The Scaling Limit of Diaconis-Fulton Addition

Lionel Levine

August 31, 2007

Joint work with Yuval Peres

Lionel Levine (joint work with Yuval Peres) The Scaling Limit of Diaconis-Fulton Addition

伺下 イヨト イヨト

э

Finite sets $A, B \subset \mathbb{Z}^d$.

<ロ> (四) (四) (三) (三) (三)

- Finite sets $A, B \subset \mathbb{Z}^d$.
- $\blacktriangleright A \cap B = \{x_1, \ldots, x_k\}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

- Finite sets $A, B \subset \mathbb{Z}^d$.
- $\blacktriangleright A \cap B = \{x_1, \ldots, x_k\}.$
- ▶ To form A + B, let $C_0 = A \cup B$ and

$$C_j = C_{j-1} \cup \{y_j\}$$

where y_j is the endpoint of a random walk started at x_j and stopped on exiting C_{j-1} .

伺下 イヨト イヨト

- Finite sets $A, B \subset \mathbb{Z}^d$.
- $\blacktriangleright A \cap B = \{x_1, \ldots, x_k\}.$
- ▶ To form A + B, let $C_0 = A \cup B$ and

$$C_j = C_{j-1} \cup \{y_j\}$$

where y_j is the endpoint of a random walk started at x_j and stopped on exiting C_{j-1} .

• Define $A + B = C_k$.

伺下 イヨト イヨト

- Finite sets $A, B \subset \mathbb{Z}^d$.
- $\blacktriangleright A \cap B = \{x_1, \ldots, x_k\}.$
- ▶ To form A + B, let $C_0 = A \cup B$ and

$$C_j = C_{j-1} \cup \{y_j\}$$

where y_j is the endpoint of a random walk started at x_j and stopped on exiting C_{j-1} .

- Define $A + B = C_k$.
- ► Abeilan property: the law of A + B does not depend on the ordering of x₁,..., x_k.

伺下 イヨト イヨト

・ロ・・(四・・)を注・・(注・・)注

•
$$A_1 = \{o\}, A_n = A_{n-1} + \{o\}.$$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

- $A_1 = \{o\}, A_n = A_{n-1} + \{o\}.$
- Lawler, Bramson and Griffeath (1992) proved that the limiting shape is a ball.

< □ > < □ > < □ > □ □

- $A_1 = \{o\}, A_n = A_{n-1} + \{o\}.$
- Lawler, Bramson and Griffeath (1992) proved that the limiting shape is a ball.
- More precisely, for any $\varepsilon > 0$, with probability one we have

$$B_{r(1-\varepsilon)} \subset A_{\lfloor \omega_d r^d \rfloor} \subset B_{r(1+\varepsilon)}$$

for all sufficiently large r.

伺下 イヨト イヨト

- $A_1 = \{o\}, A_n = A_{n-1} + \{o\}.$
- Lawler, Bramson and Griffeath (1992) proved that the limiting shape is a ball.
- More precisely, for any $\varepsilon > 0$, with probability one we have

$$B_{r(1-\varepsilon)} \subset A_{\lfloor \omega_d r^d \rfloor} \subset B_{r(1+\varepsilon)}$$

for all sufficiently large r.

► Here $B_r = \{x \in \mathbb{Z}^d : |x| < r\}$, and ω_d is the volume of the unit ball in \mathbb{R}^d .

・ 回 と ・ ヨ と ・ モ と

æ

The Rotor-Router Model

Deterministic analogue of random walk.

イロン イヨン イヨン イヨン

æ

The Rotor-Router Model

- Deterministic analogue of random walk.
- ▶ Each site $x \in \mathbb{Z}^2$ has a **rotor** pointing North, South, East or West.

(Start all rotors pointing North, say.)

The Rotor-Router Model

- Deterministic analogue of random walk.
- ► Each site x ∈ Z² has a rotor pointing North, South, East or West.

(Start all rotors pointing North, say.)

- ▶ A particle starts at the origin. At each site it comes to, it
 - 1. Turns the rotor clockwise by 90 degrees;
 - 2. Takes a step in direction of the rotor.

・ 同 ト ・ ヨ ト ・ ヨ ト

Rotor-Router Aggregation

Sequence of lattice regions

$$A_1 = \{o\}$$
$$A_n = A_{n-1} \cup \{x_n\},$$

æ

- < ∃ >

Rotor-Router Aggregation

Sequence of lattice regions

$$A_1 = \{o\}$$

$$A_n = A_{n-1} \cup \{x_n\},$$

where

• $x_n \in \mathbb{Z}^2$ is the site at which rotor walk first leaves the region A_{n-1} .

回 と く ヨ と く ヨ と

э

Rotor-Router Aggregation

Sequence of lattice regions

$$A_1 = \{o\}$$

$$A_n = A_{n-1} \cup \{x_n\},$$

where

• $x_n \in \mathbb{Z}^2$ is the site at which rotor walk first leaves the region A_{n-1} .

• Makes sense in \mathbb{Z}^d for any d.

æ

▶ **Theorem** (L.-Peres) Let *A_n* be the region of *n* particles formed by rotor-router aggregation in \mathbb{Z}^d .

伺い イヨト イヨト

▶ **Theorem** (L.-Peres) Let *A_n* be the region of *n* particles formed by rotor-router aggregation in \mathbb{Z}^d . Then

$$B_{r-c\log r} \subset A_n \subset B_{r(1+c'r^{-1/d}\log r)},$$

where

• B_{ρ} is the ball of radius ρ centered at the origin.

伺い イヨト イヨト

► Theorem (L.-Peres) Let A_n be the region of n particles formed by rotor-router aggregation in Z^d. Then

$$B_{r-c\log r} \subset A_n \subset B_{r(1+c'r^{-1/d}\log r)},$$

where

- B_{ρ} is the ball of radius ρ centered at the origin.
- $n = \omega_d r^d$, where ω_d is the volume of the unit ball in \mathbb{R}^d .

回 と く ヨ と く ヨ と

► Theorem (L.-Peres) Let A_n be the region of n particles formed by rotor-router aggregation in Z^d. Then

$$B_{r-c\log r} \subset A_n \subset B_{r(1+c'r^{-1/d}\log r)},$$

where

- B_{ρ} is the ball of radius ρ centered at the origin.
- $n = \omega_d r^d$, where ω_d is the volume of the unit ball in \mathbb{R}^d .
- c, c' depend only on d.

回 と く ヨ と く ヨ と

► Theorem (L.-Peres) Let A_n be the region of n particles formed by rotor-router aggregation in Z^d. Then

$$B_{r-c\log r} \subset A_n \subset B_{r(1+c'r^{-1/d}\log r)},$$

where

- B_{ρ} is the ball of radius ρ centered at the origin.
- $n = \omega_d r^d$, where ω_d is the volume of the unit ball in \mathbb{R}^d .
- c, c' depend only on d.
- **Corollary**: Inradius/Outradius $\rightarrow 1$ as $n \rightarrow \infty$.

・ 回 ト ・ ヨ ト ・ ヨ ト …

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.

伺下 イヨト イヨト

э

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
- > Abelian sandpile, or chip-firing model:

伺下 イヨト イヨト

э

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
- Abelian sandpile, or chip-firing model:
 - ▶ When 4 or more grains of sand accumulate at a site in Z², it topples, sending one grain to each neighbor.

回 と く ヨ と く ヨ と

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
- > Abelian sandpile, or chip-firing model:
 - ▶ When 4 or more grains of sand accumulate at a site in Z², it topples, sending one grain to each neighbor.
 - Choices of which sites to topple in what order don't affect the final sandpile shape.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
- Abelian sandpile, or chip-firing model:
 - ▶ When 4 or more grains of sand accumulate at a site in Z², it topples, sending one grain to each neighbor.
 - Choices of which sites to topple in what order don't affect the final sandpile shape.

Equivalent models:

Start with *n* particles at the origin.

向下 イヨト イヨト

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
- Abelian sandpile, or chip-firing model:
 - ▶ When 4 or more grains of sand accumulate at a site in Z², it topples, sending one grain to each neighbor.
 - Choices of which sites to topple in what order don't affect the final sandpile shape.

Equivalent models:

- Start with *n* particles at the origin.
- If there are *m* particles at a site, send $\lfloor m/4 \rfloor$ to each neighbor.

(1日) (1日) (日)

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
- > Abelian sandpile, or chip-firing model:
 - ▶ When 4 or more grains of sand accumulate at a site in Z², it topples, sending one grain to each neighbor.
 - Choices of which sites to topple in what order don't affect the final sandpile shape.

Equivalent models:

- Start with *n* particles at the origin.
- If there are *m* particles at a site, send $\lfloor m/4 \rfloor$ to each neighbor.

(4月) (1日) (日)

Sandpile: Leave the extra particles where they are.

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
- > Abelian sandpile, or chip-firing model:
 - ▶ When 4 or more grains of sand accumulate at a site in Z², it topples, sending one grain to each neighbor.
 - Choices of which sites to topple in what order don't affect the final sandpile shape.

Equivalent models:

- Start with *n* particles at the origin.
- If there are *m* particles at a site, send $\lfloor m/4 \rfloor$ to each neighbor.
- **Sandpile**: Leave the extra particles where they are.
- **Rotor**: Send extra particles according to the usual rotor rule.

A (10) A (10) A (10) A

Lionel Levine (joint work with Yuval Peres) The Scaling Limit of Diaconis-Fulton Addition

Bounds for the Abelian Sandpile

► Theorem (L.-Peres) Let S_n be the set of sites visited by the abelian sandpile in Z^d, starting from n particles at the origin.

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Bounds for the Abelian Sandpile

► Theorem (L.-Peres) Let S_n be the set of sites visited by the abelian sandpile in Z^d, starting from n particles at the origin. Then

$$\left(\mathsf{Ball of volume } \frac{n-o(n)}{2d-1}\right) \subset S_n \subset \left(\mathsf{Ball of volume } \frac{n+o(n)}{d}\right)$$
Bounds for the Abelian Sandpile

► Theorem (L.-Peres) Let S_n be the set of sites visited by the abelian sandpile in Z^d, starting from n particles at the origin. Then

$$\left(\text{Ball of volume } \frac{n-o(n)}{2d-1}\right) \subset S_n \subset \left(\text{Ball of volume } \frac{n+o(n)}{d}\right)$$

Improves the bounds of Le Borgne and Rossin.

(Disk of area n/3) $\subset S_n \subset$ (Disk of area n/2)

Start with mass *m* at the origin.

イロン イヨン イヨン イヨン

Э

- Start with mass *m* at the origin.
- Each site keeps mass 1, divides excess mass equally among its neighbors.

白 ト イヨト イヨト

- Start with mass *m* at the origin.
- Each site keeps mass 1, divides excess mass equally among its neighbors.
- ▶ As $t \to \infty$, get a limiting region A_m of mass 1, fractional mass on ∂A_m , and zero outside.

白 ト イヨト イヨト

- Start with mass *m* at the origin.
- Each site keeps mass 1, divides excess mass equally among its neighbors.
- ▶ As $t \to \infty$, get a limiting region A_m of mass 1, fractional mass on ∂A_m , and zero outside.
- Theorem (L.-Peres): There are constants c and c' depending only on d, such that

$$B_{r-c} \subset A_m \subset B_{r+c'}$$

where $m = \omega_d r^d$.

ゆ く き と く き と

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへぐ

As the lattice spacing goes to zero, is there a scaling limit?

白 ト イヨト イヨト

- As the lattice spacing goes to zero, is there a scaling limit?
- If so, can we describe the limiting shape?

回 と く ヨ と く ヨ と

- As the lattice spacing goes to zero, is there a scaling limit?
- If so, can we describe the limiting shape?
- Is it the same for all three models?

向下 イヨト イヨト

э

- As the lattice spacing goes to zero, is there a scaling limit?
- If so, can we describe the limiting shape?
- Is it the same for all three models?
- Not clear how to define dynamics in \mathbb{R}^d .

向下 イヨト イヨト

э

•
$$u(x) = \text{total mass emitted from } x$$
.

- u(x) = total mass emitted from x.
- Discrete Laplacian:

$$\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)$$

(1日) (日) (日)

- u(x) = total mass emitted from x.
- Discrete Laplacian:

$$\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)$$

= mass received – mass emitted

(1日) (1日) (日)

- u(x) = total mass emitted from x.
- Discrete Laplacian:

$$\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)$$

= mass received – mass emitted
$$= \begin{cases} -1 & x \in A \cap B \\ 0 & x \in A \cup B - A \cap B \\ 1 & x \in A \oplus B - A \cup B. \end{cases}$$

Let

$$\gamma(x) = -|x|^2 - \sum_{y \in A} g(x,y) - \sum_{y \in B} g(x,y),$$

where g is the Green's function for SRW in \mathbb{Z}^d , $d \ge 3$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Let

$$\gamma(x) = -|x|^2 - \sum_{y \in A} g(x,y) - \sum_{y \in B} g(x,y),$$

where g is the Green's function for SRW in \mathbb{Z}^d , $d \geq 3$.

In dimension two, we use the negative of the potential kernel in place of g.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\gamma(x) = -|x|^2 - \sum_{y \in A} g(x,y) - \sum_{y \in B} g(x,y),$$

where g is the Green's function for SRW in \mathbb{Z}^d , $d \geq 3$.

- In dimension two, we use the negative of the potential kernel in place of g.
- Let $s(x) = \inf\{\phi(x) \mid \phi \text{ superharmonic, } \phi \geq \gamma\}$.

(日) (日) (日)

$$\gamma(x) = -|x|^2 - \sum_{y \in A} g(x,y) - \sum_{y \in B} g(x,y),$$

where g is the Green's function for SRW in \mathbb{Z}^d , $d \geq 3$.

- In dimension two, we use the negative of the potential kernel in place of g.
- Let $s(x) = \inf\{\phi(x) \mid \phi \text{ superharmonic, } \phi \geq \gamma\}$.
- **Claim**: odometer = $s \gamma$.

・回 と く ヨ と く ヨ と

• Let m(x) = amount of mass present at x in the final state.

▲圖 → ▲ 国 → ▲ 国 →

Let m(x) = amount of mass present at x in the final state. Then

$$\Delta u = m - 1_A - 1_B$$

< ロ > < 回 > < 回 > < 回 > < 回 > <

Let m(x) = amount of mass present at x in the final state. Then

$$\Delta u = m - 1_A - 1_B$$
$$\leq 1 - 1_A - 1_B.$$

・ロト ・回ト ・ヨト ・ヨト

Э

Let m(x) = amount of mass present at x in the final state. Then

$$\Delta u = m - 1_A - 1_B$$
$$\leq 1 - 1_A - 1_B.$$

Since

$$\Delta\gamma=\mathbf{1}_{A}+\mathbf{1}_{B}-\mathbf{1}$$

the sum $u + \gamma$ is superharmonic, so $u + \gamma \ge s$.

・回 ・ ・ ヨ ・ ・ ヨ ・

Let m(x) = amount of mass present at x in the final state. Then

$$\Delta u = m - 1_A - 1_B$$
$$\leq 1 - 1_A - 1_B.$$

Since

$$\Delta \gamma = 1_A + 1_B - 1$$

the sum $u + \gamma$ is superharmonic, so $u + \gamma \ge s$.

► Reverse inequality: $s - \gamma - u$ is superharmonic on $A \oplus B$ and nonnegative outside $A \oplus B$, hence nonnegative inside as well.

・同下 ・ヨト ・ヨト

▶ $A, B \subset \mathbb{R}^d$ bounded open sets such that $\partial A, \partial B$ have measure zero

(日) (日) (日)

- ▶ $A, B \subset \mathbb{R}^d$ bounded open sets such that $\partial A, \partial B$ have measure zero
- Let

$$D = A \cup B \cup \{s > \gamma\}$$

<回> < 回> < 回> < 回>

▶ $A, B \subset \mathbb{R}^d$ bounded open sets such that $\partial A, \partial B$ have measure zero

Let

$$D = A \cup B \cup \{s > \gamma\}$$

where

$$\gamma(x) = -|x|^2 - \int_A g(x,y) dy - \int_B g(x,y) dy$$

・ 回 と ・ ヨ と ・ ヨ と

▶ $A, B \subset \mathbb{R}^d$ bounded open sets such that $\partial A, \partial B$ have measure zero

Let

$$D = A \cup B \cup \{s > \gamma\}$$

where

$$\gamma(x) = -|x|^2 - \int_A g(x,y) dy - \int_B g(x,y) dy$$

and

 $s(x) = \inf \{ \phi(x) | \phi \text{ is continuous, superharmonic, and } \phi \geq \gamma \}$

is the least superharmonic majorant of γ .

▶ $A, B \subset \mathbb{R}^d$ bounded open sets such that $\partial A, \partial B$ have measure zero

Let

$$D = A \cup B \cup \{s > \gamma\}$$

where

$$\gamma(x) = -|x|^2 - \int_A g(x,y) dy - \int_B g(x,y) dy$$

and

 $s(x) = \inf \{ \phi(x) | \phi \text{ is continuous, superharmonic, and } \phi \geq \gamma \}$

is the least superharmonic majorant of γ .

• Odometer:
$$u = s - \gamma$$
.

・ロン ・四シ ・ヨン ・ヨン 三日

・ロ・ ・回・ ・ヨ・ ・ヨ・

Main Result

Let A, B ⊂ ℝ^d be bounded open sets with ∂A, ∂B having measure zero.

・回 ・ ・ ヨ ・ ・ ヨ ・

Main Result

- Let A, B ⊂ ℝ^d be bounded open sets with ∂A, ∂B having measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Write $A^{::} = A \cap \delta_n \mathbb{Z}^d$.

(四) (日) (日)
- Let A, B ⊂ ℝ^d be bounded open sets with ∂A, ∂B having measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Write $A^{::} = A \cap \delta_n \mathbb{Z}^d$.
- Theorem (L.-Peres) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n,

向下 イヨト イヨト

- Let A, B ⊂ ℝ^d be bounded open sets with ∂A, ∂B having measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Write $A^{::} = A \cap \delta_n \mathbb{Z}^d$.
- Theorem (L.-Peres) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n, where

D_n, R_n, I_n are the Diaconis-Fulton sums of A^{::} and B^{::} in the lattice δ_nZ^d, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.

(日本) (日本) (日本)

- Let A, B ⊂ ℝ^d be bounded open sets with ∂A, ∂B having measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Write $A^{::} = A \cap \delta_n \mathbb{Z}^d$.
- Theorem (L.-Peres) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n, where

- D_n, R_n, I_n are the Diaconis-Fulton sums of A^{::} and B^{::} in the lattice δ_nZ^d, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.
- $\triangleright \quad D = A \cup B \cup \{s > \gamma\}.$

・同下 ・ヨト ・ヨト

- Let A, B ⊂ ℝ^d be bounded open sets with ∂A, ∂B having measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Write $A^{::} = A \cap \delta_n \mathbb{Z}^d$.
- Theorem (L.-Peres) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n, where

- ▶ D_n, R_n, I_n are the Diaconis-Fulton sums of A^{::} and B^{::} in the lattice δ_nZ^d, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.
- $\triangleright \quad D = A \cup B \cup \{s > \gamma\}.$
- $D_{\varepsilon}, D^{\varepsilon}$ are the inner and outer ε -neighborhoods of D.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.

イロン イヨン イヨン イヨン

Э

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- Theorem (L.-Peres) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n,

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- Theorem (L.-Peres) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n, where

D_n, R_n, I_n are the domains of occupied sites δ_nZ^d, if [λ_iδ_n^{-d}] particles start at each site x_i^{::}, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- Theorem (L.-Peres) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n, where

- D_n, R_n, I_n are the domains of occupied sites δ_nZ^d, if [λ_iδ_n^{-d}] particles start at each site x_iⁱⁱ, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.
- *D* is the continuum Diaconis-Fulton sum of the balls $B(x_i, r_i)$, where $\lambda_i = \omega_d r_i^d$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- Theorem (L.-Peres) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n, where

- D_n, R_n, I_n are the domains of occupied sites δ_nZ^d, if [λ_iδ_n^{-d}] particles start at each site x_i^{::}, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.
- ► *D* is the continuum Diaconis-Fulton sum of the balls $B(x_i, r_i)$, where $\lambda_i = \omega_d r_i^d$.

소리가 소문가 소문가 소문가

 Follows from the main result and the case of a single point source.

Steps of the Proof

convergence of densities $\label{eq:convergence} \psi$ convergence of obstacles

回 と く ヨ と く ヨ と

æ

Steps of the Proof

convergence of densities $$\downarrow$$ convergence of obstacles $$\downarrow$$ convergence of odometer functions

白 ト イヨト イヨト

æ

Steps of the Proof

convergence of densities $\downarrow \downarrow$ convergence of obstacles $\downarrow \downarrow$ convergence of odometer functions $\downarrow \downarrow$ convergence of domains.

(E) < E)</p>

 Inspired by the Lawler-Bramson-Griffeath argument for a single point source.

▲圖▶ ▲屋▶ ▲屋▶

æ

- Inspired by the Lawler-Bramson-Griffeath argument for a single point source.
- After all particles have aggregated (stage 1), let them resume walking until they exit D^{::} (stage 2).

回 と く ヨ と く ヨ と

- Inspired by the Lawler-Bramson-Griffeath argument for a single point source.
- After all particles have aggregated (stage 1), let them resume walking until they exit D^{::} (stage 2).
- ▶ Fix $z \in D_{\varepsilon}^{::}$, and let
 - M = number of particles that visit z during stages 1 and 2.

向下 イヨト イヨト

- Inspired by the Lawler-Bramson-Griffeath argument for a single point source.
- After all particles have aggregated (stage 1), let them resume walking until they exit D^{::} (stage 2).
- ► Fix $z \in D_{\varepsilon}^{::}$, and let
 - M = number of particles that visit z during stages 1 and 2.
 - L = number of particles that visit z during stage 2.

向下 イヨト イヨト

- Inspired by the Lawler-Bramson-Griffeath argument for a single point source.
- After all particles have aggregated (stage 1), let them resume walking until they exit D^{::} (stage 2).
- ▶ Fix $z \in D_{\varepsilon}^{::}$, and let
 - M = number of particles that visit z during stages 1 and 2.
 - L = number of particles that visit z during stage 2.
- ▶ $\mathbb{P}(z \notin I_n) = \mathbb{P}(L = M).$

(日本) (日本) (日本)

Stage 2': Instead of starting particles where they have aggregated, start one particle at each point y ∈ (D − A ∪ B)^{::}.

白 と く ヨ と く ヨ と

- Stage 2': Instead of starting particles where they have aggregated, start one particle at each point y ∈ (D − A ∪ B)^{::}.
- \tilde{L} = number of particles that visit z during stage 2'.

- Stage 2': Instead of starting particles where they have aggregated, start one particle at each point y ∈ (D − A ∪ B)^{::}.
- \tilde{L} = number of particles that visit z during stage 2'.
- ► Since *L̃* ≥ *L* we have

$$\mathbb{P}(L=M) \leq \mathbb{P}(\tilde{L} \geq M).$$

- Stage 2': Instead of starting particles where they have aggregated, start one particle at each point y ∈ (D − A ∪ B)^{::}.
- \tilde{L} = number of particles that visit z during stage 2'.
- ► Since *L̃* ≥ *L* we have

$$\mathbb{P}(L=M) \leq \mathbb{P}(\tilde{L} \geq M).$$

Strategy: show 𝔅ἶ < 𝔅𝑘 and use concentration of measure.</p>

ヨット イヨット イヨッ

Let

$$f(z) = g_n(z,z) \mathbb{E}(M - \tilde{L})$$

where g_n is the Green's function for SRW stopped on exiting $D^{::}$.

・ロン ・回 と ・ 回 と ・ 回 と

Let

$$f(z) = g_n(z,z) \mathbb{E} (M - \tilde{L})$$

= $\sum_{y \in (A \cap B)^{::}} g_n(y,z) - \sum_{y \in (D - A \cup B)^{::}} g_n(y,z),$

where g_n is the Green's function for SRW stopped on exiting $D^{::}$.

・ロン ・回 と ・ 回 と ・ 回 と

Let

$$f(z) = g_n(z,z) \mathbb{E} \left(M - \tilde{L} \right)$$

= $\sum_{y \in (A \cap B)^{::}} g_n(y,z) - \sum_{y \in (D - A \cup B)^{::}} g_n(y,z),$

where g_n is the Green's function for SRW stopped on exiting $D^{::}$.

Then

$$\Delta f = 1 - 1_{A^{::}} - 1_{B^{::}}, \quad \text{on } D^{::}$$
$$f = 0, \quad \text{on } \partial D^{::}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Let

$$f(z) = g_n(z,z) \mathbb{E} \left(M - \tilde{L} \right)$$

= $\sum_{y \in (A \cap B)^{::}} g_n(y,z) - \sum_{y \in (D - A \cup B)^{::}} g_n(y,z),$

where g_n is the Green's function for SRW stopped on exiting $D^{::}$.

Then

$$\Delta f = 1 - 1_{A^{::}} - 1_{B^{::}}, \quad \text{on } D^{::}$$
$$f = 0, \quad \text{on } \partial D^{::}.$$

The divisible sandpile odometer satisfies

$$\Delta u_n = 1 - 1_{\mathcal{A}^{::}} - 1_{\mathcal{B}^{::}}, \quad \text{on } D_n$$

 $u_n = 0, \quad \text{on } \partial D_n.$

▲圖▶ ★ 国▶ ★ 国▶

▶ Using the fact that $D_n \rightarrow D$, $u_n \rightarrow u$, and the positivity of u, can show that

$$f > c_{\varepsilon} \delta_n^{-2}$$
 on $D_{\varepsilon}^{::}$.

▶ Using the fact that $D_n \rightarrow D$, $u_n \rightarrow u$, and the positivity of u, can show that

$$f > c_{\varepsilon} \delta_n^{-2}$$
 on $D_{\varepsilon}^{::}$.

• \tilde{L} and M are sums of $\delta_n^{-d}|D|$ independent indicators whose means are of order δ_n^{d-2} . So $\mathbb{E}\tilde{L}$, $\mathbb{E}M$ are of order δ_n^{-2} .

▶ Using the fact that $D_n \rightarrow D$, $u_n \rightarrow u$, and the positivity of u, can show that

$$f > c_{\varepsilon} \delta_n^{-2}$$
 on $D_{\varepsilon}^{::}$.

- ► \tilde{L} and M are sums of $\delta_n^{-d} |D|$ independent indicators whose means are of order δ_n^{d-2} . So $\mathbb{E}\tilde{L}$, $\mathbb{E}M$ are of order δ_n^{-2} .
- Large deviations:

$$\mathbb{P}\left(ilde{L} > (1+\lambda) \mathbb{E} \, ilde{L}
ight) < 2e^{-c_{\lambda} \mathbb{E} ilde{L}}; \ \mathbb{P}\left(M < (1-\lambda) \mathbb{E} \, M
ight) < 2e^{-c_{\lambda} \mathbb{E} M}$$

▶ Using the fact that $D_n \rightarrow D$, $u_n \rightarrow u$, and the positivity of u, can show that

$$f > c_{\varepsilon} \delta_n^{-2}$$
 on $D_{\varepsilon}^{::}$.

- ► \tilde{L} and M are sums of $\delta_n^{-d} |D|$ independent indicators whose means are of order δ_n^{d-2} . So $\mathbb{E}\tilde{L}$, $\mathbb{E}M$ are of order δ_n^{-2} .
- Large deviations:

$$\mathbb{P}\left(ilde{L} > (1+\lambda) \mathbb{E} \, ilde{L}
ight) < 2e^{-c_{\lambda} \mathbb{E} \, ilde{L}}; \ \mathbb{P}\left(M < (1-\lambda) \mathbb{E} \, M
ight) < 2e^{-c_{\lambda} \mathbb{E} M}$$

• Conclude that $\mathbb{P}(\tilde{L} \ge M) < 4e^{-c_{\varepsilon}'\delta_n^{-2}}$.

Finishing Up

- Summing over z ∈ D^{::}_ε and over n, by Borel-Cantelli only finitely many of the events {z ∉ I_n} occur, a.s.
- ▶ Hence $D_{\varepsilon}^{::} \subset I_n$ for sufficiently large *n*.

(周) (王) (王)

Circularity for the Divisible Sandpile

Dirichlet problem for the odometer function

$$\Delta u = 1 \qquad \text{on } A_m - \{o\}$$
$$\Delta u(o) = 1 - m \qquad u = 0 \qquad \text{on } \partial A_m.$$

Idea: Compare u to the function

$$\gamma(x)=|x|^2-ma(x).$$

where a is the potential kernel

$$a(x) = \lim_{n \to \infty} (G_n(o) - G_n(x))$$

and $G_n(x)$ is the expected number of visits to x by SRW before time n.

向下 イヨト イヨト

Taylor expansion

Standard estimate:

$$a(x) = \frac{2}{\pi} \log |x| + k + O(|x|^{-2})$$

gives

$$\gamma(x) = |x|^2 - \frac{2m}{\pi} \log |x| + km + O(m|x|^{-2}).$$

• Get a constant K = K(m) such that

- If $r \le |x| < r+1$, then $\gamma(x) = K + O(1)$.
- $\gamma(x) \geq K + (r |x|)^2 + O\left(\frac{r^2}{|x|^2}\right).$

高 とう モン・ く ヨ と

Inner Radius

- $u \gamma$ is superharmonic in B_r
- $u \gamma \ge -K + O(1)$ on the boundary, hence on all of B_r .
- \triangleright γ grows quadratically as we move away from the boundary
- ▶ ∴ u > 0 on B_{r-c} .

(4月) (1日) (日) 日

Outer Radius

- $u \gamma$ is harmonic in A_m
- $u \gamma \leq -K + O(1)$ on the boundary, hence on all of A_m .
- If $x \in A_m$ with $r \le |x| < r+1$, then $u(x) \le c'$.
- ▶ Lemma: If $y \in A_m \{o\}$ there exists $z \sim y$ with $u(z) \ge u(y) + 1$.
- Proof. For some neighbor z,

$$u(z) \geq \frac{1}{4} \sum_{w \sim y} u(w) = u(y) + 1.$$

$$\blacktriangleright :: A_m \subset B_{r+c'}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Adapting the Proof for Rotors

Rotor-router odometer:

u(x) = total number of particles emitted from x.

- Instead of $\Delta u = 1$, we only know $-2 \leq \Delta u \leq 4$.
- Repeating the argument only gives

$$B_{cr} \subset A_n \subset B_{c'r}$$
.

(日本) (日本) (日本)

Smoothing

► To do better, let

$$v(x) = \frac{1}{4k^2} \sum_{y \in S_k(x)} u(y)$$

where $S_k(x)$ is a box of side length 2k centered at x. • Using $\Delta = \text{div grad}$, we get

$$\Delta v(x) = \frac{1}{4k^2} \sum_{(y,z)\in\partial S_k(x)} \frac{u(z) - u(y)}{4}$$
$$= 1 + O\left(\frac{1}{k}\right)$$

if $o \notin S_k(x)$ and all sites in $S_k(x)$ are occupied.

同下 イヨト イヨト
Fancier Smoothing

• Let T be the first exit time of B_r , and

$$v(x) = \mathbb{E}_{x}u(X_{T}) - \mathbb{E}_{x}T + n\mathbb{E}\#\{j < T | X_{j} = o\}.$$

Boundary value problem:

$$\Delta v = 1 \qquad \text{on } A_n \cap B_r - \{o\}$$
$$\Delta v(o) = 1 - n \qquad \text{on } \partial A_n.$$

• Want to show $u \approx v$.

向下 イヨト イヨト

Green's Function

End up getting

$$u(x) \geq v(x) - \sum_{y \in B_r} \sum_{z \sim y} |G_{B_r}(x,y) - G_{B_r}(x,z)|.$$

- ▶ Error gets smaller as x approaches the boundary, and we can show $B_{r-C\log r} \subset A_n$.
- But for the outer radius, the error is

$$\sum_{y\in A_n}\sum_{z\sim y}|G_{A_n}(x,y)-G_{A_n}(x,z)|.$$

Can't control this, so we need another approach.

ヨット イヨット イヨッ

Spreading Out

Spherical shells

$$S_k = \{x \in \mathbb{Z}^d : k \le |x| < k+1\}.$$

▶ Lawler, Bramson, and Griffeath (1992): If j < k, $x \in S_j$, $y \in S_k$, then

$$\mathbb{P}_{x}(X_{T_{k}}=y)\leq C/(k-j)^{d-1}.$$

Want to show the same holds for rotor-router walk, with frequency replacing probability.

伺い イヨト イヨト

Holroyd-Propp Bound

- recurrent graph G
- $Y \subset Z$ sets of vertices
- s(x) particles start at x
- Stop walks when they hit Z; how many land in Y?
- Let $H(x) = \mathbb{P}_x(X_T \in Y)$. Then

$$|RR(s,Y) - RW(s,Y)| \le \sum_{u \in G} \sum_{v \sim u} |H(u) - H(v)|$$

independent of s and the initial rotor positions!

向下 イヨト イヨト

Outer Radius

N_j = # particles that ever reach shell S_j.
If r < j < k with N_k > N_j/2, then

$$\frac{CN_j}{(k-j)^{d-1}}\#(S_k\cap A_n)\geq \frac{N_j}{2}$$

hence

$$\sum_{i=j}^k \#(S_i \cap A_n) \ge C(k-j)^d.$$

Since $B_{r-C\log r}$ is fully occupied,

$$k \leq j + C(r^{d-1}\log r)^{1/d}$$

which gives

$$A_n \subset B_{r(1+Cr^{-1/d}(\log r)^{1+1/d})}.$$

向下 イヨト イヨト

æ

(日) (四) (王) (王) (王)

How fast does

$$R(n) = \max_{k \le n} (\operatorname{outrad}(A_k) - \operatorname{inrad}(A_k))$$

really grow?

・ロト ・回ト ・ヨト ・ヨト

How fast does

$$R(n) = \max_{k \le n} (\operatorname{outrad}(A_k) - \operatorname{inrad}(A_k))$$

really grow?

n	R(n)
10	0.822
10 ²	1.588
10 ³	1.637
10^{4}	1.683
10 ⁵	1.724
10 ⁶	1.741

・ロト ・回ト ・ヨト ・ヨト

How fast does

$$R(n) = \max_{k \le n} (\operatorname{outrad}(A_k) - \operatorname{inrad}(A_k))$$

really grow?

n	R(n)
10	0.822
10 ²	1.588
10 ³	1.637
10 ⁴	1.683
10 ⁵	1.724
10 ⁶	1.741

Is the occupied region simply connected?

伺下 イヨト イヨト

æ

How fast does

$$R(n) = \max_{k \le n} (\operatorname{outrad}(A_k) - \operatorname{inrad}(A_k))$$

really grow?

n	R(n)
10	0.822
10 ²	1.588
10 ³	1.637
10^{4}	1.683
10 ⁵	1.724
10 ⁶	1.741

- Is the occupied region simply connected?
- Understand the patterns in the picture of rotor directions.

マロト マヨト マヨト

How fast does

$$R(n) = \max_{k \le n} (\operatorname{outrad}(A_k) - \operatorname{inrad}(A_k))$$

really grow?

n	R(n)
10	0.822
10 ²	1.588
10 ³	1.637
10 ⁴	1.683
10 ⁵	1.724
10 ⁶	1.741

- Is the occupied region simply connected?
- Understand the patterns in the picture of rotor directions.
- Identify the limiting shape of the "broken rotor" models.

・ロ・ ・回・ ・ヨ・ ・ヨ・

æ

(ロ) (四) (注) (注) (注) [

- Fix an integer $h \in (-\infty, 2]$.
- Start every site in \mathbb{Z}^2 at height *h*.

・ 回 と ・ ヨ と ・ ヨ と

- Fix an integer $h \in (-\infty, 2]$.
- Start every site in \mathbb{Z}^2 at height *h*.
- ▶ Let S_{n,h} be the set of visited sites for the abelian sandpile started with n particles at the origin.

(日本)(日本)(日本)

- Fix an integer $h \in (-\infty, 2]$.
- Start every site in \mathbb{Z}^2 at height *h*.
- ▶ Let S_{n,h} be the set of visited sites for the abelian sandpile started with n particles at the origin.
- ▶ **Conjecture**: As $n \to \infty$, the limiting shape $S_{n,h}$ is a (regular?) (12-4h)-gon.

(日本) (日本) (日本)

- Fix an integer $h \in (-\infty, 2]$.
- ▶ Start every site in Z² at height *h*.
- ▶ Let S_{n,h} be the set of visited sites for the abelian sandpile started with n particles at the origin.
- ▶ **Conjecture**: As $n \to \infty$, the limiting shape $S_{n,h}$ is a (regular?) (12-4h)-gon.
- Fey and Redig (2007) Case h = 2: The limiting shape of $S_{n,2}$ is a square.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Fix an integer $h \in (-\infty, 2]$.
- Start every site in \mathbb{Z}^2 at height *h*.
- ▶ Let S_{n,h} be the set of visited sites for the abelian sandpile started with n particles at the origin.
- ▶ **Conjecture**: As $n \to \infty$, the limiting shape $S_{n,h}$ is a (regular?) (12-4h)-gon.
- Fey and Redig (2007) Case h = 2: The limiting shape of $S_{n,2}$ is a square.
- In all other cases, even the existence of a limiting shape is open.

・回 ・ ・ ヨ ・ ・ ヨ ・

- Fix an integer $h \in (-\infty, 2]$.
- ▶ Start every site in Z² at height *h*.
- ▶ Let S_{n,h} be the set of visited sites for the abelian sandpile started with n particles at the origin.
- ▶ **Conjecture**: As $n \to \infty$, the limiting shape $S_{n,h}$ is a (regular?) (12-4h)-gon.
- Fey and Redig (2007) Case h = 2: The limiting shape of $S_{n,2}$ is a square.
- In all other cases, even the existence of a limiting shape is open.
- Even for h = 2, the rate of growth of the square is not known.

(日本) (日本) (日本)

h = 2

$$h = 1$$

・ロ・・(四・・)を注・・(注・・)注