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The Rotor-Router Model

» Deterministic analogue of random walk.
» Priezzhev-Dhar-Dhar-Krishnamurthy ( “Eulerian walkers”)
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The Rotor-Router Model

» Deterministic analogue of random walk.
» Priezzhev-Dhar-Dhar-Krishnamurthy ( “Eulerian walkers”)
» Each site x € Z? has a rotor pointing North, South, East or
West.
(Start all rotors pointing North, say.)
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The Rotor-Router Model

» Deterministic analogue of random walk.
» Priezzhev-Dhar-Dhar-Krishnamurthy ( “Eulerian walkers”)
» Each site x € Z? has a rotor pointing North, South, East or
West.
(Start all rotors pointing North, say.)
» A particle starts at the origin. At each site it comes to, it

1. Turns the rotor clockwise by 90 degrees;
2. Takes a step in direction of the rotor.
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The Rotor-Router Model

» Deterministic analogue of random walk.
» Priezzhev-Dhar-Dhar-Krishnamurthy ( “Eulerian walkers”)
» Each site x € Z? has a rotor pointing North, South, East or
West.
(Start all rotors pointing North, say.)
» A particle starts at the origin. At each site it comes to, it
1. Turns the rotor clockwise by 90 degrees;
2. Takes a step in direction of the rotor.
» For a general directed graph, fix a cyclic ordering of the
outgoing neighbors.
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Rotor-Router Aggregation

» Sequence of lattice regions
Ar = {o}

A, =A,1U {Xn}
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Rotor-Router Aggregation

» Sequence of lattice regions
Ar = {o}

A, =A,1U {Xn}

where x, € Z9 is the site at which rotor walk first leaves the
region Ap_1.
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How close to circular?

» How fast does

R(n) = max(outrad(Ax) —inrad(Ax))

k<n

really grow?
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How close to circular?

» How fast does

R(n) = max(outrad(Ax) —inrad(Ax))

k<n

really grow?

n  R(n)
10 0.822
102 1.588
103 1.637
10* 1.683
10° 1.724
100 1.741
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Three Approaches to Circularity

1. Try to bound

R(n) = max(outrad(Ag) —inrad(Ax))

k<n

for rotor-router aggregation on Z4.
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Three Approaches to Circularity

1. Try to bound

R(n) = rpgx(outrad(Ak) —inrad(Ag))
for rotor-router aggregation on Z4.

» Two ways to get sharper results:
2. Modify the dynamics: Divisible Sandpile
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Three Approaches to Circularity

1. Try to bound

R(n) = max(outrad(Ag) —inrad(Ax))

k<n
for rotor-router aggregation on Z4.

» Two ways to get sharper results:

2. Modify the dynamics: Divisible Sandpile
3. Modify the underlying graph.

> The tree is easier than the lattice.
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Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9.
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Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9. Then

Brfclogr CA,C Br(l-i—c’r*l/dlogr)’

where
» B; is the ball of radius p centered at the origin.
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Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9. Then

Brfclogr CA,C Br(l-i—c’r*l/dlogr)’

where

» B; is the ball of radius p centered at the origin.
» n=wgr?, where 0y is the volume of the unit ball in RY.
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Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9. Then

Brfclogr CA,C Br(l-i—c’r*l/dlogr)’

where
» B; is the ball of radius p centered at the origin.
» n=wgr?, where 0y is the volume of the unit ball in RY.
» c,c’ depend only on d.
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Spherical Asymptotics

» Theorem (L.-Peres) Let A, be the region of n particles
formed by rotor-router aggregation in Z9. Then

Brfclogr CA,C Br(l-i—c’r*l/dlogr)’

where

» B; is the ball of radius p centered at the origin.
» n=wgr?, where 0y is the volume of the unit ball in RY.
» c,c’ depend only on d.

» Corollary: Inradius/Outradius — 1 as n — co.
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Perfect Circularity on the Tree

» Let A, be the region formed by rotor-router aggregation on
the infinite d-regular tree, starting from m chips at the origin.
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Perfect Circularity on the Tree

» Let A, be the region formed by rotor-router aggregation on
the infinite d-regular tree, starting from m chips at the origin.
» Theorem (Landau-L.) If the initial rotor configuration is
acyclic, then
Ab,, =B,
where B, is the ball of radius n centered at the origin, and
b, = #Bn-
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Perfect Circularity on the Tree

» Let A, be the region formed by rotor-router aggregation on
the infinite d-regular tree, starting from m chips at the origin.

» Theorem (Landau-L.) If the initial rotor configuration is

acyclic, then
Ap, = Bn

where B, is the ball of radius n centered at the origin, and
b, = #B,.
» In particular, if b, < m < by41, then

B, C A, C Bn+1.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Chip-firing or abelian sandpile model:
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Chip-firing or abelian sandpile model:

» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Chip-firing or abelian sandpile model:

» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.

» Choices of which sites to topple in what order don't affect the
final sandpile shape.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Chip-firing or abelian sandpile model:
» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.
» Choices of which sites to topple in what order don't affect the
final sandpile shape.
» Equivalent models:
» Start with n particles at the origin.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Chip-firing or abelian sandpile model:
» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.
» Choices of which sites to topple in what order don't affect the
final sandpile shape.
» Equivalent models:
» Start with n particles at the origin.
m—1

> If there are m particles at a site, send | 7= | to each neighbor.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.
» Chip-firing or abelian sandpile model:
» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.

» Choices of which sites to topple in what order don't affect the
final sandpile shape.

» Equivalent models:

» Start with n particles at the origin.
m—1

> If there are m particles at a site, send | 7= | to each neighbor.

» Sandpile: Leave the extra particles where they are.
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The Abelian Property

» Choices of which particles to route in what order don't affect
the final shape generated or the final rotor directions.

» Chip-firing or abelian sandpile model:

» When 4 or more grains of sand accumulate at a site in Z?2, it
topples, sending one grain to each neighbor.

» Choices of which sites to topple in what order don't affect the
final sandpile shape.

» Equivalent models:

» Start with n particles at the origin.
> If there are m particles at a site, send | - | to each neighbor.
» Sandpile: Leave the extra particles where they are.

» Rotor: Send extra particles according to the usual rotor rule.
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Bounds for the Abelian Sandpile

» Theorem (L.-Peres) Let S, be the set of sites visited by the
abelian sandpile in Z9, starting from n particles at the origin.
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Bounds for the Abelian Sandpile

» Theorem (L.-Peres) Let S, be the set of sites visited by the
abelian sandpile in Z9, starting from n particles at the origin.
Then

n—o(n) n+o(n)
(Ball of volume pd—1 > cS,C <Ba|l of volume g > .
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Bounds for the Abelian Sandpile

Theorem (L.-Peres) Let S, be the set of sites visited by the
abelian sandpile in Z9, starting from n particles at the origin.
Then

n—o(n) n+o(n)
(Ball of volume pd—1 > cS,C <Ba|l of volume g > .

Improves the bounds of Le Borgne and Rossin.
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(Disk of area n/3) C S, C (Disk of area n/2)
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Chip-Firing on Graphs

» Finite connected graph G with a distinguished vertex s called
the sink.

» Chip configuration: Each site v # s has 6(v) > 0 chips.
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Chip-Firing on Graphs

» Finite connected graph G with a distinguished vertex s called
the sink.

» Chip configuration: Each site v # s has 6(v) > 0 chips.

> If o(v) > deg(v), the vertex v can topple, sending one chip
to each neighbor.
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Chip-Firing on Graphs

v

Finite connected graph G with a distinguished vertex s called
the sink.

Chip configuration: Each site v # s has 6(v) > 0 chips.

v

v

If o(v) > deg(v), the vertex v can topple, sending one chip
to each neighbor.

v

The sink never topples.

v

Order of topplings does not affect the final state ¢°.
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The Sandpile Group of a Graph

» A chip configuration ¢ on G is stable if
o(v) < deg(v) -1

for all vertices v.
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The Sandpile Group of a Graph

» A chip configuration ¢ on G is stable if
o(v) < deg(v) -1

for all vertices v.

» Stable configurations form a finite commutative monoid
M = M(G) under the operation

(6,7) — (6 +71)°.
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The Sandpile Group of a Graph

» A chip configuration ¢ on G is stable if
o(v) < deg(v) -1

for all vertices v.

» Stable configurations form a finite commutative monoid
M = M(G) under the operation

(6,7) — (6 +71)°.

» Babai-Toumpakari: The minimal ideal of M is a finite abelian
group SP(G) called the sandpile group of G.
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Two Other Constructions of the Sandpile Group

> SP(G) ~Z"1/AZ"t, where
A=D—-A

is the reduced Laplacian of G.
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Two Other Constructions of the Sandpile Group

> SP(G) ~Z"1/AZ"t, where
A=D—-A

is the reduced Laplacian of G.

» Matrix-tree theorem:

#SP(G) = det A = #{spanning trees of G}.
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Two Other Constructions of the Sandpile Group

> SP(G) ~Z"1/AZ"t, where
A=D—-A

is the reduced Laplacian of G.

» Matrix-tree theorem:
#SP(G) = det A = #{spanning trees of G}.

» SP(G) is the group of recurrent chip configurations on G,
i.e. configurations ¢ such that

c=(c+1)°

for some configuration T # 0.
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The Burning Algorithm

» Consider the chip configuration

B(v) = # of edges from v to the sink.
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The Burning Algorithm

» Consider the chip configuration
B(v) = # of edges from v to the sink.
» Lemma (Dhar): o is recurrent if and only if

c=(c+P)°.
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The Burning Algorithm

» Consider the chip configuration
B(v) = # of edges from v to the sink.
» Lemma (Dhar): o is recurrent if and only if
c=(c+B)°.

Moreover, if G is recurrent, then every vertex topples exactly
once in reducing 6+ to G.
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The Burning Algorithm

» Consider the chip configuration
B(v) = # of edges from v to the sink.
» Lemma (Dhar): o is recurrent if and only if
c=(c+B)°.

Moreover, if G is recurrent, then every vertex topples exactly
once in reducing 6+ to G.

B=Y A,

v#s

» Proof:
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The Sandpile Group of a Tree

» Finite rooted tree T.
> Collapse the leaves to a single sink vertex.
» Add an edge from the root to the sink.

o]
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The Sandpile Group of a Tree

» Finite rooted tree T.
> Collapse the leaves to a single sink vertex.
» Add an edge from the root to the sink.

o]

s ~

b |

» What are the recurrent configurations?
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The Sandpile Group of a Tree

» Finite rooted tree T.
> Collapse the leaves to a single sink vertex.
» Add an edge from the root to the sink.

o]

s ~

b |

» What are the recurrent configurations?

» What is the structure of the sandpile group?
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Critical vertices

» x € T is critical for a chip configuration u if x # s and

u(x) < # of critical children of x. (1)
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Critical vertices

» x € T is critical for a chip configuration u if x # s and

u(x) < # of critical children of x. (1)

» This is an inductive definition, beginning with the leaves.
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Critical vertices

» x € T is critical for a chip configuration u if x # s and

u(x) < # of critical children of x. (1)

» This is an inductive definition, beginning with the leaves.

» Claim: A configuration u is recurrent if and only if equality
holds in (1) for every critical vertex x.
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Critical vertices

» x € T is critical for a chip configuration u if x # s and

u(x) < # of critical children of x. (1)

» This is an inductive definition, beginning with the leaves.
» Claim: A configuration u is recurrent if and only if equality
holds in (1) for every critical vertex x.
» Proof: Use the burning algorithm.
» A critical vertex cannot burn before its parent.
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Critical vertices

» x € T is critical for a chip configuration u if x # s and

u(x) < # of critical children of x. (1)

» This is an inductive definition, beginning with the leaves.
» Claim: A configuration u is recurrent if and only if equality
holds in (1) for every critical vertex x.
» Proof: Use the burning algorithm.

» A critical vertex cannot burn before its parent.
> |f strict inequality holds at x, then x will never be burned.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



A Recurrent Configuration on the Regular Ternary Tree

! (2)

FAWAWA

2 @ ©

» Critical vertices are circled.
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Structure of the Sandpile Group

» Theorem (L.) Let T, be a branch of the regular ternary tree
of height n. Then

SP(Tn) = Zon 1 @ L1 1 ®...0(Z7)% " @ (Z3)2" .
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Structure of the Sandpile Group
» Theorem (L.) Let T, be a branch of the regular ternary tree
of height n. Then

SP(Tn) = Zon 1 @ L1 1 ®...0(Z7)% " @ (Z3)2" .

» Similar decomposition for the d-regular tree for any d.
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Subgroup Generated by the Root

» Regular ternary tree T, of height n.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Subgroup Generated by the Root

» Regular ternary tree T, of height n.
» What can we say about the subgroup of SP(T,) generated by
?=296,+e?
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Subgroup Generated by the Root

» Regular ternary tree T, of height n.

» What can we say about the subgroup of SP(T,) generated by
F=08,+e?

> Its elements are constant on levels of the tree.
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Subgroup Generated by the Root

» Regular ternary tree T, of height n.

» What can we say about the subgroup of SP(T,) generated by
F=08,+e?

> Its elements are constant on levels of the tree.

» What about the converse?
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Subgroup Generated by the Root

v

Regular ternary tree T, of height n.

What can we say about the subgroup of SP(T,) generated by
F=08,+e?

Its elements are constant on levels of the tree.

What about the converse?

Note that if u is recurrent, then

ut+t=u+(e+9,)
=(u+e)+o,
=u-+9,.

v

vV yvyy
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Subgroup Generated by the Root

» Regular ternary tree T, of height n.

» What can we say about the subgroup of SP(T,) generated by
F=08,+e?

» |ts elements are constant on levels of the tree.

» What about the converse?

» Note that if u is recurrent, then

ut+t=u+(e+9,)
=(u+e)+o,
=u-+9,.

» Multiples of the root in Ty:
P2 3F 47 5F 6F TP & 97 10F 117 12F 137 147 157 =e

2 0 1 2 0 1 2 2 2 0 1 2 0 1 2
o 1 1 1 2 2 2 0 1 1 1 2
2 2 2 2 2 2 0 1 1 1 1 1 1 1
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The Order of 7

» A recurrent configuration constant on levels has the form
u=1(2,...,2,0,a1,...,ak)

with a; € {1,2}.
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The Order of 7

» A recurrent configuration constant on levels has the form
u=1(2,...,2,0,a1,...,ak)

with a; € {1,2}.
» Lemma: (?) consists of all recurrent configurations that are
constant on levels of the tree.
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The Order of 7

» A recurrent configuration constant on levels has the form
u=1(2,...,2,0,a1,...,ak)

with a; € {1,2}.

» Lemma: (?) consists of all recurrent configurations that are
constant on levels of the tree.

» In particular, 7 has order

n—1
Y ok=2"—1.
k=0
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The Sandpile Group of a Tree, In Terms of its Branches

» Lemma: Let T be any finite tree, with principal branches
T,..., Tk.
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The Sandpile Group of a Tree, In Terms of its Branches

» Lemma: Let T be any finite tree, with principal branches
Tl,..., Tk. Then

k

SP(T)/(?) =@ SP(Ti)/((F1,---, %))

i=1

where r, r; are the roots of T, T; respectively.
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The Sandpile Group of a Tree, In Terms of its Branches

» Lemma: Let T be any finite tree, with principal branches
Tl,..., Tk. Then

k

SP(T)/(?) =@ SP(Ti)/((F1,---, %))

i=1
where r, r; are the roots of T, T; respectively.

» Proof sketch: Map < o d U > e (N
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The Sandpile Group of a Tree, In Terms of its Branches

» Lemma: Let T be any finite tree, with principal branches
Tl,..., Tk. Then

k

SP(T)/(?) =@ SP(Ti)/((F1,---, %))

i=1
where r, r; are the roots of T, T; respectively.

) G )

» After modding out by 7, the branches become independent.

» Proof sketch: Map < u y
1y Uk
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The Sandpile Group of a Tree, In Terms of its Branches

» Lemma: Let T be any finite tree, with principal branches
Tl,..., Tk. Then

k

SP(T)/(?) =@ SP(Ti)/((F1,---, %))

i=1

where r, r; are the roots of T, T; respectively.

) G )

» After modding out by 7, the branches become independent.
» Since (k+1)?— (A,...,F) we have to mod out by this on the
right.

» Proof sketch: Map < u y
1y Uk
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Strengthening to a Direct Sum

» Lemma: Let T, be the regular ternary tree of height n. Then

SP( Tn) = Z2"—]_ D SP( Tn_]_)z/Z2n—1_1 .
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Strengthening to a Direct Sum

» Lemma: Let T, be the regular ternary tree of height n. Then
SP( Tn) = Z2"—]_ D SP( Tn_]_)z/Z2n—1_1 .

» Proof: Need a projection map p: SP(T,) — (7).
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Strengthening to a Direct Sum

» Lemma: Let T, be the regular ternary tree of height n. Then
SP( Tn) = Z2"—]_ D SP( Tn_]_)z/Z2n—1_1 .

» Proof: Need a projection map p: SP(T,) — (7).
» Use the symmetrization map

p(u)(x) =21 P0 N u(y).

lyl=Ix|
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Strengthening to a Direct Sum

v

Lemma: Let T, be the regular ternary tree of height n. Then

SP( Tn) = Z2"—]_ D SP( Tn_]_)z/Z2n—1_1 .

v

Proof: Need a projection map p: SP(T,) — (7).

v

Use the symmetrization map

p(u)(x) =21 P0 N u(y).

lyl=Ix|

v

Note if u is already constant on levels, then
p(u)=2"u=u

since u = k7 and ¥ has order 2" —1. [
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Factoring Into Cyclic Subgroups

> SP(TQ) =7Zs3.
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Factoring Into Cyclic Subgroups

> SP(TQ) :Z3_
> SP(T3) =27 ® SP(T2)? /23 = 17 ® Ls.
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Factoring Into Cyclic Subgroups

> SP(TQ):Z:J,
> SP(T3)=Z7®SP(T2)? /23 = L7 & Ls.
> SP(T4) = Z15 ® SP(T3)?/Z7 = Z1s ® L7 DZ3.
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Factoring Into Cyclic Subgroups

SP(T3) = Zs.

SP(T3) = Z7® SP(T»)? )73 = 77 ® Zs.

SP(T4) =715 ® SP(T3)? ) Z7 = Z1s ® L7 3.
SP(Ts) = Z31 ® SP(T4)?/ 715 = 731 ® Z1s © L2 B 73,

vV v v Y
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Factoring Into Cyclic Subgroups

SP(T3) = Zs.

SP(T3) = Z7® SP(T»)? )73 = 77 ® Zs.

SP(T4) =715 ® SP(T3)? ) Z7 = Z1s ® L7 3.
SP(Ts) = Z31 ® SP(T4)?/ 715 = 731 ® Z1s © L2 B 73,

vV v v Y

v

SP(Ty) = Zon 1B Zgn 1 1 ®... 3 (Z7)>" " @ (Z3)2" .

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Entropy

» Number of recurrent states:

log, |SP(T,)| ~ c2"



Entropy

» Number of recurrent states:
log, |SP(T,)| ~ c2"
where

log,3 log,7 log,(2k — 1
c— g2+g2+'+g2( )+

4 8 B 2k
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Entropy

» Number of recurrent states:
log, |SP(T,)| ~ c2"

where

_ logy3 | log,7 log, (2% — 1)
c= 4 + 8 4.+ ok +
1 & 1
—2_
log?2 2_2 (n—=1)(2"-1)
~ 1.364.

> So the probability that a stable state is recurrent is about

(23>2 — (0.858)2".
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“Physical” Consequences

» Three ways to measure the size of an avalanche:

» R = diameter of the set of sites that topple.
» M = number of sites that topple.
» T = total number of topplings.

» Starting from a uniform recurrent state in T,, add a single
grain at at the root. Then for r <n

P(R>r)=2".
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“Physical” Consequences

» Three ways to measure the size of an avalanche:

» R = diameter of the set of sites that topple.
» M = number of sites that topple.
» T = total number of topplings.

» Starting from a uniform recurrent state in T,, add a single
grain at at the root. Then for r < nand m,t <2"

P(R>r)=2".

P(M>m)=<1/m.
P(t>t)=<1/t.
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The Rotor-Router Group

» Finite directed graph G.

» Rotors point in direction of last exit.
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The Rotor-Router Group

» Finite directed graph G.
» Rotors point in direction of last exit.
= recurrent states have no oriented cycles.
» In fact, a state is recurrent if and only if the rotors form an
oriented spanning tree.

» For each vertex x, get a permutation e, on spanning trees
given by adding a chip at x and routing it to the sink.
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The Rotor-Router Group

» Finite directed graph G.

Rotors point in direction of last exit.

= recurrent states have no oriented cycles.
In fact, a state is recurrent if and only if the rotors form an
oriented spanning tree.
For each vertex x, get a permutation e, on spanning trees
given by adding a chip at x and routing it to the sink.
RR(G) = subgroup of the permutation group of spanning
trees generated by {e.}xcv(c)-
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The Rotor-Router Group

» Finite directed graph G.

Rotors point in direction of last exit.

= recurrent states have no oriented cycles.
In fact, a state is recurrent if and only if the rotors form an
oriented spanning tree.
For each vertex x, get a permutation e, on spanning trees
given by adding a chip at x and routing it to the sink.
RR(G) = subgroup of the permutation group of spanning
trees generated by {e.}xcv(c)-
Fact: RR(G) ~ SP(G).
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Holroyd-Propp Invariant

» A function H on the vertices of T is harmonic if

H(x) = —— Y H(y)

- deg(x) &

for all x.
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Holroyd-Propp Invariant

» A function H on the vertices of T is harmonic if

H(x) = —— Y H(y)

- deg(x) &

for all x.

» Starting chip configuration u, ending configuration v.
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Holroyd-Propp Invariant

» A function H on the vertices of T is harmonic if

H(x) = —— Y H(y)

- deg(x) &

for all x.
» Starting chip configuration u, ending configuration v.

» Lemma: If H is harmonic, and the initial and final rotor
configurations are the same, then

Z H(x)u(x) = Z H(x)v(x).

xeT xeT
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Proof of Circularity on the Tree

» Fix a leaf z € T,, and let

H(x) =Py (X; = 2)
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Proof of Circularity on the Tree

» Fix a leaf z € T,, and let
H(x) =Py (X; = 2)

where T is the first time for SRW to hit either a leaf or the
sink.
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» Fix a leaf z € T,, and let
H(x) =Py (X; = 2)

where T is the first time for SRW to hit either a leaf or the

sink.

» Easy calculation: H(r) = ﬁ
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» Fix a leaf z € T,, and let
H(x) =Py (X; = 2)

where T is the first time for SRW to hit either a leaf or the

sink.

» Easy calculation: H(r) = ﬁ

» Time change:

» Stop each particle either when it reaches an unoccupied site,
or returns to the root.
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Proof of Circularity on the Tree

» Fix a leaf z € T,, and let
H(x) =Py (X; = 2)

where T is the first time for SRW to hit either a leaf or the

sink.

» Easy calculation: H(r) = ﬁ

» Time change:

» Stop each particle either when it reaches an unoccupied site,
or returns to the root.
» Get a new aggregation process Al = Af(m)-
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Proof of Circularity on the Tree

» Fix a leaf z € T,, and let
H(x) =Py (X; = 2)

where T is the first time for SRW to hit either a leaf or the

sink.

» Easy calculation: H(r) = ﬁ

» Time change:

» Stop each particle either when it reaches an unoccupied site,
or returns to the root.
» Get a new aggregation process Al = Af(m)-

» Enough to show A’Cn = B, for some sequence ¢,.
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Proof of Circularity on the Tree

> Induct on n to show A, = B,.
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> Induct on n to show A, = B,.
» With B,_1 occupied, start with 3(2" — 1) chips at the root.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Proof of Circularity on the Tree

> Induct on n to show A, = B,.
» With B,_1 occupied, start with 3(2" — 1) chips at the root.

» Since 7 has order 2" —1, intial and final rotors are the same.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Proof of Circularity on the Tree

> Induct on n to show A, = B,.
» With B,_1 occupied, start with 3(2" — 1) chips at the root.
» Since 7 has order 2" — 1, intial and final rotors are the same.

» By the Lemma, final weight = initial weight =1, so exactly
one chip ends up at each leaf.
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Proof of Circularity on the Tree

> Induct on n to show A, = B,.

» With B,_1 occupied, start with 3(2" — 1) chips at the root.

» Since 7 has order 2" — 1, intial and final rotors are the same.

» By the Lemma, final weight = initial weight =1, so exactly
one chip ends up at each leaf.

» Thus Agn = B,,, where

Ch=cp-1+3(2"—1).
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Escape Sequences

» Escape sequence

0, if the jt chip returns to the origin;
a;, =
! 1, if the jt" chip escapes to infinity.
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Escape Sequences

» Escape sequence

0, if the jt chip returns to the origin;
a;, =
! 1, if the jt" chip escapes to infinity.

> For j € {1,2,3} write a¥) = ajaj,3a)46.. ..

» Theorem (Landau-L.) A binary word aj ...a, is an escape
sequence for some rotor configuration on the infinite ternary
tree if and only if for each j

» Every subword of al) of length 3 contains at most 2 ones.
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a;, =
! 1, if the jt" chip escapes to infinity.

> For j € {1,2,3} write a¥) = ajaj,3a)46.. ..

» Theorem (Landau-L.) A binary word aj ...a, is an escape
sequence for some rotor configuration on the infinite ternary
tree if and only if for each j

» Every subword of al) of length 3 contains at most 2 ones.
» Every subword of al) of length 7 contains at most 4 ones.
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Escape Sequences

» Escape sequence

0, if the jt chip returns to the origin;
a;, =
! 1, if the jt" chip escapes to infinity.

> For j € {1,2,3} write a¥) = ajaj,3a)46.. ..

» Theorem (Landau-L.) A binary word aj ...a, is an escape
sequence for some rotor configuration on the infinite ternary
tree if and only if for each j

» Every subword of al) of length 3 contains at most 2 ones.
» Every subword of al) of length 7 contains at most 4 ones.

» Every subword of al) of length 2% —1 contains at most 2k~1
ones.
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Open Problems

» Find a bijective proof that

#SP(T,)=32""72""...2" 1 —1)(2" - 1).
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Open Problems

» Find a bijective proof that
#SP(T,) =377 (27 = 1)(2" 1),

» Aggregation on general trees
» What takes the place of a ball?
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g(x) = Po(Tx < ).
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Open Problems

» Find a bijective proof that
#SP(T,) =377 (27 = 1)(2" 1),

» Aggregation on general trees

» What takes the place of a ball?
» On a transient tree, level sets of the function

g(x) = Po(Tx < ).

» Does there exist a rotor configuration on Z3 which causes
every chip to return to the origin in finitely many steps?
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Open Problems

» Find a bijective proof that
#SP(T,) =377 (27 = 1)(2" 1),

» Aggregation on general trees

» What takes the place of a ball?
» On a transient tree, level sets of the function

g(x) = Po(Tx < ).

» Does there exist a rotor configuration on Z3 which causes
every chip to return to the origin in finitely many steps?

» Known to exist for Z? (Jim Propp) and for the d-regular tree.
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Open Problems: Chip-Firing

> Fix an integer h € (—,2].
» Start every site in Z? at height h.
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> Fix an integer h € (—,2].
» Start every site in Z? at height h.

> Let 5,1, be the set of visited sites for the abelian sandpile
started with n particles at the origin.
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Open Problems: Chip-Firing

> Fix an integer h € (—,2].

» Start every site in Z? at height h.

> Let 5,1, be the set of visited sites for the abelian sandpile
started with n particles at the origin.

> Question: As n — oo, is the limiting shape S, ; a regular
(12 —4h)-gon?
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Open Problems: Chip-Firing

> Fix an integer h € (—,2].
» Start every site in Z? at height h.

> Let 5,1, be the set of visited sites for the abelian sandpile
started with n particles at the origin.

> Question: As n — oo, is the limiting shape S, ; a regular
(12 —4h)-gon?

» Fey and Redig (2007) Case h=2: The limiting shape of S,
is a square.
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Open Problems: Chip-Firing

Fix an integer h € (—e,2].
» Start every site in Z? at height h.

Let S, 5 be the set of visited sites for the abelian sandpile
started with n particles at the origin.

Question: As n — oo, is the limiting shape S, ; a regular
(12 —4h)-gon?

Fey and Redig (2007) Case h = 2: The limiting shape of S,
is a square.

In all other cases, even the existence of a limiting shape is
open.

Lionel Levine Chip-Firing and Rotor-Routing on Trees



Open Problems: Chip-Firing

Fix an integer h € (—e,2].
» Start every site in Z? at height h.

Let S, 5 be the set of visited sites for the abelian sandpile
started with n particles at the origin.

Question: As n — oo, is the limiting shape S, ; a regular
(12 —4h)-gon?

Fey and Redig (2007) Case h = 2: The limiting shape of S,
is a square.

In all other cases, even the existence of a limiting shape is
open.

Even for h =2, the rate of growth of the square is not known.
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