Math 54 Worksheet 8 GSI: Lionel Levine 2/11/04

- 1. Determine if the vectors are linearly independent.
 - (a) (1, 2) and (1, 3).
 - (b) (1, 2), (1, 3) and (1, 4).
 - (c) (1, 2) and (0, 0).
 - (d) (1, 1, 0) and (0, 1, 1).
 - (e) (1, 0, 0), (0, 1, 0), (0, 0, 1) and (5, 10, 20).
- 2. Find the null space. (Compare problem 1!)

$$\begin{array}{c} \text{(a)} & \left(\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array}\right) \\ \text{(b)} & \left(\begin{array}{cc} 1 & 1 & 1 \\ 2 & 3 & 4 \end{array}\right) \\ \text{(c)} & \left(\begin{array}{c} 1 & 0 \\ 2 & 0 \end{array}\right) \\ \text{(d)} & \left(\begin{array}{c} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{array}\right) \\ \text{(e)} & \left(\begin{array}{cc} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 20 \end{array}\right) \end{array}$$

- 3. Recall that a matrix A is called *nonsingular* if the only solution to the equation $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$; otherwise, A is called singular. For each of the conditions below, decide whether A is definitely singular, definitely nonsingular, or could be either.
 - (a) $NS(A) = \{0\}.$
 - (b) The columns of A are linearly dependent.
 - (c) There are two different vectors \mathbf{x} and \mathbf{y} such that $A\mathbf{x} = A\mathbf{y}$.
 - (d) A is the zero matrix.
 - (e) A is 3×4 .
 - (f) A is 4×3 .
 - (g) A is invertible.

Bonus Problem: A 2×2 matrix M is called a *commutator* if it can be expressed in the form M = AB - BA for some 2×2 matrices A and B. Describe the span of all commutators in the space M_{22} of all 2×2 matrices.