
Math 54W Spring 2005

Solutions to Homework Section 3.7
February 18th, 2005

2. List the row vectors and the column vectors of the matrix

(

1 2 0 −3 4
5 1 −3 2 −2

)

.

The row vectors are
(1, 2, 0,−3, 4), (5, 1,−3, 2,−2).

The column vectors are
(

1
5

)

, quad

(

2
1

)

, quad

(

0
−3

)

, quad

(

−3
2

)

, quad

(

4
−2

)

.

5. The matrix

A =









2 −4 3 1

0 −3 −2 7
0 0 −4 1

0 0 0 5









is in row echelon form. Find a basis for its row space, find a basis for its column space, and

determine its rank.

Since A is already in row echelon form, its nonzero rows form a basis for RS(A) by Theorem

3.70. Since all of the rows are nonzero, a basis for RS(A) is

(2,−4, 3, 1), (0,−3,−2, 7), (0, 0, 4, 1), (0, 0, 0, 5).

For the column space, we use Theorem 3.73, which says that the column vectors containing

pivots form a basis for CS(A). Since every column has a pivot, a basis for CS(A) is








2
0

0
0









,









−4
−3

0
0









,









3
−2

4
0









,









1
7

1
5









.

8. We have A =









3 2 −1
6 3 5

−3 −1 −6
0 −1 7









. This is row equivalent to U =









3 2 −1
0 −1 7

0 0 0
0 0 0









. A basis for RSU

consists of the vectors (3, 2,−1) and (0,−1, 7). Since RSU =RSA, these also constitute a basis

for RSA. The first two columns of U constitute a basis for CSU. Thus, the first two columns
of A, namely (3, 6,−3, 0) and (2, 3,−1,−1), constitute a basis for CSA. Since all the bases here

contain two elements, we see rkA = 2.

12. Note that V = Span{(−2, 4, 1, 4), (4, 2, 3,−1), (2, 6, 4, 1)}= RSA, where

A =





−2 4 1 2

4 2 3 −1
2 6 4 1



 . A is row equivalent to U =





−2 4 1 2

0 10 5 3
0 0 0 0



 . Thus a basis for V =

RSA consists of the vectors (−2, 4, 1, 2) and (0, 10, 5, 3).
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18. A =





1 −2 4 1

3 1 −3 −1
5 −3 5 1



 is row equivalent to U =





1 −2 4 1

0 7 −15 −4
0 0 0 0



 . Thus

NSA = {(
2

7
(15t + s) − 4t − s,

1

7
(15t + s), t, s) | t, s ∈ R}

, with basis

B = {(
2

7
,
15

7
, 1, 0), (

−5

7
,
1

7
, 0, 1)}.

This shows dimNSA = 2. Since U has two pivots, we see rkA = 2. Sure enough 2 + 2 = 4 = n

in this case.

In exercises 22-24, determine if b lies in the column space of A. If it does, express b as a linear

combination of the columns of A.

22. A =

(

2 −3
−4 6

)

, b =

(

4
−6

)

.

The second column of A is 3

2
times the first, so

CS(A) = Span{

(

2
−4

)

} = {

(

2x
−4x

)

| x ∈ R}.

Since b cannot be expressed in the form

(

2x

−4x

)

, it does not lie in the column space.

24. A =





1 1 −1
1 2 2

2 3 1



, b =





2
−3

−1



.

The vector b lies in the column space if and only if b can be written as a linear combination

b =





2

−3
−1



 = a





1

1
2



 + b





1

2
3



 + c





−1

2
1





for scalars a, b and c. So we have to solve the system of equations

a + b − c = 2

a + 2b + 2c = −3
2a + 3b + c = −1.

A bit of row reduction




1 1 −1
1 2 2
2 3 1

∣

∣

∣

∣

∣

∣

2
3
−1



 →





1 1 −1
0 1 3
0 1 3

∣

∣

∣

∣

∣

∣

2
1
−5



 →





1 1 −1
0 1 3
0 0 0

∣

∣

∣

∣

∣

∣

2
1
−6





tells us nope, the system is inconsistent, so b is not in the column space.

Shortcut: For future reference, notice that the matrix associated to the system was just A itself,

augmented by the vector b. So if you want to save time, skip the first two steps and jump right
into the row reduction.

2



39. Let

A =





1 3 −2 4

0 0 5 1
0 0 0 0



 .

Find bases for RS, NS, CS and LNS. Find the rank of A and verify that dimRS+dim NS = n,

dimCS + dimLNS = m.

Since A is already in row echelon form, a basis for the row space is given by the nonzero rows

of A:
(1, 3,−2, 4), (0, 0, 5, 1).

Since the row space has two basis vectors, A has rank 2.

For the null space, set up a system of equations and write everything in terms of the free
variables:

NS(A) = {x =









x

y
z

w









∈ R
4 | Ax = 0}

= {









x
y

z
w









∈ R
4 | 5z + w = 0, x + 3y − 2z + 4w = 0}.

= {









−3y − 22w/5

y
−w/5

w









∈ R
4 | y, w ∈ R}.

= {y









−3
1

0
0









+ z









−22/5
0

−1/5
1









| y, w ∈ R}.

This tells us that








−3
1

0
0









,









−22/5
0

−1/5
1









is a basis for NS(A), and we can now verify that dimRS + dim NS = 2 + 2 = 4.

A basis for the column space consists of the columns of A which have pivots:





1

0
0



 , ,





−2

5
0



 .

Finally, a row vector x = (x, y, z) lies in the left null space LNS(A) if and only if

(x, y, z)





1 3 −2 4

0 0 5 1
0 0 0 0



 = (0, 0, 0, 0),
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and this happens if and only if

x = 0, 3x = 0, −2x + 5y = 0, 4x + y = 0.

In the solution to this system, z is a free variable and x = y = 0. Thus the left null space
consists of all vectors of the form (0, 0, z). This is a one-dimensional space with basis (0, 0, 1).

We can now verify dimCS + dimLNS = 2 + 1 = 3.

43. True or false?

[(a)] If A is an n × n matrix, then the row space of A is equal to the column space of A.

False. The 2× 2 matrix

A =

(

1 1

0 0

)

has row space spanned by (1, 1) and column space spanned by

(

1

0

)

. These are not the same.

[(b)] Even if A is square, the column space of A can never equal the null space of A.

False. The 2× 2 matrix

A =

(

0 0
1 0

)

has CS(A) = NS(A) = {

(

0
y

)

| y ∈ R}.

[(c)]If A is an m × n matrix and the columns of A are linearly independent, then Ax = b

may or may not have a solution. But if it has a solution, that solution is unique.

True. Since the columns of A are linearly independent, the row echelon form of A must have a
pivot in every column, so there are no free variables associated to the system Ax = b.

[(d)]A 3 × 4 matrix never has linearly independent columns.

True. Four vectors in R
3 can never be linearly independent.

[(e)]A 4 × 3 matrix must have linearly independent columns.

False. The zero matrix doesn’t have linearly independent columns. As you can see, the zero
matrix is very useful for producing counterexamples!

44. We consider A as a collection of n columns in R
m.

(a.) If these vectors are linearly independent, then they form a basis of CSA, in which case
rkA = dimCSA = n. We must have n ≤ m since you cannot have more than m linearly

independent vectors in R
m.

(b.) If these vectors span Rm, we have by definition CSA = Rm, and hence rkA = dimCSA =

dimR
m = m. In this case, n ≥ m since one cannot have fewer than m vectors spanning R

m.

(c.) If these vectors form a basis of R
m, then both (a.) and (b.) hold, in which case n = m =

rkA, and we see that A is a square, invertible matrix.

In Ex. 48 we suppose A is an nxn matrix and has a right inverse B such that AB = I.

[WARNING: We do not assume that A is invertible, as we are not told whether BA = I. In fact, this

is exactly what we set out to prove!]
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48. (a.) To show that CSA = Rn, it is enough to show that given any v ∈ Rn, we can find an

x such that Ax = v. (c.f. Ex. 33) But notice that v = Iv = ABv = A(Bv). Thus, setting
x = Bv, we see that Ax = v, and we are done.

(b.) Since rkA = dimCSA = dimRn = n, we see A is invertible by 3.83.d.

(c.) Since A is invertible, there exists a matrix A
−1 such that A

−1
A = AA

−1 = I. Take the
equation AB = I. Multiplying both sides on the left by A−1, we get B = A−1I = A−1, proving

the claim.
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