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The Rotor-Router Model

I Deterministic analogue of random walk.
I Priezzhev-Dhar-Dhar-Krishnamurthy (“Eulerian walkers”)

I Each site x ∈ Z2 has a rotor pointing North, South, East or
West.
(Start all rotors pointing North, say.)

I A particle starts at the origin. At each site it comes to, it

1. Turns the rotor clockwise by 90 degrees;
2. Takes a step in direction of the rotor.

I For a general directed graph, fix a cyclic ordering of the
outgoing neighbors.
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Rotor-Router Aggregation

I Sequence of lattice regions

A1 = {o}

An = An−1∪{xn}

where xn ∈ Zd is the site at which rotor walk first leaves the
region An−1.
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How close to circular?

I How fast does

R(n) = max
k≤n

(outrad(Ak)− inrad(Ak))

really grow?

n R(n)
10 0.822
102 1.588
103 1.637
104 1.683
105 1.724
106 1.741
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Three Approaches to Circularity

1. Try to bound

R(n) = max
k≤n

(outrad(Ak)− inrad(Ak))

for rotor-router aggregation on Zd .

I Two ways to get sharper results:

2. Modify the dynamics: Divisible Sandpile
3. Modify the underlying graph.

I The tree is easier than the lattice.
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Spherical Asymptotics

I Theorem (L.-Peres) Let An be the region of n particles
formed by rotor-router aggregation in Zd .

Then

Br−c log r ⊂ An ⊂ Br(1+c ′r−1/d log r),

where
I Bρ is the ball of radius ρ centered at the origin.
I n = ωd rd , where ωd is the volume of the unit ball in Rd .
I c ,c ′ depend only on d .

I Corollary: Inradius/Outradius → 1 as n→ ∞.
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Perfect Circularity on the Tree

I Let Am be the region formed by rotor-router aggregation on
the infinite d-regular tree, starting from m chips at the origin.

I Theorem (Landau-L.) If the initial rotor configuration is
acyclic, then

Abn = Bn

where Bn is the ball of radius n centered at the origin, and
bn = #Bn.

I In particular, if bn < m < bn+1, then

Bn ⊂ Am ⊂ Bn+1.
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The Abelian Property

I Choices of which particles to route in what order don’t affect
the final shape generated or the final rotor directions.

I Chip-firing or abelian sandpile model:
I When 4 or more grains of sand accumulate at a site in Z2, it

topples, sending one grain to each neighbor.
I Choices of which sites to topple in what order don’t affect the

final sandpile shape.

I Equivalent models:
I Start with n particles at the origin.
I If there are m particles at a site, send bm−1

4 c to each neighbor.
I Sandpile: Leave the extra particles where they are.
I Rotor: Send extra particles according to the usual rotor rule.
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Bounds for the Abelian Sandpile

I Theorem (L.-Peres) Let Sn be the set of sites visited by the
abelian sandpile in Zd , starting from n particles at the origin.

Then(
Ball of volume

n−o(n)

2d −1

)
⊂Sn⊂

(
Ball of volume

n +o(n)

d

)
.

I Improves the bounds of Le Borgne and Rossin.
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(Disk of area n/3)⊂ Sn ⊂ (Disk of area n/2)
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Chip-Firing on Graphs

I Finite connected graph G with a distinguished vertex s called
the sink.

I Chip configuration: Each site v 6= s has σ(v)≥ 0 chips.

I If σ(v)≥ deg(v), the vertex v can topple, sending one chip
to each neighbor.

I The sink never topples.

I Order of topplings does not affect the final state σ◦.
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The Sandpile Group of a Graph

I A chip configuration σ on G is stable if

σ(v)≤ deg(v)−1

for all vertices v .

I Stable configurations form a finite commutative monoid
M = M (G ) under the operation

(σ,τ) 7→ (σ + τ)◦.

I Babai-Toumpakari: The minimal ideal of M is a finite abelian
group SP(G ) called the sandpile group of G .
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Two Other Constructions of the Sandpile Group

I SP(G )' Zn−1/∆Zn−1, where

∆ = D−A

is the reduced Laplacian of G .

I Matrix-tree theorem:

#SP(G ) = det∆ = #{spanning trees of G}.

I SP(G ) is the group of recurrent chip configurations on G ,
i.e. configurations σ such that

σ = (σ + τ)◦

for some configuration τ 6= 0.
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The Burning Algorithm

I Consider the chip configuration

β(v) = # of edges from v to the sink.

I Lemma (Dhar): σ is recurrent if and only if

σ = (σ + β)◦.

Moreover, if σ is recurrent, then every vertex topples exactly
once in reducing σ + β to σ.

I Proof:
β = ∑

v 6=s

∆v .
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The Sandpile Group of a Tree

I Finite rooted tree T .

I Collapse the leaves to a single sink vertex.

I Add an edge from the root to the sink.

I What are the recurrent configurations?

I What is the structure of the sandpile group?
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Critical vertices

I x ∈ T is critical for a chip configuration u if x 6= s and

u(x)≤# of critical children of x . (1)

I This is an inductive definition, beginning with the leaves.

I Claim: A configuration u is recurrent if and only if equality
holds in (1) for every critical vertex x .

I Proof: Use the burning algorithm.
I A critical vertex cannot burn before its parent.
I If strict inequality holds at x , then x will never be burned.
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A Recurrent Configuration on the Regular Ternary Tree

I Critical vertices are circled.
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Structure of the Sandpile Group

I Theorem (L.) Let Tn be a branch of the regular ternary tree
of height n. Then

SP(Tn)' Z2n−1⊕Z2n−1−1⊕ . . .⊕ (Z7)2n−4⊕ (Z3)2n−3
.

I Similar decomposition for the d-regular tree for any d .
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Subgroup Generated by the Root

I Regular ternary tree Tn of height n.

I What can we say about the subgroup of SP(Tn) generated by
r̂ = δr + e?

I Its elements are constant on levels of the tree.
I What about the converse?
I Note that if u is recurrent, then

u + r̂ = u + (e + δr )

= (u + e) + δr

= u + δr .

I Multiples of the root in T4:
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The Order of r̂

I A recurrent configuration constant on levels has the form

u = (2, . . . ,2,0,a1, . . . ,ak)

with ai ∈ {1,2}.

I Lemma: (r̂) consists of all recurrent configurations that are
constant on levels of the tree.

I In particular, r̂ has order

n−1

∑
k=0

2k = 2n−1.
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The Sandpile Group of a Tree, In Terms of its Branches

I Lemma: Let T be any finite tree, with principal branches
T1, . . . ,Tk .

Then

SP(T )/(r̂)'
kM

i=1

SP(Ti )/((r̂1, . . . , r̂k))

where r , ri are the roots of T , Ti respectively.

I Proof sketch: Map

(
a

u1, . . . ,uk

)
7→ (u1, . . . ,uk).

I After modding out by r̂ , the branches become independent.
I Since (k + 1)r̂ 7→ (r̂1, . . . , r̂k) we have to mod out by this on the

right.
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Strengthening to a Direct Sum

I Lemma: Let Tn be the regular ternary tree of height n. Then

SP(Tn) = Z2n−1⊕SP(Tn−1)2/Z2n−1−1 .

I Proof: Need a projection map p : SP(Tn)→ (r̂).

I Use the symmetrization map

p(u)(x) = 2n+1−|x |
∑
|y |=|x |

u(y).

I Note if u is already constant on levels, then

p(u) = 2nu = u

since u = kr̂ and r̂ has order 2n−1.
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Factoring Into Cyclic Subgroups

I SP(T2) = Z3.

I SP(T3) = Z7⊕SP(T2)2/Z3 = Z7⊕Z3.

I SP(T4) = Z15⊕SP(T3)2/Z7 = Z15⊕Z7⊕Z2
3.

I SP(T5) = Z31⊕SP(T4)2/Z15 = Z31⊕Z15⊕Z2
7⊕Z4

3.

. . .

I SP(Tn) = Z2n−1⊕Z2n−1−1⊕ . . .⊕ (Z7)2n−4⊕ (Z3)2n−3
.
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Entropy

I Number of recurrent states:

log2 |SP(Tn)| ∼ c2n

where

c =
log2 3

4
+

log2 7

8
+ . . .+

log2(2k −1)

2k
+ . . .

= 2− 1

log 2

∞

∑
n=2

1

(n−1)(2n−1)

≈ 1.364.

I So the probability that a stable state is recurrent is about(
2c

3

)2n

= (0.858)2n
.
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“Physical” Consequences

I Three ways to measure the size of an avalanche:
I R = diameter of the set of sites that topple.
I M = number of sites that topple.
I τ = total number of topplings.

I Starting from a uniform recurrent state in Tn, add a single
grain at at the root. Then for r ≤ n

and m, t ≤ 2n

P (R ≥ r)� 2−r .

P (M ≥m)� 1/m.

P (τ≥ t)� 1/t.
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The Rotor-Router Group

I Finite directed graph G .

I Rotors point in direction of last exit.

=⇒ recurrent states have no oriented cycles.

I In fact, a state is recurrent if and only if the rotors form an
oriented spanning tree.

I For each vertex x , get a permutation ex on spanning trees
given by adding a chip at x and routing it to the sink.

I RR(G ) = subgroup of the permutation group of spanning
trees generated by {ex}x∈V (G).

I Fact: RR(G )' SP(G ).
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Holroyd-Propp Invariant

I A function H on the vertices of T is harmonic if

H(x) =
1

deg(x) ∑
y∼x

H(y)

for all x .

I Starting chip configuration u, ending configuration v .

I Lemma: If H is harmonic, and the initial and final rotor
configurations are the same, then

∑
x∈T

H(x)u(x) = ∑
x∈T

H(x)v(x).
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Proof of Circularity on the Tree

I Fix a leaf z ∈ Tn, and let

H(x) = Px(Xτ = z)

where τ is the first time for SRW to hit either a leaf or the
sink.

I Easy calculation: H(r) = 1
2n−1 .

I Time change:
I Stop each particle either when it reaches an unoccupied site,

or returns to the root.
I Get a new aggregation process A′m = Af (m).

I Enough to show A′cn
= Bn for some sequence cn.
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Proof of Circularity on the Tree

I Induct on n to show A′cn
= Bn.

I With Bn−1 occupied, start with 3(2n−1) chips at the root.

I Since r̂ has order 2n−1, intial and final rotors are the same.

I By the Lemma, final weight = initial weight = 1, so exactly
one chip ends up at each leaf.

I Thus A′cn
= Bn, where

cn = cn−1 + 3(2n−1).
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Escape Sequences

I Escape sequence

aj =

{
0, if the j th chip returns to the origin;

1, if the j th chip escapes to infinity.

I For j ∈ {1,2,3} write a(j) = ajaj+3aj+6 . . ..
I Theorem (Landau-L.) A binary word a1 . . .an is an escape

sequence for some rotor configuration on the infinite ternary
tree if and only if for each j

I Every subword of a(j) of length 3 contains at most 2 ones.
I Every subword of a(j) of length 7 contains at most 4 ones.

. . .

I Every subword of a(j) of length 2k −1 contains at most 2k−1

ones.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Escape Sequences

I Escape sequence

aj =

{
0, if the j th chip returns to the origin;

1, if the j th chip escapes to infinity.

I For j ∈ {1,2,3} write a(j) = ajaj+3aj+6 . . ..

I Theorem (Landau-L.) A binary word a1 . . .an is an escape
sequence for some rotor configuration on the infinite ternary
tree if and only if for each j

I Every subword of a(j) of length 3 contains at most 2 ones.
I Every subword of a(j) of length 7 contains at most 4 ones.

. . .

I Every subword of a(j) of length 2k −1 contains at most 2k−1

ones.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Escape Sequences

I Escape sequence

aj =

{
0, if the j th chip returns to the origin;

1, if the j th chip escapes to infinity.

I For j ∈ {1,2,3} write a(j) = ajaj+3aj+6 . . ..
I Theorem (Landau-L.) A binary word a1 . . .an is an escape

sequence for some rotor configuration on the infinite ternary
tree if and only if for each j

I Every subword of a(j) of length 3 contains at most 2 ones.

I Every subword of a(j) of length 7 contains at most 4 ones.

. . .

I Every subword of a(j) of length 2k −1 contains at most 2k−1

ones.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Escape Sequences

I Escape sequence

aj =

{
0, if the j th chip returns to the origin;

1, if the j th chip escapes to infinity.

I For j ∈ {1,2,3} write a(j) = ajaj+3aj+6 . . ..
I Theorem (Landau-L.) A binary word a1 . . .an is an escape

sequence for some rotor configuration on the infinite ternary
tree if and only if for each j

I Every subword of a(j) of length 3 contains at most 2 ones.
I Every subword of a(j) of length 7 contains at most 4 ones.

. . .

I Every subword of a(j) of length 2k −1 contains at most 2k−1

ones.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Escape Sequences

I Escape sequence

aj =

{
0, if the j th chip returns to the origin;

1, if the j th chip escapes to infinity.

I For j ∈ {1,2,3} write a(j) = ajaj+3aj+6 . . ..
I Theorem (Landau-L.) A binary word a1 . . .an is an escape

sequence for some rotor configuration on the infinite ternary
tree if and only if for each j

I Every subword of a(j) of length 3 contains at most 2 ones.
I Every subword of a(j) of length 7 contains at most 4 ones.

. . .

I Every subword of a(j) of length 2k −1 contains at most 2k−1

ones.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Open Problems

I Find a bijective proof that

#SP(Tn) = 32n−3
72n−4 · · ·(2n−1−1)(2n−1).

I Aggregation on general trees
I What takes the place of a ball?
I On a transient tree, level sets of the function

g(x) = Po(Tx < ∞).

I Does there exist a rotor configuration on Z3 which causes
every chip to return to the origin in finitely many steps?

I Known to exist for Z2 (Jim Propp) and for the d-regular tree.
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Open Problems: Chip-Firing

I Fix an integer h ∈ (−∞,2].

I Start every site in Z2 at height h.

I Let Sn,h be the set of visited sites for the abelian sandpile
started with n particles at the origin.

I Question: As n→ ∞, is the limiting shape Sn,h a regular
(12−4h)-gon?

I Fey and Redig (2007) Case h = 2: The limiting shape of Sn,2

is a square.

I In all other cases, even the existence of a limiting shape is
open.

I Even for h = 2, the rate of growth of the square is not known.
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