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Abstract. We prove a quenched invariance principle for a class of random walks in random environment

on Zd, where the walker alters its own environment. The environment consists of an outgoing edge from

each vertex. The walker updates the edge e at its current location to a new random edge e′ (whose law
depends on e) and then steps to the other endpoint of e′. We show that a native environment for these

walks (i.e., an environment that is stationary in time from the perspective of the walker) consists of the

wired uniform spanning forest oriented toward the walker, plus an independent outgoing edge from the
walker.

1. A random environment altered by the walker

Label each site of Z2 with either ‘H’ or ‘V’. A walker starts at the origin. At each discrete time step the
walker resamples the label at its current location (changing ‘H’ to ‘V’ and ‘V’ to ‘H’ with probability q,
independent of the past) and then takes a mean zero horizontal step if the new label is ‘H’ and a mean zero
vertical step if the new label is ‘V’. We will show (see Theorem 1.3 below) that, for a certain distribution
on initial labels, the scaling limit of the walk is a standard planar Brownian motion.

The walk just described is an example of a random walk with local memory on a graph G. Each vertex of
G stores one bit of information in its label. For each vertex x that the walk visits, the label of x remembers
whether the most recently traversed outgoing edge from x was horizontal or vertical. This memory in
turn affects the distribution of the edge traversed the next time the walker returns to x. One can consider
more complicated forms of local memory (e.g., that remember several past visits) but they all essentially
reduce to the standard retrospective form, i.e., each vertex x is labeled by an outgoing edge from x (see
Appendix A for the reduction). At each discrete time step, the walker updates the label e of its current
location to a new random edge e′ (whose law depends on e) and then steps to the other endpoint of e′.

Pinsky and Travers [PT17] and Kosygina and Peterson [KP17] study random walks with local memory
in one dimension under the name “Markovian cookie stacks”, where the labels evolve following the tran-
sition rules of a prescribed Markov chain for each each vertex. (These Markov chains are assumed to be
independent; see Travers [Tra18] for the case when they are not independent.) In particular, the latter
characterizes when such a walk is recurrent, transient non-ballistic, or ballistic; and derives a central limit
theorem for the transient case. The methods used in [KP17] are based on the generalized Ray-Knight
theory developed by Tóth (see [Tót99] and references therein) for generalized reinforced/repelling random
walks, and are limited only to one dimension. The aim of this paper is to begin the study of these walks
in higher dimensions, by identifying a native environment and proving an invariance principle.

In analyzing random walks with local memory in higher dimensions, we take our inspiration from the
theory of random walk in random environment [Zei04, Szn04], in which the environment affects the motion
of the walker but the walker does not affect the environment. In our walks, a new difficulty is that the
walker alters its own environment.
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2 RANDOM WALKS WITH LOCAL MEMORY

1.1. Main results. An interesting feature of random walk with local memory is that the walker organizes
its environment to form a tree. Indeed, when the walk is expressed in retrospective form, the local state
at each previously visited vertex is the last exit edge, so the edges at visited vertices form a tree oriented
toward the walker. From this observation, it is natural to use the wired spanning forest (defined below) to
construct a native environment (i.e., an invariant measure for the environment viewed from the perspective
of the walker; see Definition 5.2).

Let G be a simple connected graph that is locally finite (i.e., each vertex has a finite degree). Let
W1 ⊆W2 ⊆ . . . be finite connected subsets of V (G) such that

⋃∞
n=1Wn = V (G). Let Gn be obtained from

G by identifying all vertices outside Wn to one new vertex, and let µn be the uniform measure on spanning
trees of Gn. The wired uniform spanning forest, denoted by WUSF, is then the unique infinite-volume limit
of µn.

Fix a vertex o of G as the initial location of the walker. To build an initial environment from WUSF, we
orient the connected component of o in the WUSF toward o, orient all other components toward infinity,
and add an independent outgoing edge from the o. Note that there might be more than one way to orient
a component toward infinity if it has more than one end; we will orient them using the orientation given by

Wilson’s method rooted toward infinity [BLPS01]. We denote by
−−−−−⇀
WUSF+ the resulting initial environment.

This environment is a native environment under the following assumptions.
Assume that G is a simple (undirected) Cayley graph of a finitely generated group. A random walk with

localy memory is transitive if every vertex follows the same rule in updating its local memory; see (Tran).
A random walk with local memory is uniform if, averaging over all initial labels, every outgoing edge of the
current location is equally likely to be the next label. We remark that we actually prove the main results
under a weaker uniformity assumption called c-stationarity (see (cSta)), and we only use the uniformity
assumption in this section to simplify the notation.

Theorem 1.1. Consider a random walk with local memory on a simple Cayley graph that is transitive and

uniform. Then
−−−−−⇀
WUSF+ is a native environment.

We prove Theorem 1.1 in §5 by proving an analogous statement for finite graphs, and then passing to a
limit.

It turns out that
−−−−−⇀
WUSF+ satisfies a stronger property, namely that it is an ergodic native environment

(i.e., an ergodic measure for the environment viewed from the perspective of the walker; see Definition 6.3),
under the additional assumption that the random walk with local memory is elliptic (i.e., every neighbor
of the current location is visited next with positive probability; see (Ell)).

Theorem 1.2. Consider a random walk with local memory on a simple Cayley graph that is transitive,

uniform, and elliptic. Then
−−−−−⇀
WUSF+ is an ergodic native environment.

We prove Theorem 1.2 in §6.2 through a delicate combinatorial argument that makes use of the tail
triviality of WUSF. We believe that the ellipticity assumption is not necessary for the conclusion of
Theorem 1.2; see §8.2.

Our next result is the following functional CLT for when G is a lattice graph in Rd (i.e., a Cayley graph
such that V (G) is a subgroup of Rd with vector addition as the group operation). A random walk with
local memory is a martingale if, conditioned on the present location and label, the expected next location
of the walker is equal to the present location; see (Mtgl).

For every outgoing edge e of the initial location o, let Ye ∈ Rd be the location of the walker after one
step of the walk, assuming e is the initial label at o. We denote by Γe the d×d covariance matrix E

[
YeY

>
e

]
,

and by Γ the average of covariance matrices of outgoing edges of o.

Theorem 1.3. Consider a random walk with local memory on a simple lattice graph in Rd that is transitive,
uniform, and is a martingale. Suppose that the initial environment is an ergodic native environment π.
Then, for almost every environment sampled from π, the trajectory of the walker scales to a Brownian
motion in Rd. That is to say,

1√
n

(Xbntc)t≥0
n→∞
=⇒ B(t).

Here Xbntc is the location of the walker at the bntc-th step of the walk, B(t) is a Brownian motion in Rd
with diffusion matrix Γ, and the convergence is weak convergence in the Skorohod space DRd [0,∞).
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In particular, Theorem 1.3 applies to the ‘H,V’-walk described in the beginning with q strictly between
0 and 1. We prove Theorem 1.3 in §7 by using standard tools in random walks in random environments,
namely the martingale CLT and the pointwise ergodic theorem, and we illustrate the flavor with the ‘H,V’-
walk here. By the martingale CLT, the problem reduces to showing that the walker encounters the label
‘V’ half of the time, i.e.,

1

n

n−1∑
i=0

1{the label used by the walker at the i-th step is ‘V’} −→ 1

2
, (1)

in probability as n → ∞. The convergence in (1) in turn follows from the pointwise ergodic theorem.
Note that, in order to apply the pointwise ergodic theorem, the initial environment needs to be native and

ergodic, and
−−−−−⇀
WUSF+ is such an environment by Theorem 1.2.

Our final result is the following functional CLT, assuming a stronger regularity condition on the RWLM
but requiring no condition on the initial environment. An RWLM has identical local covariances if Γe = Γe′

for every outgoing edge e of o.

Proposition 1.4. Consider a random walk with local memory on a simple lattice graph in Rd that is
transitive, is a martingale, and has identical local covariances. Then, for every initial environment,

1√
n

(Xbntc)t≥0
n→∞
=⇒ B(t),

where Xbntc is the location of the walker at the bntc-th step of the walk, and B(t) is a Brownian motion in

Rd with diffusion matrix Γ.

We prove Proposition 1.4 (under slightly weaker assumptions) in §3 as a direct application of the mar-
tingale CLT. In particular, Proposition 1.4 applies to the random walk with local memory on the triangular
lattice where the mechanism is rotating the current outgoing edge by 60 degrees, 180 degrees, or 300 de-
grees, each with probability 1

3 ; see Example 2.6. On the other hand, Proposition 1.4 does not apply to

‘H,V’-walk if q 6= 1
2 (since Γe is equal to

[
1− q 0

0 q

]
if e is a horizontal edge, and is equal to

[
q 0
0 1− q

]
if

e is a vertical edge). This necessitates results such as Theorem 1.3 that has weaker assumptions and does
apply to a family of models that include ‘H,V’-walk.

1.2. Other related work.

1.2.1. When each vertex uses a deterministic rule to update its local memory, the random walk with local
memory is known as rotor walk (discovered independently by [WLB96, PDDK96, Pro03]). In this model,
each vertex is given a prescribed cyclic ordering on its outgoing edges, and for every update the vertex
changes the current edge to the next edge in the cyclic order. A fundamental difficulty with rotor walk is
its lack of randomness: For example, it is an open problem to prove that the rotor walk in Z2 with i.i.d.
uniform initial rotors is recurrent; see [HLM+08, FLP16] for an exposition of this and related problems.

1.2.2. One dimensional random walk with local memories are more commonly studied in the literature
under the name excited random walks (introduced by Benjamini and Wilson [BW03]): A pile of cookies
is initially placed at each vertex of Zd (d ≥ 1). Upon visiting a vertex, the walker consumes the topmost
cookie from the pile and moves to the neighboring vertex according to probabilities prescribed by that
cookie. If there are no cookies left at the current vertex, the walker chooses a neighbor uniformly at
random and moves there.

The functional limit theorem for excited random walks on Z have been studied for the case of bounded
number of i.i.d. cookies [KM11, DK12], periodic cookies [KP16], and Markovian cookies [KP17, HLSH18],
among others. The functional limit theorem for higher-dimensional walks are much rarer in comparison.
Nevertheless, it has been studied for the case of a single cookie with drift to a specific direction by [VdHH12]
(for dimensions d > 8 and a specific drift intensity), by [BR07] (for all dimensions), and by [MPRV12] (for
all dimensions under more general assumptions). We refer the reader to [KZ13] for an excellent survey on
excited random walks. Finally, in the direction of non-Markovian walks, the most relevant recent work is
[BL19], which applies martingale theory to higher-dimensional elephant random walks.
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Figure 1. The vertices visited by a 10,000-step rotor walk (left), ‘H’-‘V’ walk with q = 1
(middle), and simple random walk (right) on Z2; these processes are ordered in increasing
amount of randomness. Each edge is colored according to the time of its first visit by the
walker.

The main motivation of this paper is to begin extending the results of [KP17, HLSH18] from dimension
one to higher dimensions, which we partly achieve in Theorem 1.3. In particular, it is shown in [HLSH18]
that the scaling limit for p-rotor walk in Z (where the next edge points in the same direction as the current
edge with probability p, and points in the opposite direction with probability 1− p) is a Brownian motion
perturbed at extrema. This perturbation is caused by the initial environment in [HLSH18] not being a
native environment. We expect that proving a scaling limit for any higher-dimensional random walk with
local memory in a non-native environment will require major new ideas (for example, what are the planar
and higher-dimensional analogues of the one-dimensional Brownian motion perturbed at extrema?).

1.2.3. A self-interacting random walk (SIRW) is a nearest-neighbour walk on Zd, where at each step the
probability of the walker to jump along a certain direction α is proportional to w(nα), where w : N→ R>0 is
a monotone weight function and nα is the number of previous jumps along the direction α. Unlike random
walks with local memory, the transition probabilities for SIRW depend on all of the previous visits to the
current location rather than just the most recent visit. Various limit theorems for various one-dimensional
SIRWs were studied by Tóth (see e.g., [Tót95, Tót96]), and we refer to the survey [Tót99] for references
on this subject. It remains to be seen if the methods of this paper can be applied to SIRWs in higher
dimensions.

1.2.4. The idea of viewing the environment from the perspective of the walker dates back to the work
of Kozlov [KOZ85] and Papanicolaou-Varadhan [PV82]. It was pointed to us by the anonymous referee
that it would be interesting to find out what are the native environments for SIRWs. We refer the reader
to [BS02, Lecture 1] for references on this subject.

1.2.5. Random walk with local memory is a special case of the stochastic abelian networks defined in
[BL16]. More precisely, a random walk with local memory is a unary network in which every processor
sends exactly one letter of output for each letter of input. From this perspective, a general stochastic
abelian network can then be viewed as a branching random walk with local memory with multiple types
of walkers.

1.3. Outline. In §2 we give the rigorous definition of random walks with local memory. In §3 we prove
Proposition 1.4. In §4 we construct the wired spanning forest oriented toward a fixed vertex, which is a
simple modification of the construction in [BLPS01]. In §5 we use the oriented wired spanning forest from
§4 to construct a native environment for random walk with local memory, and proves Theorem 1.1. In
§6 we prove Theorem 1.2. In §7 we prove Theorem 1.3. In §8 we conclude with a list of open problems.
In Appendix A we show the reduction that converts random walks with more complicated forms of local
memory to the standard retrospective form, at the cost of changing the underlying graph to a larger graph
that might have multiple edges.
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2. Random walks with local memory

Throughout this paper G := (V (G), E(G)) denotes a connected, undirected graph that is locally finite
(every vertex has finite degree) and simple (no loops, no multiple edges). We remark that all the results
in this paper can be extended to non-simple graphs verbatim; and we simply restrict to the case of simple
graphs to simplify the notation. When the graph G is evident from context, we will omit G from the
notation and write V and E instead.

A neighbor of a vertex x is a vertex y such that {x, y} ∈ E. We denote by N(x) the set of all neighbors
of x. An oriented edge of G is a pair (x, y) ∈ V × V such that {x, y} is an (unoriented) edge of G. We
call (x, y) an outgoing edge of x and an incoming edge of y. In an oriented subgraph of G, the outdegree
(respectively, indegree) of x is the number of outgoing (respectively, incoming) edges of x in the oriented

subgraph. We denote by
−⇀
E the set of oriented edges of G. The running example for a graph in this paper

is the integer lattice Zd of dimension d, i.e., the graph given by

V := {x | x ∈ Zd}; E := {{x,y} ∈ Zd × Zd | ||x− y|| = 1},
where || · || denotes the Euclidean norm.

Definition 2.1 (Mechanism). A mechanism of a random walk with local memory is a collection of
independent Markov chains {Mx}x∈V indexed by the vertices of G, such that the state space of Mx is
N(x), the set of neighbors of x. We denote by px(·, ·) the probability transition function of the chain Mx.

A rotor configuration of G is a map ρ : V → V such that ρ(x) is a neighbor of x for all x ∈ V . This
should be thought of as assigning to each vertex x of G a rotor which points to a neighbor of x via an
oriented edge of G. A walker-and-rotor configuration is a pair (x, ρ), where x is a vertex of G and ρ is a
rotor configuration of G.

Remark 2.2. A rotor configuration can be interpreted as either:

• A function ρ : V → V such that ρ(x) ∈ N(x) for all x ∈ V ; or
• An oriented subgraph of G that has exactly one outgoing edge of each vertex of G.

These two objects are identified with each other by the map ρ 7→ (V (ρ), E(ρ)), where

V (ρ) := V, E(ρ) := {(x, ρ(x)) | x ∈ V }.
We would like to warn the reader that both interpretations will be used interchangeably starting from §5.

Definition 2.3 (Random walk with local memory). A random walk with local memory, or RWLM
for short, is a sequence (Xn, ρn)n≥0 of walker-and-rotor configurations satisfying the following transition
rules:

ρn+1(x) :=

{
Yn if x = Xn;

ρn(x) if x 6= Xn.
; and

Xn+1 :=Yn,

(2)

where Yn is a random neighbor of Xn sampled from pXn
(ρn(Xn), ·) independent of the past.

Described in words, Xn records the location of the walker and ρn records the rotor configuration at
time n of the RWLM. At time n, the walker updates the rotor of Xn using the Markov chain MXn

(which
depends only on Xn and ρn(Xn)), and then moves to the vertex to which the new rotor is pointing. The
local memory in the name refers to the fact that the walker records the last exit from each vertex that it
visits via the rotor configuration. See Figure 2 for an illustration of an RWLM on Z2.

Naturally, the dynamics of the RWLM depend on the choice of the mechanism. The following are three
examples of RWLMs that have appeared in the literature:

(i) Aldous-Broder walk, in which the walker performs a simple random walk on G and the rotor
configuration never influences the decision of the walker. That is to say, for every x ∈ V and
y ∈ N(x) the measure px(y, ·) is the uniform distribution on the neighbors of x. Our name for this
walk comes from the algorithm of Aldous [Ald90] and Broder [Bro89] that generates the uniform
spanning tree as a tree of first entrances of this walk.
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Figure 2. Three steps of a random walk with local memory on Z2. The location of the
walker is given by •, and the rotor of each vertex is given by the arrow pointing out from
the vertex.
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Figure 3. (a) The mechanism for p-rotor walk on Z2, in which the rotor rotates coun-
terclockwise with probability p, and clockwise with probability 1− p. The location of the
walker and the rotor after one step of the RWLM is given by (b) if the walker chooses to
rotate the rotor counterclockwise, and by (c) if the walker chooses to rotate the rotor
clockwise.

(ii) Rotor walk [WLB96, PDDK96, Pro03], in which the Markov chain Mx is given by a deterministic
permutation τx of the neighbors of x. That is, the chain Mx in state y will transition to τx(y) with
probability 1. We refer to [HLM+08, FLP16] for more details.

(iii) p-rotor walk on Z [HLSH18] for p ∈ [0, 1], in which the probability transition function px (x ∈ Z)
is given by

px(x± 1, x∓ 1) = 1− p; px(x± 1, x± 1) = p.

We now present three other examples of RWLMs.

Example 2.4 (p-rotor walk on Zd). Fix d ≥ 2 and p ∈ [0, 1]. Denote by e1, . . . , ed the canonical basis
of Rd. The Markov chain Mx (x ∈ Zd) has state space {x±ei | 1 ≤ i ≤ d} and has the following transition
rule:

x± ei transitions to


x± ej with probability p

d−1 if i < j;

x∓ ej with probability 1−p
d−1 if i < j;

x± ej with probability 1−p
d−1 if i > j;

x∓ ej with probability p
d−1 if i > j.

Described in words, if the rotor at the particle’s current location is parallel to ei, the walker first picks
j uniformly from {1, . . . , d} \ {i}. Then, the walker rotates the current rotor counterclockwise in the
{min(i, j),max(i, j)}-plane with probability p, and rotates clockwise with probability 1 − p. See Figure 3
for an illustration of this mechanism on Z2.

Example 2.5 (p,r-rotor walk on Zd). Fix d ≥ 2, p ∈ [0, 1], and r ∈ [0, 1]. For each visit to x ∈ Zd, the
mechanism at x transitions according to the mechanism of Aldous-Broder walk with probability 1− r, and
transitions according to the mechanism of p-rotor walk with probability r, independent of the past visits.
Note that we recover ‘H,V’-walk on Z2 for q ≤ 1

2 in §1 by taking p = 1
2 and r = 1 − 2q. Also note that,

unlike p-rotor walks, in this model every neighbor of the current location of the walker (all 2d of them) is
visited next with positive probability provided that r < 1 (i.e., the walk is elliptic). See Figure 4 for an
illustration of this mechanism.
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Figure 4. The mechanism for p,r-rotor walk on Z2, which stays at the current rotor
with probability a := 1−r

4 , rotates 180 degrees with probability a, rotates 90 degrees

counterclockwise with probability b := 1−r
4 + pr, and rotates 90 degrees clockwise with

probability c := 1−r
4 + (1− p)r.

•
1
3

1
3

1
3

•

(a) (b)

Figure 5. (a) The triangular lattice. (b) The mechanism for the triangular lattice, which
rotates either 60 degrees counterclockwise, 180 degrees counterclockwise, or 300 degrees
counterclockwise, each with probability 1

3 .

Example 2.6 (Triangular walk). The triangular lattice is the graph embedded in R2 given by:

V :=

{
a

(
1
0

)
+ b

(
1/2√
3/2

)∣∣∣∣ a, b ∈ Z
}

;

E := {{x,y} ∈ V × V | ‖x− y‖ = 1}.
In this RWLM, the walker updates the current rotor by applying a counterclockwise rotation by either
60 degrees, 180 degrees, or 300 degrees, each with probability 1

3 . See Figure 5 for an illustration of this
mechanism.

3. Martingale central limit theorem

In this section we show that, under strong regularity assumptions on the RWLM, we can directly prove
functional CLT from the vector-valued martingale CLT proved in [RAS05]. We denote by DRd [0,∞) the
Skorohod space of Rd-valued càdlàg paths on [0,∞). Recall that || · || denotes the Euclidean metric.

Theorem 3.1 (Martingale CLT [RAS05, Theorem 3]). Let (Xn)n≥0 be an Rd-valued square-integrable
martingale process w.r.t. a filtration (Fn)n≥0, and let Vn := Xn+1 −Xn be the corresponding martingale
difference sequence. Suppose that:

(i) There exists a symmetric, nonnegative definite d× d matrix Γ such that

1

n

n−1∑
i=0

E
[
ViV

>
i | Fi

]
→ Γ in probability as n→∞; (CLT1)

(ii) For any ε > 0,

1

n

n−1∑
i=0

E
[
‖Vi‖2 1{‖Vi‖ ≥ ε

√
n} | Fi

]
→ 0 in probability as n→∞. (CLT2)
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Then
{

1√
n
Xbntc, t ≥ 0

}
converges weakly on DRd [0,∞) to a Brownian motion with diffusion matrix Γ. �

We now apply Theorem 3.1 to RWLMs under the following assumptions. Let G = (V,E) be a simple
connected graph such that V is a subset of Rd. An RWLM is bounded if

sup
{x,y}∈E

||x− y|| <∞; (Bdd)

All the RWLMs described in §2 are bounded.
Recall the definition of probability transition functions px from Definition 2.1. Let x be a vertex of G,

and let y be a neighbor of x. We denote by Yx,y the random variable sampled from px(y, ·). The local
covariance matrix of x,y is the d× d matrix Γx,y := E

[
(Y − x)(Y − x)>

]
.

We say that an RWLM is a martingale if

E[Yx,y] = x for every x ∈ V and y ∈ N(x). (Mtgl)

Note that this condition is equivalent to requiring the sequence (Xn)n≥0 of locations of walker of the RWLM
to be a martingale. The Aldous-Broder walk on Zd and the triangular walk (Example 2.6) is a martingale,
the deterministic rotor walk is not a martingale, and the p-rotor walk (Example 2.4) and p,r-rotor walk
(Example 2.5) are martingales only if p = 1

2 .
We say that an RWLM has identical local covariances if

Γx,y = Γx′,y′ for every x, x′ ∈ V and y ∈ N(x),y′ ∈ N(x′), (ILC)

and in this case we write Γ := Γx,y. Aldous-Brouder walk on Zd and triangular walk are the only RWLMs
from §2 for which (ILC) holds. The matrix Γ is equal to 1

dId (where Id is the d × d identity matrix) in

the former case, and is equal to

[
1
2 0
0 1

6

]
in the latter case. The p-rotor walk does not satisfy (ILC) as the

covariance matrix Γx,y is equal to 1
d−1 (Id−eie

>
i ), where ei is the standard unit vector parallel to the edge

(x,y). The p,r-rotor walk (with r > 0) does not satisfy (ILC) either by an analogous calculation.
We now restate Proposition 1.4 from the introduction in a slightly more general form.

Proposition 1.4. Let G be a simple, connected graph with its vertex set being a subset of Rd. Consider

an RWLM on G that satisfies (Bdd), (Mtgl), and (ILC). Then the scaled walk
{

1√
n
Xbntc, t ≥ 0

}
converges

weakly on DRd [0,∞) to a Brownian motion with diffusion matrix Γ.

The remarkable part of Proposition 1.4 is that the conditions involve only the mechanism of the RWLM,
and hence we can derive a scaling limit result regardless of the initial walker-and-rotor configuration.
In particular, it follows from Proposition 1.4 that, for every initial walker-and-rotor configuration, the
triangular walk from Example 2.6 satisfies a functional CLT.

Naturally, Proposition 1.4 does not apply to p-rotor walk and p,r-rotor walk even when p = 1
2 , as (ILC)

is never satisfied. Thus we need a different approach to prove a scaling limit for these RWLMs, which we
partially achieve at the cost of starting the walk with a specific rotor configuration; see Theorem 1.3.

Proof of Proposition 1.4. It suffices to check that all conditions of Theorem 3.1 are satisfied. Write C :=
sup{x,y}∈E ||x − y||. Note that C is finite by (Bdd). This implies that ||Xn|| ≤ Cn + ||X0|| for all n ≥ 0,

and it then follows that (Xn)n≥0 is square-integrable.
We now check that (Xn)n≥0 is a martingale process with respect to the filtration Fn := σ(X0, . . . , Xn, ρ0, . . . , ρn).

It then follows from the transition rule of RWLM (see (2)) that, for any n ≥ 0:

E[Xn+1 | Fn] =
∑
x∈V

∑
y∈N(x)

E[Yx,y 1{Xn = x, ρn(x) = y} | Fn] (by Definition 2.3)

=
∑
x∈V

∑
y∈N(x)

E[Yx,y]1{Xn = x, ρn(x) = y}

=
∑
x∈V

∑
y∈N(x)

x1{Xn = x, ρn(x) = y} (by (Mtgl))

=Xn.

This shows that (Xn)n≥0 is a martingale.
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We now check the condition (CLT1). It follows from the the transition rule of RWLM that, for any
n ≥ 0:

E
[
VnV

>
n | Fn

]
=
∑
x∈V

∑
y∈N(x)

E
[
(Yx,y − x)(Yx,y − x)> 1{Xn = x, ρn(x) = y} | Fn

]
=
∑
x∈V

∑
y∈N(x)

E
[
(Yx,y − x)(Yx,y − x)>

]
1{Xn = x, ρn(x) = y}

=
∑
x∈V

∑
y∈N(x)

Γ1{Xn = x, ρn(x) = y} (by (ILC))

= Γ.

It then follows that 1
n

∑n−1
i=0 E

[
ViV

>
i | Fi

]
= Γ, which proves (CLT1).

We now check the condition (CLT2). Note that

||Vn|| = ||Xn+1 −Xn|| ≤ sup
{x,y}∈E

||x− y|| <∞,

where the last inequality is due to (Bdd). Hence for any ε > 0, for sufficiently large n we have that
1{‖Vi‖ ≥ ε

√
n} = 0 for every i ≥ 0. This implies that

1

n

n−1∑
i=0

E
[
‖Vi‖21{‖Vi‖ ≥ ε

√
n} | Fi

]
= 0,

which proves (CLT2). The proof is now complete. �

4. Wired spanning forest oriented toward a root

In this section we present two methods to generate the wired spanning forest oriented toward a chosen
root vertex, which we will use to construct an initial rotor configuration for random walks with local
memory in §5 and §7. Most of the material in this section is not new. Indeed, the material in §4.1 and §4.2
is taken from the relevant part of [LP16], and the material in §4.3 and §4.4 is a straightforward modification
of Wilson’s method [Wil96, BLPS01], which we spell out for completeness.

4.1. Unoriented wired spanning forest. We begin by defining the unoriented wired spanning forest,
and we refer to [BLPS01] and [LP16, Chapters 4 & 10] for a detailed discussion on this topic.

Recall that G := (V (G), E(G)) is a simple, connected, undirected graph that is locally finite. Let F :=
F (G) be the σ-algebra on the set of subgraphs of G generated by sets of the form {H ∈ 2E(G) | B ⊆ H},
where B is a finite subset of E(G). The unoriented wired spanning forest will be a probability distribution
on the measurable space (2E(G),F (G)).

An electrical network is a pair (G, c), where G is a locally finite, simple, connected graph, and the
conductance c : E → R>0 is a function that sends each unoriented edge of G to a positive real number.
We denote by c{x, y} the conductance of the unoriented edge {x, y}. (We emphasize that G is always an
unoriented graph, and c{x, y} = c{y, x}.)

We associate to each (G, c) the Markov chain with state space V (G) and such that, for every adjacent
vertices x, y, the probability to transition from x to y is proportional to c{x, y}. This Markov chain is
called the network random walk on (G, c). The network (G, c) is recurrent if the network random walk
eventually returns to its starting point with probability 1, and is transient otherwise.

We start by defining the wired spanning forest for the network (G, c) when G is a finite graph, in which
case the distribution is concentrated on the spanning trees of G. The weight of a finite subgraph H of G is

Ξ(H) :=
∏

{x,y}∈E(H)

c{x, y}.

Definition 4.1 (Unoriented spanning forest for finite graphs). For a finite graph G, the unoriented
wired spanning forest WSF := WSF(G, c) is the probability distribution on spanning trees of G in which
each tree T is picked with probability proportional to Ξ(T ).
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Note that the term “wired” is not usually present in Definition 4.1 when G is finite, as wired exhaustion
(see Definition 4.2 below) is not a required concept here. In fact, in this case the wired spanning forest will
always be a tree. However, using the terms “wired” and “forest” will significantly simplify the notation in
this paper, as our results apply to both finite and infinite graphs.

Definition 4.2 (Wired exhaustion). Let (Wn)n≥0 be a sequence of finite, connected subsets of V (G)
such that

• ⋃n≥0Wn = V (G); and
• Wn ⊆Wn+1 for all n ≥ 0.

The wired exhaustion of G is the sequence of electrical networks (Gn, cn)n≥0 defined as follows. The graph
Gn is the undirected graph obtained from G by identifying all the vertices of V (G) \Wn to a single vertex
zn and removing loops and extra multiple edges that are formed. The conductance cn : E(Gn) → R>0 is
defined by

cn{x, y} :=

{
c{x, y} if x, y ∈Wn;∑
y′ /∈Wn

c{x, y′} if x ∈Wn and y = zn.

We denote by µn the probability distribution WSF(Gn, cn) on the subgraphs of Gn. We can now define
the wired spanning forest for infinite graphs using the concept of wired exhaustion.

Definition 4.3 (Unoriented wired spanning forest for infinite graphs). The wired spanning forest
WSF := WSF(G, c) is a probability distribution on subgraphs of G such that, for any wired exhaustion and
any finite B ⊆ E(G),

WSF[B ⊆ F ] = lim
n→∞

µn[B ⊆ Tn], (3)

where F is a random subgraph of G distributed according to WSF, and Tn is a random spanning tree of
Gn distributed according to µn.

The quantity µn[B ⊆ Tn] decreases as n → ∞ [LP16, Chapter 10], and hence the limit in (3) exists
and does not depend on the choice of the wired exhaustion. By the Kolmogorov extension theorem, there
exists a unique probability distribution on (2E(G),F (G)) that satisfies (3).

The random subgraph sampled from WSF is always a spanning forest but not necessarily a spanning
tree. It is well-known that, for the graph Zd with a constant conductance, this random subgraph has
one connected component a.s. if d ≤ 4, and infinitely many connected components a.s. if d ≥ 5 [Pem91,
Theorem 4.2]. For more on the geometry of the WSF and its dependence on dimension, see [BKPS04, HP19].

4.2. Wired spanning forest oriented toward a root. We now define the wired spanning forest oriented
toward a chosen root vertex. Denote by

−⇀
E(G) :=

⋃
{x,y}∈E(G)

{(x, y), (y, x)}

the set of oriented edges of G. Let
−⇀
F :=

−⇀
F (G) be the σ-algebra on the set of oriented subgraphs of G

generated by sets of the form {−⇀H ∈ 2
−⇀
E(G) | −⇀B ⊆ −⇀H}, where

−⇀
B is a finite subset of

−⇀
E(G). The oriented

wired spanning forest will be a probability distribution on the measurable space (2
−⇀
E(G),

−⇀
F (G)).

We start by defining the oriented wired spanning forest when G is a finite graph, in which case the
distribution is concentrated on the oriented spanning trees of G. Fix a root vertex r ∈ V (G) for the rest
of this section.

Definition 4.4 (Oriented spanning tree). An r-oriented spanning tree
−⇀
T of G is an oriented subgraph

of G such that, for any x ∈ V (G), there exists a unique directed path in
−⇀
T that starts at x and ends at r.

Note that in an r-oriented spanning tree
−⇀
T , every vertex in V (G) \ {r} has outdegree 1 in

−⇀
T , and the

root vertex r has outdegree 0 in
−⇀
T . Also note that given an unoriented spanning tree of a finite graph and

a root vertex r, there is a unique way to orient the tree to become an r-oriented spanning tree. The weight
of a finite oriented subgraph

−⇀
H of G is

Ξ(
−⇀
H) :=

∏
(x,y)∈

−⇀
E(
−⇀
H)

c{x, y}.
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Definition 4.5 (Rooted oriented wired spanning forest for finite graphs). Let G be a finite

graph. The r-oriented wired spanning forest, denoted
−−−⇀
WSFr :=

−−−⇀
WSFr(G, c), is the probability distribution

on r-oriented spanning trees of G in which each tree
−⇀
T is picked with probability proportional to Ξ(

−⇀
T ).

We now define the r-oriented wired spanning forest for infinite graphs G. Let (Gn, cn)n≥0 be a wired

exhaustion of G. We denote by −−−⇀µr,n the probability distribution
−−−⇀
WSFr(Gn, cn) on the oriented subgraphs

of Gn.

Definition 4.6 (Rooted oriented wired spanning forest for infinite graphs). The r-oriented wired

spanning forest, denoted
−−−⇀
WSFr :=

−−−⇀
WSFr(G, c), is a probability distribution on oriented subgraphs of G

such that, for any wired exhaustion and any finite
−⇀
B ⊆ −⇀E(G),

−−−⇀
WSFr[

−⇀
B ⊆ −⇀F ] = lim

n→0

−−−⇀µr,n[
−⇀
B ⊆ −⇀Tn], (4)

where
−⇀
F is a random oriented subgraph of G distributed according to

−−−⇀
WSFr and

−⇀
Tn is a random r-oriented

tree of Gn distributed according to −−−⇀µr,n.

The limit in Definition 4.6 exists and does not depend on the choice of the wired exhaustion as we
will see in §4.3 (for recurrent networks) and §4.4 (for transient networks). By the Kolmogorov extension

theorem, there exists a unique probability distribution on (2
−⇀
E(G),

−⇀
F (G)) that satisfies Definition 4.6.

The underlying graph of the r-oriented wired spanning forest is the unoriented wired spanning forest,
in the following sense.

Lemma 4.7. Let f : 2
−⇀
E(G) → 2E(G) be the map that takes an oriented subgraph and erases the orientation

of every edge. If
−⇀
F is an oriented subgraph of G sampled from

−−−⇀
WSFr, then f(

−⇀
F ) is an unoriented subgraph

of G that has the law of WSF.

Proof. Note that, for any finite subset B of E(G), the event {B ⊆ f(
−⇀
F )} depends only on finitely many

oriented edges. Therefore, it suffices to consider the case when G is a finite graph, as the case of infinite
graphs follows by taking the limit over a wired exhaustion and then verifying the lemma for all events of
the form {B ⊆ f(

−⇀
F )} for some finite B.

When G is finite, note that f is a bijection between r-oriented spanning trees of G and unoriented
spanning trees of G that preserves the weight of spanning trees. The lemma now follows from Definition 4.1
and Definition 4.5, and the proof is complete. �

As in the unoriented case, a random oriented subgraph
−⇀
F sampled from

−−−⇀
WSFr is not necessarily an

oriented spanning tree. However, it is always an r-oriented spanning forest of G: the underlying graph
of
−⇀
F is a spanning forest, every vertex in V (G) \ {r} has outdegree 1 in

−⇀
F , and r has outdegree 0 in

−⇀
F . The first condition follows from Lemma 4.7, and the others can be verified directly from the limit in
Definition 4.6 as these events only depend on finitely many edges.

4.3. Wilson’s method oriented toward a root: recurrent case. In this subsection we describe an
algorithm due to Wilson [Wil96] that generates WSF(G, c) and

−−−⇀
WSFr(G, c) for recurrent networks without

using the weak limit in Definition 4.6.
A (finite) directed walk in G is a sequence 〈x0, . . . , xn〉 such that {xi, xi+1} ∈ E(G) for i ∈ {0, . . . , n−1}.

The loop erasure of a directed walk 〈x0, . . . , xn〉, denoted by LE〈x0, . . . , xn〉, is obtained by erasing cycles
in the directed walk in the order they appear, i.e., it is the directed walk given by the following recursive
definition. Let y0 := x0. Suppose that yi has been defined, and let j be the largest element of {0, . . . , n}
such that xj = yi. Set yi+1 := xj+1 if j < n; otherwise, define LE〈x0, . . . , xn〉 := 〈y0, . . . yi〉. Note that
even if the directed walk is infinite, its loop erasure is still well-defined provided that the walk is locally
finite, i.e., every vertex is visited at most finitely many times in the walk.

Definition 4.8 (Wilson’s method for recurrent networks). Let (G, c) be a recurrent network. Let

x1, x2, . . . be an ordering of elements of the V (G) \ {r}. Define a growing sequence (
−⇀
T (i))i≥0 of oriented

trees recursively as follows:

• Set
−⇀
T (0) to be the tree with the single vertex r and with no edges.
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• Suppose that
−⇀
T (i) has been generated. Start an independent network random walk at xi+1 and

stop it at the first time it hits
−⇀
T (i) (note that the random walk hits

−⇀
T (i) a.s. by recurrence). Let

〈y0, . . . , ym〉 be the loop erasure of this random walk.

• Set
−⇀
T (i + 1) to be the oriented tree obtained by adding the oriented edges (y0, y1), (y1, y2), . . .,

(ym−1, ym) to
−⇀
T (i).

• The output of this algorithm is
−⇀
T :=

⋃
i≥0

−⇀
T (i).

The oriented spanning forest sampled using Wilson’s method has the law of the r-oriented wired spanning
forest, due to the following theorems.

Theorem 4.9 ([Wil96, Theorem 1]). Let G be a finite graph. Then, regardless of the ordering of V (G)\{r},
the oriented tree

−⇀
T sampled using Wilson’s method has the law of

−−−⇀
WSFr(G, c). �

Theorem 4.10 ([BLPS01, Proposition 5.6]). Let (G, c) be a recurrent network. Then for any finite subset
−⇀
B of

−⇀
E(G), any ordering of V (G) \ {r}, and any wired exhaustion of G,

P[
−⇀
B ⊆ −⇀T ] = lim

n→0

−−−⇀µr,n[
−⇀
B ⊆ −⇀T n],

where
−⇀
T is a random tree of G generated using Wilson’s method, and

−⇀
T n is a random tree of Gn distributed

according to −−−⇀µr,n. �

We remark that [BLPS01] stated only the unoriented version of Theorem 4.10, but their argument in fact
proves the oriented version as well. As a consequence of Theorem 4.10, we have that, for every recurrent
network, the limit in (4) exists and does not depend on the choice of the wired exhaustion.

4.4. Wilson’s method oriented toward a root: transient case. In this subsection we describe an
algorithm that generates

−−−⇀
WSFr(G, c) for transient networks without using the weak limit in Definition 4.6.

For any walk 〈xi | 0 ≤ i < I〉 (including the case I = ∞), we denote by
−⇀
E(〈xi | 0 ≤ i < I〉) the set of

oriented edges {(xi, xi+1) | 0 ≤ i < I − 1}, and we denote by
−⇀
E(R(〈xi | 0 ≤ i < I〉)) the set of oriented

edges {(xi+1, xi) | 0 ≤ i < I − 1}.

Definition 4.11 (Wilson’s method for transient networks). Let (G, c) be a transient network. Let

x1, x2, . . . be an ordering of elements of V (G)\{r}. Define a growing sequence (
−⇀
F (i))i≥0 of oriented forests

recursively as follows:

• Start a network random walk at r that runs indefinitely. This random walk is locally finite a.s.
by transience. Let 〈y0, y1, . . .〉 be the loop erasure of this random walk. Set

−⇀
F (0) to be the tree

oriented toward r given by

V (
−⇀
F (0)) := {yi | i ≥ 0}; −⇀

E(
−⇀
F (0)) :=

−⇀
E(R(〈yi | i ≥ 0〉)).

• Suppose that
−⇀
F (i) has been generated. Start a network random walk at xi+1. Stop the walk the

first time it hits
−⇀
F (i); if it never hits

−⇀
F (i) then let it run indefinitely. This walk is locally finite a.s.

by transience. Let 〈y′0, y′1, . . .〉 be the loop erasure of this random walk.

• Set
−⇀
F (i+ 1) to be the oriented forest obtained by adding the edges in

−⇀
E(〈y′i | i ≥ 0〉) to

−⇀
F (i).

• The output of this algorithm is
−⇀
F :=

⋃
i≥0

−⇀
F (i).

We remark that this algorithm is identical to Wilson’s method oriented toward infinity [BLPS01] except

for the first step, where we take the oriented edges from
−⇀
E(R(〈yi | i ≥ 0〉)) instead of

−⇀
E(〈yi | i ≥ 0〉).

This difference causes the output to be a forest oriented toward r instead of toward infinity. We refer to
[BLPS01] and [Hut18] for other methods to sample wired spanning forest oriented toward infinity.

The subgraph sampled using this method has the law of the r-oriented wired spanning forest, due to
the following theorem.

Theorem 4.12 (cf.[BLPS01, Theorem 5.1]). Let (G, c) be a transient network. Then for any finite subset
−⇀
B of

−⇀
E(G), any ordering of V (G) \ {r}, and any wired exhaustion of G,

P[
−⇀
B ⊆ −⇀F ] = lim

n→0

−−−⇀µr,n[
−⇀
B ⊆ −⇀Tn],
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where
−⇀
F is a random oriented forest of G generated using Wilson’s method oriented toward r (Defini-

tion 4.11), and
−⇀
Tn is a random oriented tree of Gn distributed according to −−−⇀µr,n.

As a consequence of Theorem 4.12, we have that for all transient networks the limit in (4) exists and
does not depend on the choice of the wired exhaustion. Our proof of Theorem 4.12 is paraphrased from its
counterpart in [BLPS01].

Proof of Theorem 4.12. For any locally finite walk 〈xi | i ≥ 0〉, we have LE〈xi | i < I〉 → LE〈xi | i ≥ 0〉 as
I →∞. That is, if LE〈xi | i ≤ I〉 = 〈yI,i | i ≤ mI〉 and LE〈xi | i ≥ 0〉 = 〈yi | i ≥ 0〉, then for every i and all
sufficiently large I we have yI,i = yi. Since G is transient, it follows that LE〈Xi | i < I〉 → LE〈Xi | i ≥ 0〉
as I →∞ a.s., where 〈Xi | i ≥ 0〉 is a network random walk starting from any fixed vertex of G.

Let x1, x2, . . . be the ordering of V (G) \ {r} used in Wilson’s method for G. Write x0 := r. Let L be

a sufficiently large integer such that the endpoints of all edges in
−⇀
B are contained in x0, x1, . . . , xL. Let

〈Xj
i | i ≥ 0〉 be independent random walks on G that start at xj (j ∈ {0, . . . , L}).
Let n be sufficiently large so that the wired exhaustion Wn contains x0, . . . , xL. Run Wilson’s method

rooted at zn in Gn with an ordering of V (Gn)\{zn} that starts with x0, . . . , xL, using the walks 〈Xj
i | i ≥ 0〉

for j ∈ {0, . . . , L}. Since these walks are on G rather than Gn, we simply stop the random walks once
they leave the set Wn and say that they have hit zn. In this way, we can couple the random walk in Gn
that starts at xj with the random walk in G that starts at xj by using the same (infinite) random walk

〈Xj
i | i ≥ 0〉 for j ∈ {0, . . . , L}.
Let

−⇀
T ′n be the random spanning tree of Gn oriented toward zn picked using Wilson’s method for Gn as

described in the previous paragraph. Note that
−⇀
T ′n has the law of

−−−⇀
WSFzn(Gn, cn) by Theorem 4.9.

Let h be the map from zn-oriented spanning trees of Gn to r-oriented spanning trees of Gn that reverses
the orientation of all edges in the unique directed path from r to zn. Note that h is a bijection that
preserves the weight of spanning trees. Write

−⇀
T n := h(

−⇀
T ′n). It then follows from definition of oriented

wired spanning forest for finite graphs (Definition 4.5) that
−⇀
T n has the law of

−−−⇀
WSFr(Gn, cn).

Let τ jn be the first time that 〈Xj
i | i ≥ 0〉 reaches the portion of the spanning tree created by the

preceding random walks 〈X l
i | i ≥ 0〉 for (l < j) using Wilson’s method for Gn oriented toward zn. Note

that we have:

−−−⇀µr,n[
−⇀
B ⊆ −⇀T n] = P

−⇀B ⊆ −⇀E(R(LE〈X0
i | i ≤ τ0

n〉)) ∪
L⋃
j=1

−⇀
E(LE〈Xj

i | i ≤ τ jn〉)

. (5)

Let τ j be the first time that 〈Xj
i | i ≥ 0〉 reaches the portion of the spanning tree created by the

preceding random walks 〈X l
i | i ≥ 0〉 for (l < j) using Wilson’s method for G oriented toward r. Note that

we have

P[
−⇀
B ⊆ −⇀F ] = P

−⇀B ⊆ −⇀E(R(LE〈X0
i | i ≤ τ0〉)) ∪

L⋃
j=1

−⇀
E(LE〈Xj

i | i ≤ τ j〉)

, (6)

where
−⇀
F is the oriented spanning forest generated using Wilson’s method for G. Since the random walks

used in Wilson’s method for G and Wilson’s method for Gn are the same, it follows from induction on j
that τ jn → τ j as n→∞. Together with (5) and (6), this implies the conclusion of the theorem. �

4.5. Tail triviality. An important property of the wired spanning forest (which will be used in proving
Theorem 1.2) is that it is a tail trivial measure.

We first define tail triviality for measures on unoriented subgraphs. For any subset K ⊆ E(G), let
F (K) ⊆ F denote the σ-algebra of events that depend only on K. An event B ∈ F is a tail event if
B ∈ F (E \K) for all finite K ⊆ E. A measure π on F is tail trivial if, for every tail event B ∈ F , we
have π[B] ∈ {0, 1}.

Theorem 4.13 ([LP16, Theorem 10.18]). For every tail event B ∈ F , we have WSF[B] ∈ {0, 1}. �

We now define tail triviality for measures on oriented subgraphs analogously. For any subset
−⇀
K ⊆ −⇀E(G),

let
−⇀
F (
−⇀
K) ⊆ −⇀F denote the σ-algebra of events that depend only on

−⇀
K. An event

−⇀
B ∈ −⇀F is a tail event if
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−⇀
B ∈ −⇀F (

−⇀
E \ −⇀K) for all finite

−⇀
K ⊆ −⇀E. A measure π on

−⇀
F is tail trivial if, for every tail event

−⇀
B ∈ −⇀F , we

have π[
−⇀
B] ∈ {0, 1}. We now show that the following oriented subgraph measure is tail trivial.

Definition 4.14 (Oriented wired spanning forest plus one edge). The r-oriented wired spanning

forest plus one edge, denoted
−−−⇀
WSF+

r :=
−−−⇀
WSF+

r (G, c), is the law of the random subgraph
−⇀
F t{(r, Y )}, where

−⇀
F is a random r-oriented forest of G sampled from

−−−⇀
WSFr and Y is a random neighbor of r sampled from

µr independently of
−⇀
F .

Lemma 4.15. For every tail event
−⇀
B ∈ −⇀F , we have

−−−⇀
WSF+

r [
−⇀
B] ∈ {0, 1}.

Proof. Let f : 2
−⇀
E → 2E be the map that takes an oriented subgraph and erases the orientation of every

edge. Let g : 2
−⇀
E → 2

−⇀
E be the map that takes an oriented subgraph and removes any outgoing edges of r.

Let
−⇀
B be a tail event in

−⇀
F . Note that

−−−⇀
WSF+

r [
−⇀
B] =

−−−⇀
WSFr[g(

−⇀
B)] by the definition of

−−−⇀
WSF+

r and by the

fact that
−⇀
B does not depend on any outgoing edges of r. Also note that

−−−⇀
WSFr[g(

−⇀
B)] = WSF[f ◦ g(

−⇀
B)]

by Lemma 4.7. Finally, note that the set f ◦ g(
−⇀
B) is a tail event in F since

−⇀
B is a tail event in

−⇀
F .

The conclusion of the lemma now follows from the tail triviality of unoriented wired spanning forest
(Theorem 4.13). �

5. A native environment for random walk with local memory

In this section we show that the wired spanning forest measure can be used to construct a native
environment. To rigorously define the notion of native environment, the underlying RWLM needs to
satisfy the conditions described below.

A graph G is a Cayley graph if

• V (G) is a group with identity element o;
• The group V (G) is generated by a finite set S ⊆ V (G) \ {o};
• The set S is symmetric, i.e., if x is in S then x−1 is also in S; and
• E(G) = {{x, y} | y−1x ∈ S}.

The square lattice Z2 is an example of a Cayley graph where the generating set S is {(±1, 0), (0,±1)} and
the group operation is vector addition. Note that a Cayley graph is locally finite (because S is finite),
connected (because S is a generating set), and simple (because S does not contain o).

A weighted Cayley graph (G, c) is a Cayley graph G with a weight function c : S → R>0 such that
c(x) = c(x−1) for all x ∈ S. Note that the function c : S → R>0 extends naturally to a conductance
c : E → R>0 on edges of G by setting c{x, y} := c(y−1x) = c(x−1y) for all {x, y} ∈ E.

Recall the definition of the probability transition function px(·, ·) from Definition 2.1. For every vertex
x of G, we denote by µx the probability distribution on neighbors of x given by

µx(y) :=
c{x, y}∑

z∈N(x) c{x, z}
(y ∈ N(x)). (7)

Note that the measure µo is symmetric (i.e., µo(x) = µo(x
−1)) as a consequence of c : S → R>0 being

symmetric.
An RWLM is transitive if,

px(y, y′) = pgx(gy, gy′) for every x, g, y, y′ ∈ V. (Tran)

An RWLM is c-stationary if, for every vertex x,

µx is a stationary distribution of the local chain Mx. (cSta)

Intuitively, the transitivity condition requires that the RWLM’s mechanism at every vertex follow the
same procedure. We remark that every RWLM in §2, with c being a constant function, is transitive and
c-stationary.

For the rest of this paper, every RWLM will be transitive and c-stationary, and the underlying graph
will always be a weighted Cayley graph, unless stated otherwise. Recall that Xn denotes the location of
the walker and ρn denotes the rotor configuration at the n-th step of RWLM.



RANDOM WALKS WITH LOCAL MEMORY 15

×• •× •×

Figure 6. One step of the scenery process of a rotor walk on Z2 with clockwise rotation
as its mechanism. The location of the origin in the original process is marked by the ×
symbol, and the location of the walker is marked by the • symbol.

Definition 5.1 (Scenery process). The scenery process is the sequence (ρ̂n)n≥0 of rotor configurations
given by

ρ̂n(x) := X−1
n ρn(Xnx) (x ∈ V, n ≥ 0).

Described in words, at each time step we apply a translation to the current rotor configuration so that
the current location of the walker is mapped to the origin. In this way, ρ̂n is the rotor configuration as
viewed from the perspective of the walker at the n-th step of the RWLM. See Figure 6 for an illustration of
a scenery process.

Note that, as a consequence of (Tran), the scenery process (ρ̂n)n≥0 is a Markov chain with state space
the set of rotor configurations of G and with transition rule

ρ̂n+1(x) :=

{
o if x = Y −1

n ;

Y −1
n ρ̂n(Ynx) if x 6= Y −1

n ,
(8)

where Yn is a random neighbor of o sampled from po(ρ̂n(o), ·) independently of σ(ρ̂0, . . . , ρ̂n−1) (recall that
po is the probability transition function of the local chain Mo).

Definition 5.2 (Native environment). A native environment is a probability distribution on rotor
configurations of G such that, if the walker starts at o and the initial rotor configuration is sampled from
the distribution, then the scenery process is a stationary sequence, i.e.,

(ρ̂n)n≥0
d
= (ρ̂n+1)n≥0.

Intuitively, a native environment means that, at each time step of the walk, the rotor configuration
viewed from the perspective of the walker has the same law as the initial environment. See Figure 6 for an
illustration of a native environment.

We now restate Theorem 1.1 from the introduction (also the main result of this section) in a slightly

more general form. Recall the definition of
−−−⇀
WSF+

o :=
−−−⇀
WSF+

o (G, c) from Definition 4.14.

Theorem 1.1. Consider an RWLM on a weighted Cayley graph that satisfies (Tran) and (cSta). Then
−−−⇀
WSF+

o is a native environment.

Note that
−−−⇀
WSF+

o is indeed a probability distribution on rotor configurations of G. This is because, by

Wilson’s method (see §4.3 and §4.4), the random subgraph sampled from
−−−⇀
WSFo has exactly one outgoing

edge for every x ∈ V \ {o} and no outgoing edge for o. Hence the random subgraph sampled from
−−−⇀
WSF+

o

has exactly one outgoing edge for every vertex, and by Remark 2.2 it defines a rotor configuration of G.
We remark that, when G is a finite Cayley graph, Theorem 1.1 then specializes to the result of [Bro89,

Ald90] (for Aldous-Broder walk) and [HLM+08, Lemma 3.4] (for rotor walk).
We now build toward the proof of Theorem 1.1. We will use the following identity, which is a special

case of [Lev11, Lemma 2.4] if the graph G is finite.

Lemma 5.3. Let (G, c) be an electrical network, and let r be a vertex. Let Y be a random neighbor of r

sampled from µr, and let
−−⇀
FY be a random oriented spanning forest of G sampled from

−−−⇀
WSFY . Then the

random oriented subgraph
−−⇀
FY t {(Y, r)} has the distribution

−−−⇀
WSF+

r .
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Proof. It suffices to consider the case when G is a finite graph, as the case of infinite graphs follows by
taking the limit over a wired exhaustion and then verifying the lemma for all events that depend on only
finitely many edges.

When G is a finite graph, note that
−−⇀
FY t {(Y, r)} is concentrated on oriented spanning unicycles rooted

at r, i.e., oriented subgraphs of G with one outgoing edge for every vertex of G and one unique oriented
cycle, where r is contained in that oriented cycle. Each unicycle

−⇀
U is picked with probability proportional

to the product of the weight of its edges. This implies that
−−⇀
FY t {(Y, r)} is distributed as

−−−⇀
WSF+

r , as
desired. �

Proof of Theorem 1.1. Since (ρ̂n)n≥0 is a Markov chain, it suffices to show that if ρ̂0 is distributed as
−−−⇀
WSF+

o , then ρ̂1 is also distributed as
−−−⇀
WSF+

o .

Let
−⇀
F be the random spanning forest of G sampled from

−−−⇀
WSFo. Let Y be a random neighbor of the

identity sampled from µo independently of
−⇀
F . For any x ∈ V , denote by τx : V (G) → V (G) the network

isomorphism of (G, c) given by left multiplication by x. (A network isomorphism of (G, c) is a graph
isomorphism of G which also preserves the conductance c.)

Since ρ0(o)
d
= Y and the RWLM satisfies (cSta), we have ρ1(o)

d
= Y . By the transition rule of RWLM

(see (2)), we then have ρ1
d
=
−⇀
F t {(o, Y )}. By the transition rule of the scenery process (see (8)), we then

have ρ̂1
d
= τY −1(

−⇀
F ) t {(Y −1, o)}.

Now note that Y
d
= Y −1 since µo is symmetric, and together with the conclusion of the previous

paragraph this implies that ρ̂1
d
= τY (

−⇀
F ) t {(Y, o)}. Also note that τY (

−⇀
F ) is equal in distribution to the

random spanning forest picked from
−−−⇀
WSFY since τY is a network isomorphism of (G, c). It now follows

from Lemma 5.3 that ρ̂1 is distributed according to
−−−⇀
WSF+

o , and the proof is complete. �

6. Ergodic native environments

In this section we prove Theorem 1.2 by showing that
−−−⇀
WSF+

o is an ergodic native environment. This
requires tools from the ergodic theory of Markov chains, which we quickly review in the next subsection,
and we refer the reader to [HLL98] for a more detailed discussion on this subject.

6.1. Ergodic theory for Markov chains. Let M := (Ω,F , P ) be a Markov chain, where the state space
Ω is a metric space, F is the Borel σ-algebra of Ω, and P : Ω ×F → [0, 1] is the probability transition
function of this chain. A set B ∈ F is invariant if P (x,B) = 1 for all x ∈ B. A stationary distribution π
of M is ergodic if π[B] ∈ {0, 1} for any invariant set B.

Let ΩN be the trajectory space of M ,

ΩN := {(ωi)i≥0 | ωi ∈ Ω},
equipped with the product σ-algebra induced by F . For any ω ∈ Ω we denote by Pω the probability
distribution on ΩN given by:

Pω[A ] := E[1A (ω0, ω1, . . .)] (A ∈ F ),

where (ωn)n≥0 is the Markov chain M with initial state ω0 = ω, and E is the corresponding expectation
function for this chain.

Theorem 6.1 (Pointwise ergodic theorem [HLL98, Theorem 6.1(b)]). Let M be a Markov chain on
a compact metric space (Ω,F ), and let π be an ergodic distribution of M . Then for every π-integrable
function f : Ω→ R,

lim
n→∞

1

n

n−1∑
i=0

f(ωi) =

∫
Ω

f dπ Pω-a.s.,

for π-almost every ω ∈ Ω. �

The following lemma will be useful for checking if a given stationary distribution π is ergodic. For any
n ≥ 1, we denote by P (n) the n-step transition function of the Markov chain M .
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Lemma 6.2. Let M := (Ω,F , P ) be a Markov chain, and let π be a stationary distribution of M . If B is
an invariant set, then the set

B′ := {x ∈ Ω | ∃ n ≥ 1 s.t. P (n)(x,B) > 0},
differs from B by a set of π-measure zero.

Proof. First note that B ⊆ B′ by the invariance of B. Now note that, for any n ≥ 1,

π[B] =

∫
Ω

P (n)(x,B) dπ(x) (by the stationarity of π)

=

∫
B

P (n)(x,B) dπ(x) +

∫
B′\B

P (n)(x,B) dπ(x) (as P (n)(x,B) = 0 for x /∈ B′)

= π[B] +

∫
B′\B

P (n)(x,B) dπ(x) (as B is invariant).

Hence we conclude that
∫

B′\B P (n)(x,B) dπ(x) = 0 for any n ≥ 1. It then follows from the definition of

B′ that that π[B′ \B] = 0. This proves the lemma. �

6.2. Proof of Theorem 1.2. Recall the definition of scenery process (ρ̂n)n≥0 from Definition 5.1.

Definition 6.3 (Ergodic native environment). Consider an RWLM on a weighted Cayley graph that
satisfies (Tran) and (cSta). An ergodic environment is a distribution on rotor configurations of G that is
an ergodic measure for the scenery process of the RWLM.

We now restate Theorem 1.2 from the introduction (also the main result of this section) in a slightly
more general form. Recall that the definition of probability transition functions px from Definition 2.1. We
say that the RWLM is elliptic if,

px(y, y′) > 0 for every x ∈ V and every y, y′ ∈ N(x). (Ell)

Note that, from the RWLMs in §2, the Aldous-Broder walk and the p,r-rotor walk with r < 1 are elliptic,
while p-rotor walk and deterministic rotor walk are not elliptic.

Theorem 1.2. Consider an RWLM on a weighted Cayley graph that satisfies (Tran), (cSta), and (Ell).

Then
−−−⇀
WSF+

o is an ergodic native environment.

Proof. Let π =
−−−⇀
WSF+

o , and let
−⇀
B be a set of rotor configurations that is invariant w.r.t. the scenery process.

Recall the definition of tail event for rotor configurations (equivalently, oriented subgraphs) from §4.5. It

suffices to show that
−⇀
B differs from a tail event by a set of π-measure zero, as it will then follow from the

tail triviality of π (Lemma 4.15) that π[
−⇀
B] ∈ {0, 1}.

Let Rot(G) denote the set of rotor configurations of G. We write
−⇀
C := {ρ ∈ Rot(G) | ∃ ρ′ ∈ −⇀B s.t. ρ and ρ′ differ at finitely many vertices}.

Note that
−⇀
C is a tail event that contains

−⇀
B. It then suffices to show that π[

−⇀
C \ −⇀B] = 0.

Let ρ be any rotor configuration in
−⇀
C . Then there exists ρ′ ∈ −⇀B such that ρ′ differs from ρ at finitely

many vertices. Let 〈x0, . . . , xn〉 be a directed walk in G that starts at o and such that {x0, . . . , xn−1}
contains all the vertices for which ρ and ρ′ differ.

For each i ∈ {1, . . . , n}, define ρi to be the rotor configuration at the i-th step of the RWLM if the initial
walker-and-rotor configuration is (x0, ρ) and the trajectory of the walker for the first i steps is given by
〈x0, . . . , xi〉. That is, these rotor configurations are given by the recursive definition

ρi+1(x) :=

{
xi+1 if x = xi;

ρi(x) otherwise.

Define ρ′i in a similar manner, but with (x0, ρ
′) as the initial walker-and-rotor configuration. Note that

ρn = ρ′n since the walker of the RWLM that follows the directed walk 〈x0, . . . , xn〉 would have visited and
changed the rotors at all vertices for which ρ and ρ′ differ; see Figure 7.
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• • •

•

(a) (b) (c) (d)

Figure 7. (a) and (b) Two rotor configurations that differ at finitely many vertices. The
rotors at which they differ are drawn oversized in green. (c) The trajectory (drawn in
blue) taken by the walker that visits every green rotor. (d) The final rotor configuration of
the RWLM at the end of this process, which is the same regardless of whether the initial
configuration is (a) or (b).

Write ρ′′ := τx−1
n

(ρn) = τx−1
n

(ρ′n). Note that ρ′′ is the rotor configuration at the n-th step of the scenery

process if the walker of the RWLM follows 〈x0, . . . , xn〉 and the initial rotor configuration is ρ or ρ′ (recall
that τx is the network isomorphism of (G, c) given by left multiplication by x). In particular, the probability
to transition from ρ to ρ′′ in n steps of the scenery process satisfies the following inequality:

P (n)(ρ, ρ′′) ≥
n−1∏
i=0

pxi(ρi(xi), xi+1) > 0,

where the strict inequality is due to (Ell). Note that, by the same argument, we also have P (n)(ρ′, ρ′′) > 0.

Since ρ′ ∈ −⇀B and P (n)(ρ′, ρ′′) > 0, we have ρ′′ ∈ −⇀B by the invariance of
−⇀
B. This implies that ρ can

transition into
−⇀
B in n steps of the scenery process with positive probability, as

P (n)(ρ,
−⇀
B) ≥ P (n)(ρ, ρ′′) > 0.

As the choice of ρ ∈ −⇀C is arbitrary, we have from the argument above that:
−⇀
C ⊆ {ρ ∈ Rot(G) | ∃ n ≥ 1 s.t. P (n)(ρ,

−⇀
B) > 0}.

Since π is a stationary distribution of the scenery process (Theorem 1.1), it then follows from Lemma 6.2

that the set on the right side of the equation differs from
−⇀
B by a set of π-measure zero. Hence we conclude

that π[
−⇀
C \ −⇀B] = 0, as desired. �

7. Functional CLT for RWLM

In this section we present the proof of Theorem 1.3. An electrical network (G, c) is a weighted lattice
graph in Rd if G is weighted Cayley graph such that V (G) is a subgroup of Rd with vector addition as the
group operation. In this section we will assume that G is a weighted lattice graph, and that the walker is
initially located at the origin 0 := (0, . . . , 0), unless stated otherwise.

We now restate Theorem 1.3 from the introduction in a slightly more general form. Recall the definition
the measure µx from (7). We denote by Γ the matrix

Γ :=
∑

y∈N(0)

µ0(y) y y>.

Recall that Xn and ρn (n ≥ 0) denotes the location of the walker and the rotor configuration at the n-th
step of the RWLM, respectively, and that DRd [0,∞) denotes the Skorohod space of Rd-valued càdlàg paths
on [0,∞).

Theorem 1.3. Consider an RWLM on a weighted lattice graph in Rd that is (Tran), (cSta), and (Mtgl).
Suppose that the initial environment π is an ergodic native environment. Then, for almost every environ-
ment sampled from π, the scaled walk ( 1√

n
Xbntc)t≥0 converges weakly on DRd [0,∞) to a Brownian motion

with diffusion matrix Γ.
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As a consequence of Theorem 1.3, the p,r-rotor walk on Zd (Example 2.5) with constant conductance,

with p = 1
2 and r < 1, and with

−−−⇀
WSF+

o as the initial environment, converges weakly on DRd [0,∞) to a

Brownian motion with diffusion matrix 1
dId.

Proof of Theorem 1.3. Let Vn := Xn+1−Xn and Fn := σ(X0, . . . , Xn, ρ0, . . . , ρn). It suffices to verify that
all conditions in Theorem 3.1 are satisfied. By using the same argument as in the proof of Proposition 1.4,
we have that (Xn)n≥0 is a square-integrable martingale process (as a consequence of (Mtgl)), and that
(CLT2) is satisfied. We omit the details for brevity.

We now verify (CLT1). Let i ≥ 0. It follows from Definition 2.3 and (Tran) that

Vi =Xi+1 −Xi =
∑

y∈N(0)

1{ρi(Xi)−Xi = y}Yy,i,

where Yy,i is a random variable on neighbors of the origin sampled from p0(y, ·) independently of Fi.
Then, for any n ≥ 0:

1

n

n−1∑
i=0

E
[
ViV

>
i | Fi

]
=

∑
y∈N(0)

(
1

n

n−1∑
i=0

1{ρi(Xi)−Xi = y}
)
E
[
Yy,0 Y

>
y,0

]
. (9)

Here we have used the fact that Yy,i has the same law as Yy,0 for all i.
We now show that, for every y ∈ N(0),

lim
n→∞

1

n

n−1∑
i=0

1{ρi(Xi)−Xi = y} = µ0(y). (10)

Fix an ordering x1, x2, . . . of V (G). Note that the set of rotor configurations Rot(G) is a compact metric

space with the metric d(ρ1, ρ2) :=
∑∞
i=1

1
2i1{ρ1(xi) 6= ρ2(xi)}. It is straightforward to check that

−⇀
F (G)

(from §4.2) restricted to Rot(G) is the Borel σ-algebra corresponding to this metric. Hence all conditions
of Theorem 6.1 are satisfied, and (10) now follows by applying Theorem 6.1 to the function f : Rot(G)→ R
given by f(ρ̂) := 1{ρ̂(0) = y}.

Plugging (10) into (9), we get

lim
n→∞

1

n

n−1∑
i=0

E
[
ViV

>
i | Fi

]
=

∑
y∈N(0)

µ0(y)E
[
Yy,0 Y

>
y,0

]
=

∑
y∈N(0)

µ0(y)
∑

y′∈N(0)

p0(y,y′) y′ y′>.

Since µ0 is a stationary distribution of the mechanism at 0 by (cSta), it then follows that:

lim
n→∞

1

n

n−1∑
i=0

E
[
ViV

>
i | Fi

]
=

∑
y′∈N(0)

µ0(y′) y′ y′> = Γ.

Hence (CLT1) is verified, and the proof is complete. �

8. Concluding remarks

We conclude with a few natural questions.

8.1. Theorem 1.3 allows us to derive a functional CLT, but only when the initial environment is an ergodic
native environment. Does the conclusion of Theorem 1.3 still hold for other initial environments? We believe
that the answer to this question is positive for the iid initial environment, and simulations suggests that
there should be no quantitative difference between iid initial environment and wired spanning forest plus
one edge environment eventually.
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Problem 8.1. Consider an RWLM on a simple Cayley graph that is transitive, uniform, and elliptic. Let
(ρ̂n)n≥0 be the scenery process of the RWLM with iid initial environment. Show that ρ̂n converges weakly

to
−−−−−⇀
WUSF+, i.e., for every edge {x1, y1}, . . . , {xm, ym} of G,

P
[
ρ̂n(x1) = y1, . . . , ρ̂n(xm) = ym

] n→∞−→ P
[
(x1, y1), . . . , (xm, ym) ∈ −⇀U

]
,

where
−⇀
U is a random subgraph sampled from

−−−−−⇀
WUSF+.

8.2. Can we drop the ellipticity assumption from Theorem 1.2 and Theorem 1.3? In particular, a positive
answer to this question will give us a scaling limit result for p-rotor walk on Zd (d ≥ 2) when p = 1

2 , which
will be consistent with the simulation results in Figure 1.

8.3. An RWLM is recurrent if every vertex is visited infinitely often by the walker a.s. and is transient
otherwise. Note that every d-dimensional RWLM on Zd satisfying conditions in Theorem 1.3 is transient
if d ≥ 3 (as the transience of the scaling limit implies the transience of the original walk). Is it true that
these RWLMs are recurrent if d = 2? We remark that a partial answer to this question has been given in
[Cha20] (the sequel to this paper), namely for the ‘H’–‘V’ walk on Z2 with i.i.d. initial environment and
p = 1

2 , and remains open for other values of p.
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Appendix A. Random walks with hidden local memory

In this section we present a more general version of random walk with local memory inspired by hidden
Markov chains. We refer to [Bil06] for a more detailed discussion on hidden Markov chains.

For each x ∈ V , a hidden mechanism at x is a Markov chain Mx with finite state space Sx and probability
transition function px(·, ·). A jump rule is a map fx : Sx → P(N(x)) from Sx to the set of probability
distributions on the set of neighbors of x. A hidden state configuration is a map κ : V → tx∈V Sx such
that κ(x) ∈ Sx for all x ∈ V .

Definition A.1 (Random walk with hidden local memory). A random walk with hidden local mem-
ory, or RWHLM for short, is a sequence (Xn, ρn, κn)n≥0 satisfying the following transition rules:

(i) κn+1(x) :=

{
Kn if x = Xn;

κn(x) if x 6= Xn.
;

(ii) ρn+1(x) :=

{
Yn if x = Xn;

ρn(x) if x 6= Xn,

(iii) Xn+1 := Yn,

https://www.microsoft.com/en-us/research/video/random-walk-and-randomaggregation-derandomized/


22 RANDOM WALKS WITH LOCAL MEMORY

1

2 2 3
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Figure 8. Two instances of a two-step hidden triangular walk with the same walker’s
trajectory and rotor configurations. The number at the origin records the hidden state of
the origin. The pictures at the right side illustrate the future hidden state of the origin
and the arrows point to (possible) future locations of the walker.

where Kn is a random element of SXn sampled from pXn(κn(Xn), ·) independent of the past, and Yn is a
random neighbor of x sampled from fXn

(Kn) independent of the past.

Described in words, at each time step (i) the walker first updates the hidden state of its current location
using the given hidden mechanism. Then, (ii) the walker updates the rotor of its current location by
sampling the new rotor from the probability distribution corresponding to the new hidden state. Finally,
(iii) the walker travels to the vertex specified by the new rotor.

Example A.2 (Hidden triangular walk). Let G be the triangular lattice. For each x ∈ V , the hidden
mechanism at x ∈ V has the following state space and transition probability:

Sx := {s1, s2, s3}; px :=

0 1
2

1
2

0 0 1
1 0 0

.
That is, s1 transitions to either s2 or s3 with equal probability, s2 transitions to s3 with probability 1, and
s3 transitions to s1 with probability 1.

We now describe the jump rule fx. Let N1 tN2 be the partition of the neighbors N(x) of x given by:

N1 := x +

{(
1
0

)
,

1

2

(−1√
3

)
,

1

2

( −1

−
√

3

)}
; N2 := x +

{(
−1
0

)
,

1

2

(
1√
3

)
,

1

2

(
1

−
√

3

)}
.

The distribution fx(s1) is then given by the uniform distribution on N1, while fx(s2) and fx(s3) are the
uniform distribution on N2.

Without knowing the hidden states, an outside observer will not be able to predict the future dynamics
of this RWHLM even while knowing the past and present location of the walker and rotor configuration,
as illustrated in Figure 8.

Note that a non-hidden RWLM is a special case of RWHLM, with Sx (x ∈ V ) being the set of neighbors
of x and with fx(y) (y ∈ N(x)) being the probability distribution concentrated on y. On the other hand,
every RWHLM on a simple graph G can be emulated by a non-hidden RWLM on a larger graph (with
multiple edges) in the following manner.

Let G× be the undirected graph with vertex set V (G) and with an edge incident to x and y in G× for
each {x, y} ∈ E(G) and each hidden state s ∈ Sx of the RWHLM. Such an edge is labeled e(x, y, s).

For any x ∈ V (G×), the mechanism of this RWLM on x is the Markov chain with state space the set of
edges incident to x in G× (instead of the set of neighbors of x), and with probability transition function

p×x (e(x, y, s), e(x, y′, s′)) := px(s, s′) (fx(s′))(y′),

where px and fx are the probability transition function and the jump rule for the RWHLM, respectively.
This RWLM on G× emulates the RWHLM on G in the following sense. Let (Xn, ρn, κn)n≥0 be an

RWHLM on G. Start an RWLM (X×n , ρ
×
n )n≥0 on G× with the following initial configuration:

X×0 := X0; ρ×0 (x) := e(x, ρ0(x), κ0(x)) (x ∈ V ).
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Then (Xn, ρn)n≥0 is equal in distribution to (X×n , h(ρ×n ))n≥0, where h(ρ×n ) is the rotor configuration of G
given by h(ρ×n )(x) := y if ρ×n (x) = e(x, y, s) for some s ∈ Sx.

As a consequence of this reduction, we can convert the hidden triangular walk from Example A.2 to a
non-hidden random walk with local memory, and then apply a version of Proposition 1.4 for non-simple
graphs to conclude that the scaling limit of this hidden triangular walk is a Brownian motion in R2.
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