deutch [MD86] from over 20 years ago, who wrote that it is “of some fundamental significance
to know just how smooth a surface formed by diffusion limited processes may be.” Theorem 6 shows
that such surfaces are extremely smooth: their fluctuations are visible only at the logarithmic scale.

(a) (b) (c)

Figure 4. (a) The IDLA cluster built from simple random walk in Z2 has only
logarithmic error from a disk, by Theorem 6. (b) The IDLA cluster built from
a uniformly layered walk grows as a diamond instead of a disk. (c) Rotor-router
cluster built from a uniformly layered walk yields a perfect diamond by Theorem 7.

Our paper [JLS10] is the first in a planned series of three. The second in the series proves weak
convergence of averaged IDLA fluctuations to a variant of the Gaussian free field [Sh07]; these
fluctuations are shown in Figure 4a, where points that arrive early to the cluster are colored red
and those that arrive late are colored blue. The final paper in the series will prove an analogue of
Theorem 6 in dimensions d ≥ 3.

Diamond aggregation. In joint work with Kager, I defined the class of uniformly layered walks in
Z2 and studied IDLA based on these walks. This work was motivated by the surprising observation
that a suitable change to the transition probabilities of simple random walk only at sites on the x-
and y-axes transforms the asymptotic shape from a disk into a diamond (Figure 4b). In [KL10a]
we prove a result like Theorem 6 for these walks, with the disk Br replaced by the set Dr of points
(x, y) ∈ Z2 such that |x|+ |y| ≤ r. We show that IDLA based on certain uniformly layered walks –
those with a drift toward the origin – has fluctuations at most of order log r, while other such walks
with drift away from the origin produce much larger fluctuations, of order

√
r up to logarithmic

factors.
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James Propp proposed a derandomization of IDLA known as rotor-router aggregation, in which
the sequence of successive exits from each vertex is periodic instead of random. It turns out that
certain instances of rotor-router aggregation corresponding to uniformly layered walks yield not
just a shape close to the diamond Dr as might be expected, but a perfect replica of Dr (Figure 4c).

Theorem 7. [KL10b] There is a rotor configuration ρ0, such that uniformly layered rotor-router
aggregation with rotors initially configured as ρ0 satisfies

A(2r2 + 2r + 1) = Dr for all r ≥ 0.

Theorem 7 represents an extreme of discrepancy reduction of the sort studied in [CS06, CDST07,
DF09, HP10]: derandomization removes not just most but all of the fluctuations from the random
process.

Fast simulation. Building on the work of Moore and Machta [MM00], in joint work with Friedrich
I develop a new algorithm for simulating IDLA and rotor-router aggregation without simulating
every step of every walk. The algorithm is based on the following theorem of [FL10] characterizing
the odometer function, which measures how many particles are emitted from each vertex.

Theorem 8. [FL10] The odometer is the unique function u : V → N with the following properties:
u has finite support, and the chip configuration σ∗ and rotor configuration ρ∗ obtained by forcing
each vertex x to fire u(x) times obey the “Three No’s:”

• No hills: σ∗ ≤ 1 everywhere;
• No holes: σ∗ ≡ 1 on the support of u;
• No cycles: ρ∗ is acyclic on the support of u.

In [FL10], we give an algorithm that takes an approximation u1 to the odometer function as
input, cancels out hills and holes a multiscale annihilation process, and eliminates cycles using
Wilson cycle-popping [Wil96] to arrive at the exact odometer function u. The choice of initial
approximation u1 rests on earlier work joint with Peres [LP09, LP10a].

Propp circle. Friedrich and I have implemented our algorithm to generate a rotor-router
aggregate (“Propp circle”) of size 1010, exceeding previous simulations by over three orders of
magnitude. The resulting 10 gigapixel image, which we have posted online [FL10], is so large that
it requires a google maps interface to navigate. This image reveals the intricate patterns formed
by the final rotors in unprecedented detail, and promises to be a rich source of new conjectures.

The Ostojic heuristic. The patterns formed by sandpile aggregation contain many large “patches,”
visible in Figure 3, where the number of chips is constant or periodic. Ostojic [Ost03] gave a heuris-
tic, involving the conformal map ζ 7→ 1/ζ2, for the locations and certain features of these patches.
Dhar et al. [DSC09] carried this idea further for sandpiles on certain directed graphs obtained from
orientations of the square grid Z2. Converting these ideas into fully rigorous proofs remains a
substantial challenge.

Intriguingly, although it was developed for the sandpile model, the Ostojic heuristic appears to
apply even more precisely to rotor-router aggregation. For the aggregate of size n = πr2, which
approximates a disk of radius r, simulations indicate that near certain special points — points ζ ∈ C
such that the real and imaginary parts of r2/ζ2 are rational numbers with small denominators —
the odometer function has the form

u(x, y) = Qr,ζ(x, y) + Pr,ζ(x, y)

where Qr,ζ is a quadratic function of the coordinates and Pr,ζ is a periodic function. These points
are visible in the image produced by our new large-scale simulation algorithm [FL10]. They lie in
regions of the picture (“studs”) where the final rotors alternate in a simple periodic fashion.
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Problem 2. Use the Ostojic heuristic to make a mathematically precise prediction about the studs
in rotor-router aggregation: where are they located, how large are they, and what are the functions
Qr,ζ and Pr,ζ in terms of r and ζ?

Proving local regularities. Does a prediction coming from Problem 2 bring us any closer to a
proof? The “strong abelian property” used in [KL10b] to prove Theorem 7 can be viewed as a tool
for converting an exact prediction for the odometer function into a proof. In the most interesting
cases, the odometer function reveals intriguing local regularities but is beyond the reach of a global
exact formula.

Problem 3. Adapt the methods of [FLP10] (least action principle) and [KL10b] (strong abelian
property) to prove local rather than global exact formulas for the odometer function.

4. Future Directions: Abelian Networks

What the diverse models discussed in §1-3 have in common is that they are all examples of
abelian networks. An abelian network is a system of communicating finite automata satisfying a
certain local commutativity condition. Each finite automaton, or processor, lives at a vertex of a
directed graph G and communicates with the processors at neighboring vertices.

Figure 5. Venn diagram illustrating several classes of deterministic abelian net-
works, ranging from most specific at the top to most general at the bottom.

Deepak Dhar, the inventor of abelian networks, called them “abelian distributed processors”
[Dha06]. (The shorter term “abelian network,” which I coined, is useful when one wants to refer to
several communicating processors as a single entity.) In a series of papers beginning with [Lev10c],
I plan to develop a theory of abelian networks from three complementary viewpoints.

• From a dynamical point of view, abelian networks produce intricate large-scale patterns
using only simple local rules.
• From a computational point of view, an abelian network yields the same output in the same

number of steps regardless of the order of events at its individual nodes.
• From an algebraic point of view, an abelian network associates an isomorphism invariant,

in the form of an abelian group or commutative algebra, to its underlying graph.
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Abelian networks represent a vast unexplored territory: the class of such networks is fairly large,
and only a very few particular examples have been studied in any detail (Figure 5). In particular,
the abelian sandpile and rotor-router models, as well as their common generalizations studied by
Eriksson [Eri96] and Dartois and Rossin [DR04], all belong to the subclass of unary networks: each
automaton in the network reads input from a one-letter alphabet. Informally, a unary network on a
graph G is a system of local rules by which indistinguishable particles move around on the vertices
of G.

Question 2. How much more general are abelian networks than unary networks? Can an arbitrary
abelian network be modeled by a unary network on a larger graph?

In work in progress [Lev10c] I prove a least action principle for abelian networks, which in
particular implies that if a network halts on a given input, then neither the final output nor the
run time depends on the order in which processors act. I am also working on a polynomial-time
algorithm to decide whether a given abelian network halts on all inputs. A refinement of this
question is the halting problem for abelian networks, which asks whether a given network halts on
a given input.

Question 3. Is the halting problem for abelian networks decidable in polynomial time?

The requirement that a distributed network produce the same output regardless of the order
in which its processors act would seem to place a severe restriction on the kinds of algorithmic
tasks it can perform. Yet abelian networks can perform some highly nontrivial tasks, such as
solving certain integer programs. One form of the least action principle of [FLP10] asserts that the
odometer function u for a sandpile σ on a directed graph G = (V,E) solves the integer program

Minimize
∑
i∈V

u(i) subject to u ≥ 0 and ∆∗u ≤ δ − 1− σ (2)

where δ is the degree vector and ∆∗ is the adjoint Laplacian matrix of G. (Lemma 4 is the case
G = Zd.) Tseng [Tse90] analyzed a class of diagonally dominant linear programs that includes (2).
These programs involve multiple Laplacian-type matrices ∆1, . . . ,∆k.

Problem 4. Design k-ary abelian networks that solve integer programs analogous to the linear
programs of [Tse90].

Informally, these k-ary networks may be viewed as sandpile models in which the chips come in
k distinct “colors.” Chips of color j obey sandpile dynamics corresponding to the Laplacian ∆j ,
with firing restrictions based on the presence of particles of other colors.

Stochastic Abelian Networks. By allowing randomness in the transition function of an abelian
network, one obtains a class of models that includes branching random walks, stochastic sandpiles
[RS09] and the activated random walkers model [DRS10] as well as classical Markov chains. Viewing
a Markov chain as a stochastic abelian network leads naturally to a larger class of “locally Markov
walks,” which include excited walks [BW03] and directed edge-reinforced walks such as those studied
in [KR02].

Locally Markov walks obey a weak version of the Markov property: if the walker’s current
location is x, then the distribution of its next step depends only on the history of previous exits
from x. These walks provide a way to interpolate between random walks (in which successive exits
from a vertex are i.i.d.) and their deterministic analogues, rotor walks (in which successive exits are
periodic, [HP10]). For concreteness we describe one example, the p-rotor walk on Z. Each integer n
has a rotor pointing right or left. The walker repeatedly takes steps according to the following rule:
if the walker’s current at location is n, then the rotor at n flips direction with probability p, and
the walker then moves to n− 1 or n+ 1 as indicated by the rotor at n.
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Question 4. Is the p-rotor walk on Z recurrent for all 0 < p < 1 and any initial configuration of
the rotors?

This question sits at the tip of a rather large iceberg. In addition to questions of recurrence and
transience, one can ask for martingales, stationary distributions, mixing times and scaling limits
for locally Markov walks.
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