Quiz 9 Solution GSI: Lionel Levine 2/16/05

1. (a) Find a basis for the subspace W of \mathbb{R}^4 given by

$$W = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + x_3 - x_4 = 0 \}.$$

- (b) What is $\dim W$?
- (a) Solving for x_4

$$x_4 = x_1 - x_2 + x_3$$

we see that any vector \mathbf{w} in W has the form

$$\mathbf{w} = (x_1, x_2, x_3, x_1 - x_2 + x_3)$$

for real numbers x_1 , x_2 and x_3 . Write this as a sum of three vectors

$$\mathbf{w} = (x_1, 0, 0, x_1) + (0, x_2, 0, -x_2) + (0, 0, x_3, x_3)$$

= $x_1(1, 0, 0, 1) + x_2(0, 1, 0, -1) + x_3(0, 0, 1, 1).$

This tells us that the vectors

$$\mathbf{v_1} = (1, 0, 0, 1), \quad \mathbf{v_2} = (0, 1, 0, -1), \quad \mathbf{v_3} = (0, 0, 1, 1)$$

span the space W. It is easy to check that $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3}$ are linearly independent, and hence they form a basis for W.

(b) Since there are three basis vectors, $\dim W = 3$.

Note: A vector space has many different bases. Therefore there are many different correct answers to part (a)! For example, if you solved for x_1 instead of x_4 in the beginning, you would find a different basis.