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Diaconis-Fulton Addition

» Finite sets A,B C Z9.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.
> AﬂB:{Xl,...,Xk}.
» To form A+ B, let (o =AUB and

G = G-1U{y}

where y; is the endpoint of a random walk started at x; and
stopped on exiting Cj_1.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.
» ANB = {Xl,...,Xk}.

» To form A+ B, let (o =AUB and

G = G-1U{y}

where y; is the endpoint of a random walk started at x; and
stopped on exiting Cj_1.
Define A4+ B = (k.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.
» ANB = {Xl,...,Xk}.

» To form A+ B, let (o =AUB and

G = G-1U{y}

where y; is the endpoint of a random walk started at x; and
stopped on exiting Cj_1.

» Define A+ B = (.
» Abeilan property: the law of A+ B does not depend on the

ordering of xy,...,x.
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Internal DLA

> Ay ={o}, Ay=A,_1+{o}.
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Internal DLA

> A = {O}, A=A 1 +{O}
» Lawler, Bramson and Griffeath (1992) proved that the limiting
shape is a ball.
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Internal DLA

> A = {O}, A=A 1 +{O}
» Lawler, Bramson and Griffeath (1992) proved that the limiting
shape is a ball.

» More precisely, for any € > 0, with probability one we have

Br1-e) C Alogr) C Br(1te)

for all sufficiently large r.
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Internal DLA

> A = {O}, A=A 1+ {O}
» Lawler, Bramson and Griffeath (1992) proved that the limiting
shape is a ball.

» More precisely, for any € > 0, with probability one we have

Br1-e) C Alogr) C Br(1te)

for all sufficiently large r.

> Here B, = {x€Z? : |x| <r}, and 0y is the volume of the
unit ball in R9.
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The Rotor-Router Model

» Deterministic analogue of random walk.
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The Rotor-Router Model

» Deterministic analogue of random walk.

» Each site x € Z2 has a rotor pointing North, South, East or
West.
(Start all rotors pointing North, say.)
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The Rotor-Router Model

» Deterministic analogue of random walk.

» Each site x € Z2 has a rotor pointing North, South, East or
West.
(Start all rotors pointing North, say.)

» A particle starts at the origin. At each site it comes to, it

1. Turns the rotor clockwise by 90 degrees;
2. Takes a step in direction of the rotor.
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Rotor-Router Aggregation

» Sequence of lattice regions
A1 = {o}

A, =A,_1U {Xn}7
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Rotor-Router Aggregation

» Sequence of lattice regions
A1 = {o}

A, =A,_1U {Xn}7

where

o X, € Z? is the site at which rotor walk first leaves the region
An_q.
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Rotor-Router Aggregation

» Sequence of lattice regions
A1 = {o}

Ap=Ap1U {Xn}7

where

o X, € Z? is the site at which rotor walk first leaves the region
An_q.

» Makes sense in Z9 for any d.

Lionel Levine (joint work with Yuval Peres) The Scaling Limit of Diaconis-Fulton Addition



| Levine (joint work h Yuval Peres) The Scaling



Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9.
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Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9. Then

Brfclogr CA,C Br(l-i—c’r*l/dlogr)’

where
» B; is the ball of radius p centered at the origin.
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Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9. Then

Brfclogr CA,C Br(l-i—c’r*l/dlogr)’

where

» B; is the ball of radius p centered at the origin.
» n=wgr?, where 0y is the volume of the unit ball in RY.
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Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9. Then

Brfclogr CA,C Br(l-i—c’r*l/dlogr)’

where
» B; is the ball of radius p centered at the origin.
» n=wgr?, where 0y is the volume of the unit ball in RY.
» c,c’ depend only on d.
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Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9. Then

Brfclogr CA,C Br(l-i—c’r*l/dlogr)’

where

» B; is the ball of radius p centered at the origin.
» n=wgr?, where 0y is the volume of the unit ball in RY.
» c,c’ depend only on d.

» Corollary: Inradius/Outradius — 1 as n — co.

Lionel Levine (joint work with Yuval Peres) The Scaling Limit of Diaconis-Fulton Addition



Lionel Levine (joint work with Yuval Peres)



The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Abelian sandpile, or chip-firing model:
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Abelian sandpile, or chip-firing model:

» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Abelian sandpile, or chip-firing model:

» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.

» Choices of which sites to topple in what order don't affect the
final sandpile shape.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Abelian sandpile, or chip-firing model:
» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.
» Choices of which sites to topple in what order don't affect the
final sandpile shape.
» Equivalent models:
» Start with n particles at the origin.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Abelian sandpile, or chip-firing model:

» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.

» Choices of which sites to topple in what order don't affect the
final sandpile shape.

» Equivalent models:

» Start with n particles at the origin.
> If there are m particles at a site, send | m/4] to each neighbor.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Abelian sandpile, or chip-firing model:
» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.
» Choices of which sites to topple in what order don't affect the
final sandpile shape.
» Equivalent models:
» Start with n particles at the origin.

> If there are m particles at a site, send | m/4] to each neighbor.
» Sandpile: Leave the extra particles where they are.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Abelian sandpile, or chip-firing model:
» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.
» Choices of which sites to topple in what order don't affect the
final sandpile shape.
» Equivalent models:
» Start with n particles at the origin.
> If there are m particles at a site, send | m/4] to each neighbor.
» Sandpile: Leave the extra particles where they are.
» Rotor: Send extra particles according to the usual rotor rule.
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Bounds for the Abelian Sandpile

» Theorem (L.-Peres) Let S, be the set of sites visited by the
abelian sandpile in Z9, starting from n particles at the origin.
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Bounds for the Abelian Sandpile

» Theorem (L.-Peres) Let S, be the set of sites visited by the
abelian sandpile in Z9, starting from n particles at the origin.
Then

n—o(n) n+o(n)
(Ball of volume pd—1 > cS,C <Ba|l of volume g > .
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Bounds for the Abelian Sandpile

Theorem (L.-Peres) Let S, be the set of sites visited by the
abelian sandpile in Z9, starting from n particles at the origin.
Then

n—o(n) n+o(n)
(Ball of volume pd—1 > cS,C <Ba|l of volume g > .

Improves the bounds of Le Borgne and Rossin.
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(Disk of area n/3) C S, C (Disk of area n/2)
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Divisible Sandpile

» Start with mass m at the origin.
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Divisible Sandpile

» Start with mass m at the origin.

» Each site keeps mass 1, divides excess mass equally among its
neighbors.
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Divisible Sandpile

» Start with mass m at the origin.

» Each site keeps mass 1, divides excess mass equally among its
neighbors.

» As t — oo, get a limiting region A, of mass 1, fractional mass
on dA,,, and zero outside.
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Divisible Sandpile

» Start with mass m at the origin.

» Each site keeps mass 1, divides excess mass equally among its

neighbors.

As t — oo, get a limiting region A, of mass 1, fractional mass
on dA,,, and zero outside.

Theorem (L.-Peres): There are constants ¢ and ¢’ depending
only on d, such that

Brfc - Am C Br+c’

where m = wgrc.
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Questions

» As the lattice spacing goes to zero, is there a scaling limit?
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Questions

» As the lattice spacing goes to zero, is there a scaling limit?

» If so, can we describe the limiting shape?
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Questions

» As the lattice spacing goes to zero, is there a scaling limit?
» If so, can we describe the limiting shape?

» [s it the same for all three models?
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Questions

» As the lattice spacing goes to zero, is there a scaling limit?
» If so, can we describe the limiting shape?
» [s it the same for all three models?

» Not clear how to define dynamics in RY.
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Odometer Function

» u(x) = total mass emitted from x.



Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

Bu(x) = 55 ¥ uly) ~ u(x)
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Odometer Function

» u(x) = total mass emitted from x.
» Discrete Laplacian:
=X uly) -~ u(x)
=— —u(x
ng A Uy)—u

y~x

Au(x)

= mass received — mass emitted
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Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

_1
- 2d

y~x

Au(x) u(y) —u(x)

= mass received — mass emitted

-1 xe AnB
=<0 xXcAUB—-ANB
1 xXeADB-AUB.

Lionel Levine (joint work with Yuval Peres) The Scaling Limit of Diaconis-Fulton Addition



Least Superharmonic Majorant

> Let
1) =—Ix?= Y glx.y)— Y glx.y),

y€EA yeB

where g is the Green's function for SRW in 74, d> 3.
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Least Superharmonic Majorant

> Let

1) =—Ix?= Y glx.y)— Y glx.y),

y€EA yeB

where g is the Green's function for SRW in 74, d> 3.

» In dimension two, we use the negative of the potential kernel
in place of g.
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Least Superharmonic Majorant

> Let
1) =—Ix?= Y glx.y)— Y glx.y),

y€EA yeB

where g is the Green's function for SRW in 74, d> 3.

» In dimension two, we use the negative of the potential kernel
in place of g.

> Let s(x) =inf{0(x) | & superharmonic, ¢ > v}.
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Least Superharmonic Majorant

> Let
1) =—Ix?= Y glx.y)— Y glx.y),

y€EA yeB

where g is the Green's function for SRW in 74, d> 3.

» In dimension two, we use the negative of the potential kernel
in place of g.

> Let s(x) =inf{0(x) | & superharmonic, ¢ > v}.

» Claim: odometer =5 —¥.
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Proof of the claim

> Let m(x) = amount of mass present at x in the final state.
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Proof of the claim

> Let m(x) = amount of mass present at x in the final state.
Then

Au=m-—1,4—1p
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Proof of the claim
> Let m(x) = amount of mass present at x in the final state.

Then

Au=m-—1,4—1p
<1-1x4-1g.
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Proof of the claim

> Let m(x) = amount of mass present at x in the final state.
Then

Au=m-—1,4—1p
<1-1x4-1g.

» Since
Ay=1p+15-1

the sum v+ is superharmonic, so u+7y > s.
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Proof of the claim

> Let m(x) = amount of mass present at x in the final state.
Then

Au=m-—1,4—1p
<1-1x4-1g.

» Since
Ay=1p+15-1
the sum v+ is superharmonic, so u+7y > s.

» Reverse inequality: s —y— u is superharmonic on A¢ B and
nonnegative outside A® B, hence nonnegative inside as well.
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Defining the Scaling Limit

» A, B C RY bounded open sets such that dA,dB have measure
zero

Lionel Levine (joint work with Yuval Peres) The Scali it of Diaconis-Fulton Addition



Defining the Scaling Limit

» A, B C RY bounded open sets such that dA,dB have measure
zero
> Let
D=AUBU{s >}
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Defining the Scaling Limit

» A, B C RY bounded open sets such that dA,dB have measure
zero

> Let
D=AUBU{s >}

where

1) =~ = [ gy — [ glxp)dy
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Defining the Scaling Limit

» A, B C RY bounded open sets such that dA,dB have measure
zero

> Let
D=AUBU{s >}
where
Y(x) = —\Xlz—/Ag(x,y)dy—/Bg(XJ)dy
and

s(x) = inf{d(x)|d is continuous, superharmonic, and ¢ >y}

is the least superharmonic majorant of .
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Defining the Scaling Limit

» A, B C RY bounded open sets such that dA,dB have measure

ZEro
> Let
D=AUBU{s >}
where
Y(x) = —\Xlz—/Ag(x,y)dy—/Bg(XJ)dy
and

s(x) = inf{d(x)|d is continuous, superharmonic, and ¢ >y}

is the least superharmonic majorant of .
» Odometer: u=s—Y.
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Main Result

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.
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Main Result

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.

> Lattice spacing o, | 0.
> Write A" = ANJ,Z7.
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Main Result

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.

> Lattice spacing o, | 0.
> Write A" = AN§,Z9.
» Theorem (L.-Peres) For any € > 0, with probability one

D; c Dy, Ry, 1, C D¥:

for all sufficiently large n,
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Main Result

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.

> Lattice spacing o, | 0.
> Write A" = AN§,Z9.
» Theorem (L.-Peres) For any € > 0, with probability one

D; c Dy, Ry, 1, C D¥:

for all sufficiently large n, where
» D,, R,, I, are the Diaconis-Fulton sums of A* and B in the
lattice §,Z9, computed using divisible sandpile, rotor-router,
and internal DLA dynamics, respectively.
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Main Result

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.

> Lattice spacing o, | 0.
> Write A" = AN§,Z9.
» Theorem (L.-Peres) For any € > 0, with probability one

D; c Dy, Ry, 1, C D¥:

for all sufficiently large n, where
» D,, Ry, I, are the Diaconis-Fulton sums of A* and B* in the
lattice §,Z9, computed using divisible sandpile, rotor-router,
and internal DLA dynamics, respectively.
» D=AUBU{s >v}.
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Main Result

> Let A,B C RY be bounded open sets with dA, 9B having
measure zero.

> Lattice spacing o, | 0.

» Write A" = ANJ§,Z7.

» Theorem (L.-Peres) For any € > 0, with probability one

D; c Dy, Ry, 1, C D¥:

for all sufficiently large n, where
» D,, R,, I, are the Diaconis-Fulton sums of A* and B in the
lattice §,Z9, computed using divisible sandpile, rotor-router,
and internal DLA dynamics, respectively.
» D=AUBU{s >v}.
» Dg, D¥ are the inner and outer e-neighborhoods of D.
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Multiple Point Sources

» Fix centers xi,...,xx € R? and Aq,..., A > 0.
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Multiple Point Sources

» Fix centers xq,...,xx € R? and Aq,..., Ak > 0.
» Theorem (L.-Peres) For any € > 0, with probability one

D; C Dp,Rp, 1, C D¥

for all sufficiently large n,
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Multiple Point Sources

» Fix centers xi,...,xx € R? and Aq,..., A > 0.
» Theorem (L.-Peres) For any € > 0, with probability one

D; C Dp,Rp, 1, C D¥

for all sufficiently large n, where
» D,, R,, I, are the domains of occupied sites 8,79, if |\;5,¢]
particles start at each site x;’, computed using divisible
sandpile, rotor-router, and internal DLA dynamics, respectively.
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Multiple Point Sources

» Fix centers xi,...,xx € R? and Aq,..., A > 0.
» Theorem (L.-Peres) For any € > 0, with probability one

D; C Dp,Rp, 1, C D¥

for all sufficiently large n, where
» D,, R,, I, are the domains of occupied sites 8,79, if |\;5,¢]
particles start at each site x;’, computed using divisible
sandpile, rotor-router, and internal DLA dynamics, respectively.

» D is the continuum Diaconis-Fulton sum of the balls B(x;, r;),
where A; = ogrf.
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Multiple Point Sources

» Fix centers xi,...,xx € R? and Aq,..., A > 0.
» Theorem (L.-Peres) For any € > 0, with probability one

D; C Dp,Rp, 1, C D¥

for all sufficiently large n, where
» D,, R,, I, are the domains of occupied sites 8,79, if |\;5,¢]
particles start at each site x;’, computed using divisible
sandpile, rotor-router, and internal DLA dynamics, respectively.

» D is the continuum Diaconis-Fulton sum of the balls B(x;, r;),
where A; = ogrf.
» Follows from the main result and the case of a single point
source.
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Steps of the Proof

convergence of densities

4

convergence of obstacles
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Steps of the Proof

convergence of densities

4

convergence of obstacles

4

convergence of odometer functions
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Steps of the Proof

convergence of densities

4

convergence of obstacles

4

convergence of odometer functions

4

convergence of domains.
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Lower Bound for Internal DLA

> Inspired by the Lawler-Bramson-Griffeath argument for a
single point source.
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Lower Bound for Internal DLA

> Inspired by the Lawler-Bramson-Griffeath argument for a
single point source.

» After all particles have aggregated (stage 1), let them resume
walking until they exit D* (stage 2).
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Lower Bound for Internal DLA

> Inspired by the Lawler-Bramson-Griffeath argument for a
single point source.
» After all particles have aggregated (stage 1), let them resume
walking until they exit D* (stage 2).
» Fix ze D, and let
» M = number of particles that visit z during stages 1 and 2.
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Lower Bound for Internal DLA

> Inspired by the Lawler-Bramson-Griffeath argument for a
single point source.

» After all particles have aggregated (stage 1), let them resume
walking until they exit D* (stage 2).

» Fix ze€ D, and let

» M = number of particles that visit z during stages 1 and 2.
» L = number of particles that visit z during stage 2.
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Lower Bound for Internal DLA

> Inspired by the Lawler-Bramson-Griffeath argument for a
single point source.

» After all particles have aggregated (stage 1), let them resume
walking until they exit D* (stage 2).

» Fix ze€ D, and let

» M = number of particles that visit z during stages 1 and 2.
» L = number of particles that visit z during stage 2.

> P(z ¢ I,) = P(L= M),
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Independent Indicators

» Stage 2": Instead of starting particles where they have
aggregated, start one particle at each point y € (D — AUB)".
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Independent Indicators

» Stage 2": Instead of starting particles where they have
aggregated, start one particle at each point y € (D — AUB)".

» [ = number of particles that visit z during stage 2'.
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Independent Indicators

» Stage 2": Instead of starting particles where they have
aggregated, start one particle at each point y € (D — AUB)".

» [ = number of particles that visit z during stage 2'.

» Since Zz L we have
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Independent Indicators

» Stage 2": Instead of starting particles where they have
aggregated, start one particle at each point y € (D — AUB)".

» [ = number of particles that visit z during stage 2'.

» Since Zz L we have

» Strategy: show EL < EM and use
concentration of measure.
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Dirichlet Problem

> Let

f(z) = gn(z,2) E(M—L)

where g, is the Green's function for SRW stopped on exiting
D=,
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Dirichlet Problem

> Let
f(z) = gn(z,2)E (M- Z)
= Z gn(y,Z)— Z gn(yvz)v

y€(ANB)* ye(D—-AUB)*

where g, is the Green's function for SRW stopped on exiting
D=,
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Dirichlet Problem

Let
f(z) = gn(z,2)E (M- Z)
= Z gn(y,Z)— Z gn(yvz)v

y€(ANB)* ye(D—-AUB)*
where g, is the Green's function for SRW stopped on exiting
D,
Then
Af:].—].A::—].B::, on D~
f=0, on dD".
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Dirichlet Problem

> Let
f(z):g,,(z,z)IE(l\/l—Z)
= Y &z)- )Y aly2),

y€(ANB)* ye(D—-AUB)*
where g, is the Green's function for SRW stopped on exiting
D,
» Then
Af:].—].A::—].B::, on D~
f=0, on dD".

» The divisible sandpile odometer satisfies
Aun:].—].A::—].B::, on Dn
u, =0, on oD,,.
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Concentration of Measure

» Using the fact that D, — D, u, — u, and the positivity of u,
can show that
f>cd,? on D;.
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Concentration of Measure

» Using the fact that D, — D, u, — u, and the positivity of u,
can show that
f>cd,? on D;.

> [ and M are sums of §-9|D| independent indicators whose
means are of order 842, So EL, EM are of order §2.
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Concentration of Measure

» Using the fact that D, — D, u, — u, and the positivity of u,
can show that
f>cd,? on D;.

> [ and M are sums of §-9|D| independent indicators whose
means are of order 842, So EL, EM are of order §2.

» Large deviations:
P(L>(14+0)EL) < 2e 9L,
P(M < (1-A)EM) < 2e 9EM,
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Concentration of Measure

» Using the fact that D, — D, u, — u, and the positivity of u,
can show that
f>cd,? on D;.

> [ and M are sums of §-9|D| independent indicators whose
means are of order 842, So EL, EM are of order §2.

» Large deviations:

P(L>(14+0)EL) < 2e 9L,
P(M < (1-A)EM) < 2e 9EM,

» Conclude that ]P’(Z > M) < de=d°
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Finishing Up

» Summing over z € D and over n, by Borel-Cantelli only
finitely many of the events {z ¢ /,} occur, a.s.

» Hence D; C I, for sufficiently large n.
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Circularity for the Divisible Sandpile

Dirichlet problem for the odometer function

Au=1 on A, —{o}
Au(o)=1—-m
u=20 on dA,,.

Idea: Compare u to the function
Y(x) = [x|* = ma(x).
where a is the potential kernel
a(x) = lim (Gn(0) — Gp(x))

and Gp(x) is the expected number of visits to x by SRW
before time n.

a(x) is harmonic off o, and Aa(o) = 1.

Alx|>?=1
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Taylor expansion

» Standard estimate:
2 -2
a(x) = = log x|+ k-+ O(1x| )
gives
> 2m -2
Y(x) = X2 = = log x| + km-+ O(mlx| ).

> Get a constant K = K(m) such that
» If r <|x| <r+1, then y(x) = K+ O(1).
> 90 = K+ (r= x|+ 0 (5.
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Inner Radius

» u—7 is superharmonic in B,

» u—7>—K+ O(1) on the boundary, hence on all of B,.

> 7y grows quadratically as we move away from the boundary
» ~.u>0o0n B,_..
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Outer Radius

u—7 is harmonic in A,
u—Y<—K+ O(1) on the boundary, hence on all of Ap,.
If x € A with r < |x] < r+1, then u(x) < ¢

vV v. v VY

Lemma: If y € A, — {0} there exists z ~ y with
u(z) > u(y)+1.
» Proof. For some neighbor z,

u(z) > % Y u(w)=u(y)+1.

wn~y

v

AL C B,+C/.
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Adapting the Proof for Rotors

» Rotor-router odometer:
u(x) = total number of particles emitted from x.

» Instead of Au=1, we only know —2 < Au <4,

» Repeating the argument only gives

B, C A, C Bay.
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Smoothing

» To do better, let

yESK(x)
where Si(x) is a box of side length 2k centered at x.

» Using A = div grad, we get

AV(X):L U(Z)—U(y)

5 )
ak* n@sg 2

veo(3)

if 0 ¢ Sk(x) and all sites in Si(x) are occupied.
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Fancier Smoothing

» Let T be the first exit time of B,, and
v(x) =Exu(X7)—ET+nE#{j < T|X;=o}.

» Boundary value problem:

Av=1 on A,NB,—{o}
Av(o)=1—n
v=0 on 0A,.

» Want to show u ~ v.

Lionel Levine (joint work with Yuval Peres) The Scaling Limit of Diaconis-Fulton Addition



Green’s Function

» End up getting
u(x) > v(x) = ¥ Y |Ga,(x.y) - Gg,(x.2)].

yeB, z~y

» Error gets smaller as x approaches the boundary, and we can
show Br_clogr C An.

» But for the outer radius, the error is

Y Y 1Ga,(x,y) = Ga,(x,2)].

yeAn z~vy

» Can't control this, so we need another approach.
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Spreading Out

» Spherical shells
Sk={xez? . k<|x| < k+1}.

» Lawler, Bramson, and Griffeath (1992): If j < k, x € §;,
y € Sk, then

Po(X7, =) < C/(k—j)* .

» Want to show the same holds for rotor-router walk, with
frequency replacing probability.
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Holroyd-Propp Bound

recurrent graph G

Y C Z sets of vertices

s(x) particles start at x

Stop walks when they hit Z; how many land in Y?
Let H(x) =Py (X7 € Y). Then

vV v . v. v Y

|RR(s,Y)—RW(s,Y)| < Z Z |H(u)—H(v)|

ueGv~u

independent of s and the initial rotor positions!
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Outer Radius

> N; = # particles that ever reach shell ;.
> If r <j < k with N > N;/2, then

hence

k
Y #(SinAn) > C(k—j)°.
i=j

> Since Br_clogr is fully occupied,

k<j+C(r? logr)t/d

which gives
A, C Br(1+Cr‘1/d(|ogr)1+1/d)'
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Further Directions and Open Problems: Rotor-Router
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Further Directions and Open Problems: Rotor-Router

» How fast does

R(n) = max(outrad(Ax) —inrad(Ax))

k<n

really grow?
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Further Directions and Open Problems: Rotor-Router

» How fast does

R(n) = max(outrad(Ax) —inrad(Ax))

k<n

really grow?

10
10°
103
104
10°
100
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R(n)
0.822
1.588
1.637
1.683
1.724
1.741
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Further Directions and Open Problems: Rotor-Router

» How fast does

R(n) = max(outrad(Ax) —inrad(Ax))

k<n
really grow?
n  R(n)
10 0.822
10° 1.588
103 1.637
10* 1.683
10° 1.724
10 1.741

» Is the occupied region simply connected?
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Further Directions and Open Problems: Rotor-Router

» How fast does

R(n) = max(outrad(Ax) —inrad(Ax))

k<n
really grow?
n  R(n)
10 0.822
10° 1.588
103 1.637
10* 1.683
10° 1.724
10 1.741

» Is the occupied region simply connected?
» Understand the patterns in the picture of rotor directions.
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Further Directions and Open Problems: Rotor-Router

» How fast does

R(n) = max(outrad(Ax) —inrad(Ax))

k<n
really grow?
n  R(n)
10 0.822
10° 1.588
103 1.637
10* 1.683
10° 1.724
10 1.741

» Is the occupied region simply connected?
» Understand the patterns in the picture of rotor directions.
» Identify the limiting shape of the “broken rotor” models.
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Further Directions and Open Problems: Sandpile

» Fix an integer h € (—,2].
» Start every site in Z? at height h.
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Further Directions and Open Problems: Sandpile

» Fix an integer h € (—,2].
» Start every site in Z? at height h.

> Let 5,1, be the set of visited sites for the abelian sandpile
started with n particles at the origin.
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Further Directions and Open Problems: Sandpile

» Fix an integer h € (—,2].

» Start every site in Z? at height h.

> Let 5,1, be the set of visited sites for the abelian sandpile
started with n particles at the origin.

» Conjecture: As n — oo, the limiting shape S, is a (regular?)
(12 —4h)-gon.
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Further Directions and Open Problems: Sandpile

Fix an integer h € (—e,2].
» Start every site in Z? at height h.

Let S, 5 be the set of visited sites for the abelian sandpile
started with n particles at the origin.

Conjecture: As n — oo, the limiting shape S, j, is a (regular?)
(12 —4h)-gon.

Fey and Redig (2007) Case h = 2: The limiting shape of S,
is a square.
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Further Directions and Open Problems: Sandpile

Fix an integer h € (—e,2].
» Start every site in Z? at height h.

Let S, 5 be the set of visited sites for the abelian sandpile
started with n particles at the origin.

Conjecture: As n — oo, the limiting shape S, j, is a (regular?)
(12 —4h)-gon.

Fey and Redig (2007) Case h = 2: The limiting shape of S,
is a square.

In all other cases, even the existence of a limiting shape is
open.
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Further Directions and Open Problems: Sandpile

Fix an integer h € (—e,2].
» Start every site in Z? at height h.

Let S, 5 be the set of visited sites for the abelian sandpile
started with n particles at the origin.

Conjecture: As n — oo, the limiting shape S, j, is a (regular?)
(12 —4h)-gon.

Fey and Redig (2007) Case h = 2: The limiting shape of S,
is a square.

In all other cases, even the existence of a limiting shape is
open.

Even for h =2, the rate of growth of the square is not known.
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