Outline				

Subword Complexes and Brick Polytopes 200 2000 Bott-Samelson varieties for SL_n 000000000000 00000 0000

Bott-Samelson varieties, subword complexes and brick polytopes

Laura Escobar

Cornell University

York University The Applied Algebra Seminar October 31, 2013

3

000	00000
0000	00000

Bott-Samelson varieties for SL_n 00000000000 00000 0000

< □ > < 同 >

The toric variety of an associahedron

Theorem (E)

The toric variety of the associahedron can be described as a poset in which the ascending chains are flags of vector spaces.

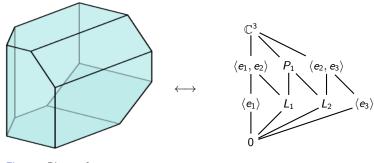


Figure : Picture from wikipedia

э

-∢ ⊒ ▶

Outline		
	000	00000000000
	0000	00000
		0000

The general Bott-Samelson story

Subword Complexes and Brick Polytopes Subword complexes Brick polytopes

Bott-Samelson varieties for SL_n Definition and properties Symplectic Structure on BS^Q Brick polytopes for $W = A_{n-1}$

The general Bott-Samelson story

< ∃ >

-∢ ⊒ ▶

Outline		

Bott-Samelson varieties for SL_n 00000000000 00000 0000

Outline

Subword Complexes and Brick Polytopes Subword complexes Brick polytopes

Bott-Samelson varieties for SL_n Definition and properties Symplectic Structure on BS^Q Brick polytopes for $W = A_{n-1}$

The general Bott-Samelson story

	Subword Complexes and Brick Polytopes •••• •••••	Bott-Samelson varieties for <i>SL_n</i> 000000000000 00000 00000	
Subword complexes			

Outline

Subword Complexes and Brick Polytopes Subword complexes

Brick polytopes

Bott-Samelson varieties for SL_n

Definition and properties Symplectic Structure on BS^Q Brick polytopes for $W = A_{n-1}$

The general Bott-Samelson story

- ∢ ≣ ▶

< < >> < <</p>

-

	Subword Complexes and Brick Polytopes		
	00 0000	0000000000 00000 0000	
Subword comp	lexes		

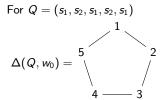
The subword complex

Definition (Knutson-Miller)

Let Q be a word in the generators of W and $w \in W$, where W is the Weyl group of a complex semisimple Lie group. Then $\Delta(Q, w)$ is the simplicial complex with

- vertices = {position of the letters of Q}
- Facets = {subwords J ⊂ Q such that ∏ Q|_{J=(1,...,1)} := (product of the letters in Q \ J) is a reduced expression for w}

Example



	Subword Complexes and Brick Polytopes		
	00 0000	0000000000 00000 0000	
Subword comp	lexes		

The subword complex is a simplicial complex that encondes which subwords of Q have product w.

Definition

Given a word Q, then the elements in W that can be obtained by multiplying the letters in subwords of Q form a poset with maximum. Let us denote this maximum by **Dem**(**Q**) $\in W$.

Natural Question

Knutson and Miller prove that $\Delta(Q, w)$ is a sphere if and only if w = Dem(Q)**Question:** Can $\Delta(Q, w)$ be realized as the boundary complex of a convex polytope?

An answer:

Theorem (Pilaud-Stump)

For certain Q then $\Delta(Q, w)$ is the boundary complex of the polytope dual to the brick polytope.

	Subword Complexes and Brick Polytopes		
	000 ●000	0000000000 00000 0000	
Brick polytopes			

Outline

Subword Complexes and Brick Polytopes

Brick polytopes

Bott-Samelson varieties for SL_n

Definition and properties Symplectic Structure on BS^Q Brick polytopes for $W = A_{n-1}$

The general Bott-Samelson story

-

	Subword Complexes and Brick Polytopes		
	000 0●00	0000000000 00000 0000	
Brick polytope	25		

The Brick polytope

Let $\nabla(W) := \{w_{s_i} : s_i \in S\}$ be the fundamental weights of W. Let F be a subword of Q and define

$$\omega(F,k) := (\prod^{k-1} Q|_{F=(1,\ldots,1)})(\omega_{q_k})$$

and

$$B(F) := \sum_{k \in [m]} \omega(F, k).$$

Definition

Given a subword complex $\Delta(Q, w)$ with |Q| = m, the *brick polytope* is the convex hull of the brick vectors of some faces of $\Delta(Q, w)$

$$B(Q,w):= ext{conv}\{B(F):F\in\Delta(Q,w) ext{ and }\prod Q|_{F=(1,\dots,1)}=w\}.$$

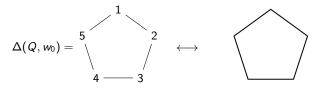
3

	Subword Complexes and Brick Polytopes		
		0000000000 00000 0000	
Brick polytopes			

Associahedra

Theorem

If we take $Q = \mathbf{cw}_0(\mathbf{c})$ to be the word starting with a Coxeter element \mathbf{c} and then followed by the expression of w_0 corresponding to c then the subword complex $\Delta(Q, w_0)$ is dual to the associahedron.



Subword Complexes and Brick Polytopes		
000 000●	00000000000 00000 0000	

Brick polytopes

The Toric variety of the Brick Polytope

Let $\Delta(W) := \{\alpha_{s_i} : s_i \in S\}$ be the simple roots of W

Definition

A word Q is *root independent* if for some vertex B(F) of B(Q, w) (or all vertices) we have that the multiset $r(F) := \{\{r(F, i) : i \in F\}\}$ is linearly independent, where

$$\mathsf{r}(I,k) := \left(\prod_{l=(1,\ldots,1)}^{k-1} Q|_{I=(1,\ldots,1)}\right) (\alpha_{q_k})$$

Theorem (E)

If Q is root independent then we can construct a toric variety associated to the brick polytope B(Q, w). For $W = A_n$, this variety corresponds to a poset in which the ascending chains are flags of vector spaces.

イロン イボン イヨン イヨン

0			

ubword Complexes and Brick Polytopes 200 2000

Bott-Samelson varieties for SLn

000000000000 00000 0000

Outline

Subword Complexes and Brick Polytopes Subword complexes Brick polytopes

Bott-Samelson varieties for SL_n Definition and properties Symplectic Structure on BS^Q Brick polytopes for $W = A_{n-1}$

The general Bott-Samelson story

0			

ubword Complexes and Brick Polytopes

Bott-Samelson varieties for SLn

00000000000 00000 0000

Setup

- $G = SL_n(\mathbb{C})$
- Fix $\{e_1, \ldots, e_n\}$, a basis of \mathbb{C}^n
- ▶ The Borel subgroup *B* consists of upper triangular matrices
- G/B is the flag manifold = { $(V_1, \ldots, V_n) : V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = \mathbb{C}^n$ }
- The maximal torus T consists of diagonal matrices
- $W = A_{n-1}$ is the Weyl group of G generated by s_1, \ldots, s_{n-1}

3

		Bott-Samelson varieties for SLn
	000 0000	•0000000000 00000 0000
Definition and	properties	

Outline

Subword Complexes and Brick Polytopes

Subword complexes Brick polytopes

Bott-Samelson varieties for SL_n

Definition and properties

Symplectic Structure on BS^Q Brick polytopes for $W = A_{n-1}$

The general Bott-Samelson story

-

		Bott-Samelson varieties for SLn	
	000 0000	0●000000000 00000 0000	
Definition and	properties		

Example

Let n = 3 and $Q = (s_1, s_2, s_1, s_2, s_1)$ be a word on the generators of W. Then the **Bott-Samelson variety** of Q is $BS^Q = \{(L_1, P_1, L_2, P_2, L_3):$ the following incidences hold $\}$

э

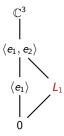
글 > : < 글 >

< D > < A >

	Subword Complexes and Brick Polytopes 000 0000	Bott-Samelson varieties for SL _n 00●000000000 00000 00000	
Definition and	properties		

Example

Let n = 3 and $Q = (s_1, s_2, s_1, s_2, s_1)$ be a word on the generators of W. Then the **Bott-Samelson variety** of Q is $BS^Q = \{(L_1, P_1, L_2, P_2, L_3):$ the following incidences hold}



-

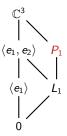
글 > : < 글 >

< D > < A >

	Subword Complexes and Brick Polytopes 000 0000	Bott-Samelson varieties for SL _n 000000000000 00000 00000	
Definition and	properties		

Example

Let n = 3 and $Q = (s_1, s_2, s_1, s_2, s_1)$ be a word on the generators of W. Then the **Bott-Samelson variety** of Q is $BS^Q = \{(L_1, P_1, L_2, P_2, L_3) : \text{ the following incidences hold}\}$



-

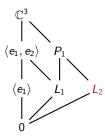
-∢ ≣ ▶

< D > < A >

	Subword Complexes and Brick Polytopes 000 0000	Bott-Samelson varieties for SL _n 000000000000 00000 00000	
Definition and	properties		

Example

Let n = 3 and $Q = (s_1, s_2, s_1, s_2, s_1)$ be a word on the generators of W. Then the **Bott-Samelson variety** of Q is $BS^Q = \{(L_1, P_1, L_2, P_2, L_3):$ the following incidences hold}

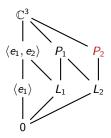


< < >>

	Subword Complexes and Brick Polytopes 000 0000	Bott-Samelson varieties for SL _n 00000€000000 00000 00000	
Definition and	properties		

Example

Let n = 3 and $Q = (s_1, s_2, s_1, s_2, s_1)$ be a word on the generators of W. Then the **Bott-Samelson variety** of Q is $BS^Q = \{(L_1, P_1, L_2, P_2, L_3):$ the following incidences hold}



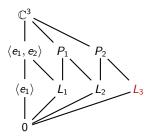
.∋...>

< < >>

	Subword Complexes and Brick Polytopes 000 0000	Bott-Samelson varieties for SL _n 000000000000 00000 00000	
Definition and	properties		

Example

Let n = 3 and $Q = (s_1, s_2, s_1, s_2, s_1)$ be a word on the generators of W. Then the **Bott-Samelson variety** of Q is $BS^Q = \{(L_1, P_1, L_2, P_2, L_3) : \text{ the following incidences hold}\}$



< < >>

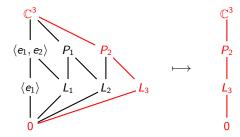
		Bott-Samelson varieties for SLn	
	000 0000	00000000000 00000 0000	
Definition and	properties		

Natural Map

There is a natural map $m_Q: BS^Q \to G/B$ mapping BS to the rightmost flag.

Example

Consider $m_Q: BS^{(s_1,s_2,s_1,s_2,s_1)} \to G/B$



- ∢ ≣ ▶

A ▶

э

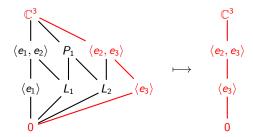
		Bott-Samelson varieties for SLn	
		00000000000	
	0000	00000	
Definition and	properties		

An important fiber

- Given $w \in W$, the fiber $m_Q^{-1}(wB)$ has dimension is $|Q| \ell(w)$
- If w = Dem(Q) then $m_Q^{-1}(wB)$ is smooth

Example

For $Q = (s_1, s_2, s_1, s_2, s_1)$ we have that the fiber is $m_Q^{-1}(s_1s_2s_1B) = \{(L_1, P_1, L_2) : \text{ the following incidences hold}\}$



		Bott-Samelson varieties for SLn	
	000 0000	000000000000 00000 0000	
Definition and	properties		

Theorem (E)

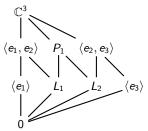
The fiber $m_Q^{-1}(wB)$ is a toric variety if and only if the following hold

- ▶ Q is root independent,
- $\ell(w) \leq |Q| \leq \ell(w) + n$, and
- Dem(Q) = w.

Moreover, $m_Q^{-1}(wB)$ is the toric variety associated to the brick polytope B(Q, w).

Example

The toric variety of a 2-dimensional associahedron (a pentagon) is



3 × < 3 ×

		Bott-Samelson varieties for SLn	
	000 0000	00000000000 00000 0000	
Definition and	properties		

How to prove this?

The theorem on the previous slide will follow from understanding the symplectic structure on $m_Q^{-1}((B)w)$.

General Toric Symplectic Geometry

- We will give a torus action on $m_Q^{-1}(wB)$
- ▶ This action will allow us to have a moment map $\mu: m_Q^{-1}(wB) \to \mathbf{R}^n$
- Theorem(Atiyah, Guillemin-Sternberg): The image of the moment map is the convex hull of the images of the *T*-fixed points under the moment map.
- Whenever we have a toric variety the image of moment map tells us what the polytope of this variety is.

Goal

Understand the *T*-fixed points to be able to describe the polytope corresponding to $m_Q^{-1}(wB)$.

	Subword Complexes and Brick Polytopes 000 0000	Bott-Samelson varieties for SL _n 00000000000 00000 00000	
Definition and	properties		

General Theorem

These symplectic tools give us a more powerful theorem:

Theorem (E)

The image of the moment map of the symplectic manifold $m_Q^{-1}(wB)$ is the brick polytope B(Q, w).

So let's find out more about the symplectic geometry of $m_Q^{-1}(B)$ and what its *T*-fixed points are!

프 () () () (

0			

Bott-Samelson varieties for SL_n

Symplectic Structure on BSQ

Outline

Subword Complexes and Brick Polytopes

Subword complexes Brick polytopes

Bott-Samelson varieties for SL_n

Definition and properties Symplectic Structure on BS^Q Brick polytopes for $W = A_{n-1}$

The general Bott-Samelson story

-

0			

ubword Complexes and Brick Polytopes 00 000 The general Bott-Samelson story

Symplectic Structure on BSQ

Symplectic Structure on BS^Q

Torus action

- Note that the torus *T* acts on Cⁿ by multiplication and this action can be extended to *T* acting on each of the basis of the vector spaces in (V₁,..., V_m) ∈ BS^Q.
- ► The *T*-fixed points of this action are precisely the points (V₁,..., V_m) such that each vector space has as basis a subset of {e₁,..., e_n}.
- Bott-Samelson varieties are symplectic manifolds with respect to this torus and they have a moment map

		Bott-Samelson varieties for SLn	
	000 0000	00000000000000000000000000000000000000	
Symplectic Str	ucture on <i>BS^Q</i>		

Moment map

Given
$$p = (V_1, \dots, V_m) \in BS^Q$$
 and $i \in [m]$ define

$$\mu(\boldsymbol{p},i) = (\dim_{\boldsymbol{e}_1}(V_i),\ldots,\dim_{\boldsymbol{e}_m}(V_i)),$$

where $\dim_{e_j}(V)$ denotes the dimension of V on the e_j -th coordinate. Then the moment map is

$$BS^{Q} \xrightarrow{\mu} \mathbf{R}^{n}$$
$$(V_{1}, \ldots, V_{m}) \xrightarrow{\mu} \left(\sum_{i=1}^{n} \dim_{e_{1}}(V_{i}), \ldots, \sum_{i=1}^{n} \dim_{e_{m}}(V_{i}) \right).$$

æ

・ロン ・四 と ・ ヨ と ・ ヨ と …

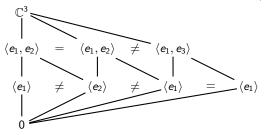
		Bott-Samelson varieties for SLn	
		00000000000	
	0000	00000	
Symplectic St	ructure on BSQ		

From Bott-Samelsons to Subword Complexes

There is a nice 1-1 correspondence between T-fixed points of BS^Q and subwords of Q. Moreover, the point corresponding to the subword J gets mapped by m to the flag $(\prod J)B$.

Example

The subword $J = (s_1, -, s_1, s_2, -)$ of $Q = (s_1, s_2, s_1, s_2, s_1)$ corresponds to the point on the right and the image of $m : BS^Q \to G/B$ is $(s_1s_1s_2)B = (s_2)B$.



		Bott-Samelson varieties for SLn	The g
	000	0000000000	
		00000	
		0000	
Symplectic St	ructure on BS ^Q		

From Bott-Samelsons to Subword Complexes

There is a nice 1-1 correspondence between T-fixed points of BS^Q and subwords of Q. Moreover, the point corresponding to the subword J gets mapped by m to the flag $(\prod J)B$.

Thus, the *T*-fixed points of the fiber $m^{-1}(wB)$ are encoded by the subwords *J* of *Q* such that $\prod J = w$.

Therefore, the subword complex encodes the *T*-fixed points of $m_Q^{-1}(wB)$

		Bott-Samelson varieties for SLn	
	000 0000	0000000000 00000 ●000	
Brick polytope	s for $W = A_{n-1}$		

Outline

Subword Complexes and Brick Polytopes

Subword complexes Brick polytopes

Bott-Samelson varieties for SL_n

Definition and properties Symplectic Structure on BS^Q Brick polytopes for $W = A_{n-1}$

The general Bott-Samelson story

- ∢ ≣ →

- B

-

		Bott-Samelson varieties for SLn	
		00000	
		0000	
Brick polytope	s for $W = A_{n-1}$		

Brick polytopes for $W = A_{n-1}$

In the case $W = A_{n-1}$, Pilaud and Santos defined the brick polytope in terms of pseudoline arrangements.

Example

Let $Q = (s_1, s_2, s_1, s_2, s_1)$, then $w_0 = s_1s_2s_1 = s_2s_1s_2$ and we have the brick configuration:

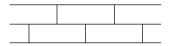


Figure : Bricks!

3

		Bott-Samelson varieties for SLn	
	000 0000	0000000000 00000 00000	
Brick polytope	es for $W = A_{n-1}$		

Brick polytopes for $W = A_{n-1}$

In the case $W = A_{n-1}$, Pilaud and Santos defined the brick polytope in terms of pseudoline arrangements.

Example

Let $Q = (s_1, s_2, s_1, s_2, s_1)$, then $w_0 = s_1 s_2 s_1 = s_2 s_1 s_2$ and we have the pseudoline arrangement corresponding to the subword $J = (-, s_2, s_1, s_2, -)$:

This pseudoline arrangement gives the vector B(J) = (2, 0, 2) obtained by counting bricks above each line.

The **brick polytope** of Q is the convex hull of all the brick vectors B(J) where J is the complement of a facet of $\Delta(Q, w_0)$.

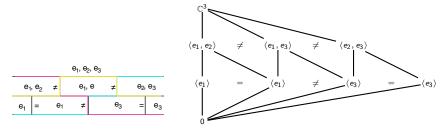
	Bott-Samelson varieties for SLn	
000	0000000000	
	0000	

Brick polytopes for $W = A_{n-1}$

Bott-Samelsons, Cluster Complexes and Brick polytopes

Example

The pseudoline arrangement corresponding to the word $J = (-, s_2, s_1, s_2, -)$ gives a *T*-fixed point of $BS^{(s_1, s_2, s_1, s_2, s_1)}$



Therefore the Bott-Samelson and the Brick stories coincide!

0			

Subword Complexes and Brick Polytopes 000 0000 Bott-Samelson varieties for SL_n 00000000000 00000 0000

Outline

Subword Complexes and Brick Polytopes Subword complexes Brick polytopes

Bott-Samelson varieties for SL_n Definition and properties Symplectic Structure on BS^Q Brick polytopes for $W = A_{n-1}$

The general Bott-Samelson story

-

Introduction

Idea

Let G be a complex semi simple Lie group, B be a Borel subgroup of G and T be the maximal torus contained in B. Bott-Samelson varieties factor G/B into a product of \mathbb{CP}^{1} 's

A tiny bit of history

- ▶ Defined by Bott and Samelson in 1950's to study the cohomology ring of G/T
- Provide desingularizations for Schubert varieties

		The general Bott-Samelson story
000 0000	0000000000 00000 0000	

Definition

Let *G* be a complex semisimple Lie group, let *B* be a Borel subgroup of *G*, and *T* be a maximal torus contained in *B*. Let *W* be the Weyl group of *G* with generators $S = \{s_1, \ldots, s_n\}$, which correspond to the simple roots $\Delta(W) = \{\alpha_1, \ldots, \alpha_n\}$. Let *P* be a parabolic subgroup of *G*. We denote by P_i the minimal parabolic subgroup corresponding to s_i , we then have that $P_i/B \cong \mathbb{CP}^1$

Definition

Let $Q = (s_{i_1}, \ldots, s_{i_m})$ be a word in the generators of W. Then the product $P_{i_1} \times \cdots \times P_{i_m}$ has an action of B^m given by:

$$(b_1,\ldots,b_m)\cdot(p_1,\ldots,p_m)=(p_1b_1,b_1^{-1}p_2b_2,\ldots,b_{m-1}^{-1}p_mb_m)$$

The *Bott-Samelson variety* of Q is the quotient of the product of the P_i 's by this action

$$BS^Q := (P_{i_1} \times \cdots \times P_{i_m})/B^m$$

Bott-Samelson varieties are smooth, irreducible and |Q|-dimensional algebraic varieties.

		The general Bott-Samelson story
000 0000	00000000000 00000 0000	

Natural map

Bott-Samelson varieties come equipped with a natural map

$$BS^Q \xrightarrow{\mathrm{m}_Q} G/B$$
$$(p_1,\ldots,p_m) \longmapsto (p_1\cdots p_m)B.$$

- ► The image of this map is the opposite Schubert cell X^w := BwB, where w = Dem(Q).
- In the case in which Q is reduced, this map is a resolution of singularities of X^w.
- However, I have been concentrating on cases in which Q is not reduced.

-

- 4 同 2 4 日 2 4 日 2

000

Bott-Samelson varieties for SL_n 00000000000 00000 0000

Symplectic Structure on BS^Q

Let T act on
$$BS^Q$$
 by $t \cdot (p_1, p_2, \ldots, p_m) = (t \cdot p_1, p_2, \ldots, p_m)$.

The nice 1-1 correspondence we saw before holds between T-fixed points of BS^Q and subwords of Q. Moreover, the point corresponding to the subword J gets mapped by m to the flag $(\prod J)B \in G/B$.

Thus, the T-fixed points of the fiber $m^{-1}(wB)$ are encoded by the subwords J of Q such that $\prod J = w$.

Again, we see that the subword complex encodes the *T*-fixed points of $m_Q^{-1}(wB)$

イロト イポト イヨト イヨト

		The general Bott-Samelson stor
000	00000000000	
0000	00000	
	0000	

Moment Map

Given $Q = (q_1, \ldots, q_m)$, we describe the image of the *T*-fixed points under the moment map using the composition of the maps

$$BS^Q \stackrel{\varphi}{\longrightarrow} \prod_{i:s_i \in Q} G/P_i \longrightarrow \mathfrak{t}^*,$$

where $P_{\hat{i}}$ is the maximal parabolic subgroup of G corresponding to $S_{\hat{i}} := \{s_1, \dots, \hat{s_i}, \dots, s_n\}.$ The map $\varphi = (\varphi_1, \dots, \varphi_m)$ where the k-th component is

$$BS^{Q} \xrightarrow{\varphi_{k}} G/P_{\hat{k}}$$
$$(p_{1},\ldots,p_{m}) \longmapsto (\prod_{i < j} p_{i})P_{\hat{k}}$$

For each k we have the moment map

$$\mu_k: G/P_{\hat{k}} \longrightarrow \mathfrak{t}^*,$$

where $\mu_k(P_{\hat{k}}) = \omega_{s_k}$, the fundamental weight corresponding to s_k

000	

Bott-Samelson varieties for SL_n 00000000000 00000 0000

Moment Map

The moment map of BS^Q is then

$$\sum_{k=1}^m \varphi_k \circ \mu_k.$$

Moreover, given a subword F and

 p_F = the fixed point corresponding to F

$$BS^{Q} \xrightarrow{\varphi_{\mathbf{k}} \circ \mu_{\mathbf{k}}} \mathfrak{t}^{*}$$
$$p_{F} \longmapsto (\prod^{k-1} Q|_{F=(1,...,1)})(\omega_{s_{q_{k}}}).$$

It then follows that $\mu(p_F) = B(F)$, the brick vector of F.

-

Oi		

Theorems

Theorem (E)

The fiber $m_Q^{-1}(wB)$ is a toric variety if and only if the following hold

Q is root independent,

•
$$\ell(w) \leq |Q| \leq \ell(w) + n$$
, and

• Dem(Q) = w.

Moreover, $m_Q^{-1}(wB)$ is the toric variety associated to the brick polytope B(Q, w).

Theorem (E)

The fiber $m_Q^{-1}(wB)$ is a symplectic manifold with a Torus action and the image of its moment map is the brick polytope B(Q, w).

		The general Bott-Samelson story
000 0000	0000000000 00000 0000	

Thank you!

æ

・ロト ・回ト ・ヨト ・ヨト