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The toric variety of an associahedron
Theorem (E)

The toric variety of the associahedron can be described as a poset in which the
ascending chains are flags of vector spaces.
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Subword complexes

The subword complex

Definition (Knutson-Miller)

Let Q be a word in the generators of W and w € W, where W is the Weyl
group of a complex semisimple Lie group. Then A(Q, w) is the simplicial
complex with

> vertices = {position of the letters of Q}

» facets = {subwords J C Q such that J] Q|,—q,....1) := (product of the
letters in Q \ J) is a reduced expression for w}

Example

For Q = (s1, s2, 51, %2, 51)
/ 1 \
5 2

A(Q,w) = \ /

4 ——3

Bott-Samelson varieties, subword complexes and brick polytopes cu



Subword Complexes and Brick Polytopes
ooe

Subword complexes

The subword complex is a simplicial complex that encondes which subwords of
Q have product w.

Definition
Given a word Q, then the elements in W that can be obtained by multiplying

the letters in subwords of @ form a poset with maximum. Let us denote this
maximum by Dem(Q) € W.

Natural Question

Knutson and Miller prove that A(Q, w) is a sphere if and only if w = Dem(Q)
Question: Can A(Q, w) be realized as the boundary complex of a convex
polytope?

An answer:
Theorem (Pilaud-Stump)

For certain Q then A(Q, w) is the boundary complex of the polytope dual to
the brick polytope.
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Brick polytopes

The Brick polytope

Let V(W) := {ws, : s; € S} be the fundamental weights of W.
Let F be a subword of Q and define

and
B(F):= > w(F,k).

ke[m]
Definition
Given a subword complex A(Q, w) with |Q| = m, the brick polytope is the

convex hull of the brick vectors of some faces of A(Q, w)

B(Q,w) :=conv{B(F) : F € A(Q,w) and [] Qlr=q....1) = w}.
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Brick polytopes

Associahedra

Theorem

If we take Q = cwo(c) to be the word starting with a Coxeter element ¢ and
then followed by the expression of wy corresponding to ¢ then the subword
complex A(Q, wy) is dual to the associahedron.

RN
5 2

R

4
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Brick polytopes

The Toric variety of the Brick Polytope

Let A(W) :={as, : si € S} be the simple roots of W

Definition

A word Q is root independent if for some vertex B(F) of B(Q, w) (or all
vertices) we have that the multiset r(F) := {{r(F,i) : i € F}} is linearly
independent, where

r(/, k) <H Qli=a )) (aq)

Theorem (E)

If Q is root independent then we can construct a toric variety associated to the
brick polytope B(Q,w). For W = A,, this variety corresponds to a poset in
which the ascending chains are flags of vector spaces.
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Bott-Samelson varieties for SLp

Setup
» G = SL,(C)
> Fix {e1,..., en}, a basis of C"
» The Borel subgroup B consists of upper triangular matrices
» G/B is the flag manifold = {(V4,...,Va): Vi C Vo C--- C V,=C"}

» The maximal torus T consists of diagonal matrices

» W = A,_1 is the Weyl group of G generated by si,...,5,-1

Bott-Samelson varieties, subword complexes and brick polytopes cu



Bott-Samelson varieties for SLp

®00000000000

Definition and properties

Outline

Subword Complexes and Brick Polytopes

Bott-Samelson varieties for SL,
Definition and properties

The general Bott-Samelson story

Bott-Samelson varieties, subword complexes and brick polytopes



Bott-Samelson varieties for SLp
O®@0000000000

Definition and properties

Definition via an example

Example

Let n=3 and Q = (s1, %, 51,5, 51) be a word on the generators of W. Then
the Bott-Samelson variety of Q is
BS® = {(L1, P1, L2, P», L3) : the following incidences hold}

(C3
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Definition and properties

Definition via an example

Example

Let n=3 and Q = (s1, %, 51,5, 51) be a word on the generators of W. Then
the Bott-Samelson variety of Q is
BS® = {(L1, P1, L2, P», L3) : the following incidences hold}
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Definition and properties

Definition via an example

Example

Let n=3 and Q = (s1, %, 51,5, 51) be a word on the generators of W. Then
the Bott-Samelson variety of Q is
BS® = {(L1, P1, L2, P», L3) : the following incidences hold}
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Definition and properties

Definition via an example

Example

Let n=3 and Q = (s1, %, 51,5, 51) be a word on the generators of W. Then
the Bott-Samelson variety of Q is
Q {(L1, P1, L2, P», L3) : the following incidences hold}
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Definition and properties

Definition via an example

Example

Let n=3 and Q = (s1, %, 51,5, 51) be a word on the generators of W. Then
the Bott-Samelson variety of Q is
BS® = {(L1, P1, L2, P», L3) : the following incidences hold}
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Definition and properties

Definition via an example

Example

Let n=3 and Q = (s1, %, 51,5, 51) be a word on the generators of W. Then
the Bott-Samelson variety of Q is
Q {(L1, P1, L2, P», L3) : the following incidences hold}
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Definition and properties

Natural Map

There is a natural map mq : BS? — G /B mapping BS to the rightmost flag.

Example
Consider mq : BSt1v=2s1=2:51) 5 G/B

ISoo
’|\|\|\ — |

="
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Definition and properties

An important fiber

> Given w € W, the fiber mg'(wB) has dimension is |Q| — £(w)
> If w = Dem(Q) then mgl(wB) is smooth

Example

For Q = (s1, 52, 51, 52, 51) we have that the fiber is
m61(5152518) = {(L1, P1, L) : the following incidences hold}

(C3

C3\\ |

elye2 Pl 627 <e27e3>
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Definition and properties
Theorem (E)
The fiber m51(WB) is a toric variety if and only if the following hold

> Q is root independent,
> U(w) <|Q| < 4(w)+ n, and

> Dem(Q) = w.

Moreover, mg, (WB) is the toric variety associated to the brick polytope
B(Q,w).

Example

The toric variety of a 2-dimensional associahedron (a pentagon) is

C\\

(e1,€) P1 (e2,e3)

I\I\I\

Lo (es3)
=
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Definition and properties

How to prove this?

The theorem on the previous slide will follow from understanding the
symplectic structure on mal((B)W).

General Toric Symplectic Geometry

> We will give a torus action on mc_)l(wB)
> This action will allow us to have a moment map p : m61(WB) — R"

» Theorem(Atiyah, Guillemin-Sternberg): The image of the moment map is
the convex hull of the images of the T-fixed points under the moment
map.

» Whenever we have a toric variety the image of moment map tells us what
the polytope of this variety is.

Goal
Understand the T-fixed points to be able to describe the polytope
corresponding to m&l(wB).

Bott-Samelson varieties, subword complexes and brick polytopes cu



Bott-Samelson varieties for SLp
00000000000 e

Definition and properties

General Theorem

These symplectic tools give us a more powerful theorem:
Theorem (E)
The image of the moment map of the symplectic manifold mal(wB) is the

brick polytope B(Q, w).

So let’s find out more about the symplectic geometry of m51(B) and what its
T-fixed points are!
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Symplectic Structure on BSY

Symplectic Structure on BS®

Torus action

> Note that the torus T acts on C" by multiplication and this action can be
extended to T acting on each of the basis of the vector spaces in
(M,..., Vn) € BSC.

» The T-fixed points of this action are precisely the points (V4,..., Vi)
such that each vector space has as basis a subset of {e1,...,en}.

» Bott-Samelson varieties are symplectic manifolds with respect to this torus
and they have a moment map
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Symplectic Structure on BSY

Moment map

Given p = (V4,..., Vin) € BS? and i € [m] define

N(Pv ’) = (dimel(\/,-), Tt dimem(\/,-)) ’

where dim, (V) denotes the dimension of V on the e;-th coordinate.
Then the moment map is

BS? L5 R"

(Vh,..., Vi) <Zdime1(\/,-),...,Zdimem(\/,-)) .
i=1 i=1
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ymplectic Structure on BSY

From Bott-Samelsons to Subword Complexes

There is a nice 1-1 correspondence between T—fixed points of BS® and
subwords of Q. Moreover, the point corresponding to the subword J gets
mapped by m to the flag (][] J)B.

Example

The subword J = (s1, —, 51, 52, —) of Q = (s1, %, 51, S, 51) corresponds to the
point on the right and the image of m: BS® — G/B is (s1515)B = (s2)B.

(CB

| \

(e1, ) = (e, # (e, &)

<|> ><|> ><|> \< )
e1 €2 €1 = €1
l%
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ymplectic Structure on BSY

From Bott-Samelsons to Subword Complexes

There is a nice 1-1 correspondence between T—fixed points of BS® and
subwords of Q. Moreover, the point corresponding to the subword J gets
mapped by m to the flag (][] J)B.

Thus, the T—fixed points of the fiber m™!(wB) are encoded by the subwords J
of Q such that [TJ =w.

Therefore, the subword complex encodes the T-fixed points of mg'(wB)
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Brick polytopes for W = A, _{

Brick polytopes for W = A,_1

In the case W = A,_1, Pilaud and Santos defined the brick polytope in terms
of pseudoline arrangements.

Example
Let Q = (s1, %, 51, 52, 51), then wy = s15,51 = sps515, and we have the brick
configuration:

Figure : Bricks!
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Brick polytopes for W = A, _{

Brick polytopes for W = A,_1

In the case W = A,_1, Pilaud and Santos defined the brick polytope in terms
of pseudoline arrangements.

Example
Let Q = (s1, %2, 51, 52, 51), then wy = s1551 = sps15 and we have the pseudoline
arrangement corresponding to the subword J = (—, sz, 51,52, —):

This pseudoline arrangement gives the vector B(J) = (2,0, 2) obtained by
counting bricks above each line.

The brick polytope of Q is the convex hull of all the brick vectors B(J) where
J is the complement of a facet of A(Q, wp).
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Brick polytopes for W = A, _{

Bott-Samelsons, Cluster Complexes and Brick polytopes

Example

The pseudoline arrangement corresponding to the word J = (—, s, s1, 52, —)

gives a T-fixed point of BS(1:%2:51:52:51)
F
) =

c3

(e1, & e, e3) # (e2, €3)
en €& \ \
eve, # ene = &, es (e1 (e1) # (e3) = (e3)
e |= €1 £ €3 =| e3

Therefore the Bott-Samelson and the Brick stories coincide!
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The general Bott-Samelson story

Introduction

Idea

Let G be a complex semi simple Lie group, B be a Borel subgroup of G and T
be the maximal torus contained in B. Bott-Samelson varieties factor G/B into
a product of CP*'s

A tiny bit of history

» Defined by Bott and Samelson in 1950's to study the cohomology ring of
G/T

> Provide desingularizations for Schubert varieties
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Definition

Let G be a complex semisimple Lie group, let B be a Borel subgroup of G, and
T be a maximal torus contained in B. Let W be the Weyl group of G with
generators S = {si, ..., sn}, which correspond to the simple roots

A(W) ={ai,...,an}. Let P be a parabolic subgroup of G. We denote by P;
the minimal parabolic subgroup corresponding to s;, we then have that

P;/B = CP!

Definition

Let Q = (sj,.-.,Si,) be a word in the generators of W. Then the product

Pi, x --- x Pj, has an action of B™ given by:

(b1, bm) - (p1,- -, Pm) = (prb, by *paba, .., by 1 pbim)

The Bott-Samelson variety of @ is the quotient of the product of the P;'s by

this action
BS? := (Py x ---x P;)/B"

Bott-Samelson varieties are smooth, irreducible and |Q|-dimensional algebraic
varieties.
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Natural map

Bott-Samelson varieties come equipped with a natural map

BS® X% G/B
(plw"vp"")'—> (plpm)B

» The image of this map is the opposite Schubert cell X" := BwB, where
w = Dem(Q).

> In the case in which Q is reduced, this map is a resolution of singularities
of X".

» However, | have been concentrating on cases in which @ is not reduced.
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Symplectic Structure on BS®

Let T act on BS® by t- (p1,p2,...,Pm) = (t- p1, P2, - ., Pm).

The nice 1-1 correspondence we saw before holds between T —fixed points of
BS? and subwords of Q. Moreover, the point corresponding to the subword J
gets mapped by m to the flag ([[J)B € G/B.

Thus, the T—fixed points of the fiber m™!(wB) are encoded by the subwords J
of Q such that [TJ =w.

Again, we see that the subword complex encodes the T-fixed points of
mgl(wB)
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Moment Map

Given Q = (q1,-..,qm), we describe the image of the T-fixed points under the
moment map using the composition of the maps

Bs® <% [] 6/P, — ¢,
is;i€EQ

where P; is the maximal parabolic subgroup of G corresponding to
57 = {S1,...,§,‘,...,Sn}.
The map ¢ = (1, .., ©m) where the k-th component is

BS? 5 G/P;
(pl,...,pm) — (Hp,')Pf(.

i<j
For each k we have the moment map
Mk - G/P;{ — t*,

where pi(P;) = ws,, the fundamental weight corresponding to sy.
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Moment Map

The moment map of BS? is then

m
> ok o k.
k=1

Moreover, given a subword F and

pr = the fixed point corresponding to F

BSC “Eohk

k—1

pr— (] Qlr=t....1)(ws,, )-

It then follows that u(pr) = B(F), the brick vector of F.
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Theorems

Theorem (E)

The fiber mg'(wB) is a toric variety if and only if the following hold
> Q is root independent,
> 4(w) <|Q| < 4(w) + n, and

» Dem(Q) = w.
Moreover, m51(WB) is the toric variety associated to the brick polytope
B(Q,w).

Theorem (E)

The fiber mal(wB) is a symplectic manifold with a Torus action and the image
of its moment map is the brick polytope B(Q, w).
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Thank you!
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