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From random walk to growth model

Internal DLA

I Start with n particles at the origin in the square grid Z2.

I Each particle in turn performs a simple random walk until it
finds an unoccupied site, stays there.

I A(n): the resulting random set of n sites in Z2.

Growth rule:

I Let A(1) = {o}, and

A(n+ 1) = A(n)∪{X n(τ
n)}

where X 1,X 2, . . . are independent random walks, and

τ
n = min{t |X n(t) 6∈ A(n)} .
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Internal DLA cluster in Z2.

Closeup of the boundary.
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Questions

I Limiting shape

I Fluctuations
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Meakin & Deutch, J. Chem. Phys. 1986

I “It is also of some fundamental significance to know just how
smooth a surface formed by diffusion limited processes
may be.”

I “Initially, we plotted ln(ξ) vs ln(`) but the resulting plots were
quite noticably curved. Figure 2 shows the dependence of
ln(ξ) on ln[ln(`)].”
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History of the Problem

I Diaconis-Fulton 1991: Addition operation on subsets of Zd .

I Lawler-Bramson-Griffeath 1992: w.p.1,

B(1−ε)r ⊂ A(πr2)⊂ B(1+ε)r eventually.

I Lawler 1995: w.p.1,

Br−r1/3 log2 r ⊂ A(πr2)⊂ Br+r1/3 log4 r eventually.

“A more interesting question... is whether the errors are o(nα)
for some α < 1/3.”
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Logarithmic Fluctuations Theorem

Jerison - L. - Sheffield 2010: with probability 1,

Br−C log r ⊂ A(πr2)⊂ Br+C log r eventually.

Asselah - Gaudillière 2010 independently obtained

Br−C log r ⊂ A(πr2)⊂ Br+C log2 r eventually.
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Logarithmic Fluctuations in Higher Dimensions

In dimension d ≥ 3, let ωd be the volume of the unit ball in Rd .
Then with probability 1,

Br−C
√
log r ⊂ A(ωd r

d)⊂ Br+C
√
log r eventually

for a constant C depending only on d .

(Jerison - L. - Sheffield 2010; Asselah - Gaudillière 2010)
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Elements of the proof

I Thin tentacles are unlikely.

I Martingales to detect fluctuations from circularity.

I “Self-improvement”
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Thin tentacles are unlikely

z

B(z,m)

A(n)

A thin tentacle.

Lemma. If 0 /∈ B(z ,m), then

P
{
z ∈ A(n), #(A(n)∩B(z ,m))≤ bmd

}
≤

{
Ce−cm

2/ logm, d = 2

Ce−cm
2
, d ≥ 3

for constants b,c ,C > 0 depending only on the dimension d .
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Early and late points in A(n), for n = πr2

∂Br+m

∂Br

∂Br−`

A(n)
m-early point

`-late point
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Early and late points

Definition 1. z is an m-early point if:

z ∈ A(n), n < π(|z |−m)2

Definition 2. z is an `-late point if:

z /∈ A(n), n > π(|z |+ `)2

Em[n] = event that some point in A(n) is m-early

L`[n] = event that some point in B√n/π−` is `-late
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Structure of the argument: Self-improvement

LEMMA 1. No `-late points implies no m-early points:
If m ≥ C`, then

P(Em[n]∩L`[n]c) < n−10.

LEMMA 2. No m-early points implies no `-late points:
If `≥

√
C (logn)m, then

P(L`[n]∩Em[n]c) < n−10.

Iterate, ` 7→
√

C (logn)C`, which is decreasing until

` = C 2 logn.
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Iterating Lemmas 1 and 2

I Fix n and let `,m be the maximal lateness and earliness
occurring by time n. Iterate starting from m0 = n:

I (`,m) unlikely to belong to a vertical rectangle by Lemma 1.

I (`,m) unlikely to belong to a horizontal rectangle by Lemma 2.
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Early and late point detector

To detect early points near ζ ∈ Z2, we use the martingale

Mζ(n) = ∑
z∈Ã(n)

(Hζ(z)−Hζ(0))

where Hζ is a discrete harmonic function approximating Re
(

ζ/|ζ|
ζ−z

)
.

ζ∂B|ζ|

The fine print:

I Discrete harmonicity fails at three points z = ζ,ζ + 1,ζ + 1 + i .

I Modified growth process Ã(n) stops at ∂B|ζ|(0).

Lionel Levine Logarithmic Fluctuations From Circularity



Time change of Brownian motion

I To get a continuous time martingale, we use Brownian
motions on the grid Z×R∪R×Z instead of random walks.

I Then there is a standard Brownian motion Bζ such that

Mζ(t) = Bζ(sζ(t))

where

sζ(t) = lim
N

∑
i=1

(M(ti )−M(ti−1))2

is the quadratic variation of Mζ.
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LEMMA 1. No `-late implies no m = C`-early

Event Q[z ,k]:

I z ∈ A(k)\A(k−1).

I z is m-early (z ∈ A(πr2) for r = |z |−m).

I Em[k−1]c : No previous point is m-early.

I L`[n]c : No point is `-late.

We will use Mζ for ζ = (1 + 4m/r)z to show for 0 < k ≤ n,

P(Q[z ,k]) < n−20.
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Main idea: Early but no late would be a large deviation!

I Recall there is a Brownian motion Bζ such that

Mζ(n) = Bζ(sζ(n)).

I On the event Q[z ,k]

P (Mζ(k) > c0m) > 1−n−20 (1)

and

P (sζ(k) < 100 logn) > 1−n−20. (2)

I On the other hand, (s = 100logn)

P

(
sup

s ′∈[0,s]
Bζ(s ′)≥ s

)
≤ e−s/2 = n−50.
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Proof of (1)

On the event Q[z ,k]

P(Mζ(k) > c0m) > 1−n−20.

I Since z ∈ A(k) and thin tentacles are unlikely, we have with
high probability,

#(A(k)∩B(z ,m))≥ bm2.

I For each of these bm2 points, the value of Hζ is order 1/m, so
their total contribution to Mζ(k) is order m.

I No `-late points means that points elsewhere cannot
compensate.
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Proof of (2): Controlling the Quadratic Variation

On the event Q[z ,k]

P(sζ(k) < 100 logn) > 1−n−20.

I Lemma: There are independent standard Brownian motions
B1,B2, . . . such that

sζ(i + 1)− sζ(i)≤ τi

where τi is the first exit time of B i from the interval (ai ,bi ).

ai = min
z∈∂Ã(i)

Hζ(z)−Hζ(0)

bi = max
z∈∂Ã(i)

Hζ(z)−Hζ(0).
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Proof of (2): Controlling the Quadratic Variation

On the event Q[z ,k]

P(sζ(k) < 100 logn) > 1−n−20.

I By independence of the τi ,

Eesζ(k) ≤ Ee(τ1+···+τk ) = (Eeτ1) · · ·(Eeτk ).

I By large deviations for Brownian exit times,

Eeτ(−a,b) ≤ 1 + 10ab.

I Easy to estimate ai , and use the fact that no previous point is
m-early to bound bi . Conclude that

E
[
esζ(k)1Q

]
≤ n50.
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What changes in higher dimensions?

I In dimension d ≥ 3 the quadratic variation sζ(n) is constant
order instead of logn.

I So the fluctuations are instead dominated by thin tentacles,
which can grow to length

√
logn.

I Still open: prove matching lower bounds on the fluctuations
of order logn in dimension 2 and

√
logn in dimensions d ≥ 3.
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Thank You!
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