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A history of the Catalan numbers

Catalan numbers

Euler’s polygon division problem: In 1751, Euler wrote a letter to Goldbach in
which he considered the problem of counting in how many ways can you
triangulate a given polygon?

Figure : Some triangulations of the hexagon

Euler gave the following table he computed by hand

n-gon 3 4 5 6 7 8 9 10
Cn−2 1 2 5 14 42 152 429 1430

and conjectured that Cn−2 = 2·6·10···(4n−10)
1·2·3···(n−1)
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A history of the Catalan numbers

Euler and Goldbach tried to prove that the generating function is

A(x) = 1 + 2x + 5x2 + 14x3 + 42x4 + 132x5 + . . . =
1− 2x −

√
1− 4x

2x2

Goldbach noticed that 1 + xA(X ) = A(x)1/2 and that this gives an infinite
family of equations on its coefficients.
However, they are stuck.
In the late 1750’s Euler contacts his frenemy Segner suggesting the
triangulation problem, but does not include much details besides the table until
the 7-gon.
In 1758 Segner writes a paper with a combinatorial proof of the recurrence

Cn+1 = C0Cn + C1Cn−1 + · · ·+ Cn−1C1 + CnC0

He also computes the values of Cn with n ≤ 18 but makes an arithmetic
mistake in C13 which causes troubles there on.
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A history of the Catalan numbers

Euler uses Segner’s recurrence to prove the equation on the generating function.

Euler publishes Segner’s paper in the journal of St. Petersburg Academy of
Sciences, but with his own summary.

In it he compliments Segner, comments on his numerical mistake and computes
Cn for n ≤ 23.

Hidden in all this is a proof of the product formula, which is equivalent to its
more common form Cn := 1

n+1

(
2n
n

)
. However, they do not publish this proof.

A self-contained proof is not published until 80 years later in France. In 1838
Terquem asks Liouville if he knows a simple way to derive the product formula
from Segner’s recurrence. Liouville in turn asks this to “various geometers” and
it eventually gets solved by Lamé.
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A history of the Catalan numbers

Why are they called Catalan numbers?

Catalan, a Belgian mathematician, was a student of Liouville. He published a
lot of papers about “Segner’s numbers” which popularized the subject.

His main contributions to this subject was to observe that Cn =
(
2n
n

)
−

(
2n
n−1

)
and to connect them to counting parenthesized expressions:

Given abcd, the possible parenthesized expressions are
((ab)c)d = (a(bc))d = a((bc)d) = a(b(cd)) = (ab)(cd).

The first time they are sort of called Catalan numbers is in a 1938 paper by
Bell, in which he calls them “Catalan’s numbers” but he doesn’t suggest this as
a name.
The term becomes standard only after Riodan’s book Combinatorial Identities
was published in 1968.
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A history of the Catalan numbers

From triangulations to trees to parentheses
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A history of the Catalan numbers

From triangulations to trees to parentheses
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A history of the Catalan numbers

From triangulations to trees to parentheses

root
d

c

b
a
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A history of the Catalan numbers

What do Catalan numbers count?

As of 2013, Stanley had 207 combinatorial interpretations for the Catalan
numbers in Stanley’s book Enumerative Combinatorics and addendum.

I Full binary trees with n + 1 leaves

I Standard Young tableaux whose diagram is a 2×n-rectangle

I Monotonic paths along the edges of a grid with n × n square cells, which
do not pass above the diagonal.

I http://www-math.mit.edu/~rstan/ec/catadd.pdf

It was later discovered that during the early 1700’s a Mongolian mathematician
named Minggatu used Catalan numbers to write the series expansion of sin(2θ)
in terms of sin(θ), however there is no evidence he proved that these numbers
were integers.

Further reading on Catalan numbers:
http://www.math.ucla.edu/~pak/lectures/Cat/pakcat.htm
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A history of the Catalan numbers

Pseudoline Arrangements

Consider a diagram with bricks so that the bounded bricks are ordered in a
triangular shape.

A pseudoline arrangement on this diagram is a collection of n pseudolines such
that each two have exactly one crossing and no other intersection.

1

2

3

4

3

2

1

4

The number of pseudoline arrangements on a brick diagram of this type with n
horizontal lines is Cn.
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The associahedron

The associahedron

The triangulations of a pentagon can be arranged into a polyhedral complex:
two triangulations are adjacent if they differ by one diagonal.
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The associahedron

The triangulations of a pentagon can be arranged into a polyhedral complex:
two triangulations are adjacent if they differ by one diagonal.
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The associahedron

The associahedron

The triangulations of a pentagon can be arranged into a polyhedral complex:
two triangulations are adjacent if they differ by one diagonal.

The first person to consider this was Dov Tamari.

He was born in Germany in 1911 as Bernhard Teitler. In 1942 he officially
changed his name to Dov Tamari, after spending time in a Jerusalem prison for
being a member of a militant underground organization and for being caught
with explosives in his room.
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The associahedron

Tamari’s thesis

Tamari completed his thesis at the Sorbonne in 1951. In this work he
considered the set of bracketed sequences as a partially ordered set, and he also
thought of this poset as the skeleton of a convex polytope. This partially
ordered set is now called the Tamari lattice.

Figure : Picture from Tamari’s thesis
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The associahedron

Polytopality of the associahedron

Given a finite collection of points in Rk , the polytope associated to this set is
the minimal convex set containing these points.

A polytopal realization of the associahedron Kn is an (n − 2)-dimensional
polytope such that its one skeleton is the Tamari lattice. In other words, the
polytope has as many vertices as triangulations of the (n + 1)-gon and two
vertices are adjacent if they differ by one diagonal.
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The associahedron

A polytopal realization of K4

(2,0,2)(0,2,2)

(0,3,1)

(1,3,0) (2,2,0)
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The associahedron

Polytopality of the associahedron

Given a finite collection of points in Rk , the polytope associated to this set is
the minimal convex set containing these points.

A polytopal realization of the associahedron Kn is an (n − 2)-dimensional
polytope such that its one skeleton is the Tamari lattice. In other words, the
polytope has as many vertices as triangulations of the (n + 1)-gon and two
vertices are adjacent if they differ by one diagonal.

Still the question remained if one could realize the associahedron as a polytope.
Given an n-gon is there an (n − 3)-dimensional polytope encoding the
triangulations of the polygon?
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The associahedron

History of the polytopality of the associahedron

I 1951: Tamari defines the associahedron combinatorially.

I 1963: Stasheff realizes the associahedron as a cell complex.

I 1960: Milnor brings a 3D model of the associahedron to Stasheff’s thesis.

I Kalai named it the associahedron and posed the problem to Haiman.

I 1984: Haiman gives a construction by inequalities, but it is unpublished
and only his hand written notes are available.

I 1989: First construction in print is done by Lee. One of his main interests
was to construct a polytope that reflects the symmetries of the n-gon.
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The associahedron

Towards geometry

Actually: many realizations have been discovered since. Many mathematicians
have been involved in the realizations of the associahedron and its
generalizations: Gelfand, Kapranov, Zelevinsky, Postnikov, Loday, Shnider,
Sternberg, Fomin, Hohlweg, Thomas, Lange and many, many more.

I Do you care about respecting the symmetry of the n-gon and want to see
it reflected in the polytope?

I or, do you prefer small integer coordinates for the vertices?
I or, do you care about geometry?

Figure : Loday’s 3D associaheron
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The associahedron

Why geometry?

A large number of realizations of the associahedron satisfy the following
properties:

I the polytope is rational, i.e., all edge directions are vectors in Zn,

I it is simple, i.e., there are n edges meeting at each vertex, and

I it is smooth, i.e., at each vertex the edge directions are a Z-basis of Zn.

However, to realize the associahedron as a rational polytope one must break
the symmetries of the n-gon.
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The associahedron

Why geometry?

A large number of realizations of the associahedron satisfy the following
properties:

I the polytope is rational, i.e., all edge directions are vectors in Zk ,

I it is simple, i.e., there are k edges meeting at each vertex, and

I it is smooth, i.e., at each vertex the edge directions are a Z-basis of Zk .

These properties tell us there is an underlying smooth projective toric variety.
We will get to this at the end of the talk.

(0, 0) (3, 0)

(0, 1)

Figure : A non smooth polytope
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Toric varieties

The toric variety of the associahedron

Since the associahedron is a nice polytope, “anyone” can construct the toric
variety of the associahedron by describing the affine variety around each vertex
and then glueing them together.

However, there is a nicer way.
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Toric varieties

Toric varieties

Definition
A toric variety is an algebraic variety X with an algebraic torus T = (C∗)n as an
open dense subset such that the action of T on T extends to the whole variety.

So to define a toric variety I need to specify

1. the algebraic variety X ,

2. the torus T ⊂ X , and

3. an action of T on T .

Given a Delzant polytope, one can construct a smooth projective toric variety
associated to this polytope.
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The algebraic variety

The toric variety of the associahedron

The toric variety of a particular polytopal realization of the 2-dimensional
associahedron (a pentagon) is

X = {(L1,P, L2) : the diagram below holds}

C3

〈e1, e2〉

〈e1〉 L1

P

L2

〈e2, e3〉

〈e3〉

0
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The algebraic variety

The torus

T = {(L1,P, L2) : the diagram below holds}

C3

〈e1, e2〉

〈e1〉 6=

6=

L1

P

6=

6=

L2

〈e2, e3〉

6= 〈e3〉

0
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The algebraic variety

The torus

T = {(a, b, c) ∈ (C∗)3 : the diagram below holds}

C3

〈e1, e2〉

〈e1〉 6=

6=

〈ae1 + be2〉

P

6=

6=

〈be2 + ce3〉

〈e2, e3〉

6= 〈e3〉

0

T acts on T by coordinate-wise multiplication
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The algebraic variety

Motivation of relation with associahedron

There is a one-to-one correspondence between pseudoline arrangements and
T -fixed points, a.k.a. elements of the toric variety such that each subspace is
generated has as basis a subset of {e1, e2, e3}.

= =6=〈e1〉 〈e1〉 〈e3〉 〈e3〉
6= 6=〈e1, e2〉 〈e1, e3〉 〈e2, e3〉

C3

〈e1, e2〉

〈e1〉 =

6=

〈e1〉

〈e1, e3〉

6=

6=

〈e3〉

〈e2, e3〉

= 〈e3〉

0
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The algebraic variety

C4

〈e1, e2, e3〉

〈e1, e2〉

〈e1〉

0

L1

P1

S

P2

L2

〈e2, e3, e4〉

L3

〈e3, e4〉

〈e4〉

Figure : Loday associahedron
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The algebraic variety

C4

〈e1, e2, e3〉

〈e1, e2〉

〈e1〉

0

L1

P1

S

P2

L2

S2

〈e4〉

〈e3, e4〉

〈e2, e3, e4〉

Figure : Chapoton-Fomin-Zelevinsky
associahedron
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The associahedron and mathematics

The associahedron is of interest to discrete geometers, for example they want
to understand the realization space? (What points in Rn−2 have convex hull
the associahedron Kn)

For type A cluster algebras, the associahedron encodes mutation between
cluster variables.

The associahedron arises in Hubbard and Masur’s 1979 paper “Quadratic
differentials and foliation’s”. Here they have a nice proof that Kn is
homeomorphic to Sn−2.
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The associahedron and homotopy

Stasheff and the associahedron

In the 60’s, Stasheff invented A∞-spaces and A∞-algebras as a tool to study
“group-like” spaces.

Let (X , ?) be a topological space with base point ? and let ΩX denote the
space of loops in X , i.e. a point in ΩX is a continuous map f : S1 → X taking
the base point of the circle to ?.

We then have a map m2 : ΩX × ΩX → ΩX defined by m2(f1, f2) = f1 ∗ f2, i.e.
concatenate the two paths.

f1 ∗ f2

f1

f2
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The associahedron and homotopy

Stasheff and the associahedron

Concatenating is not associative:

However they are homotopic by a map m3 : [0, 1]× ΩX × ΩX → ΩX
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The associahedron and homotopy

Stasheff and the associahedron

When we want to concatenate 4 factors there are 5 possibilities.

Using m3 we obtain two paths of homotopies joining ((f1 ∗ f2) ∗ f3) ∗ f4 with
f1 ∗ (f2 ∗ (f3 ∗ f4))

These paths are homotopic by the map m4 : K4 × (ΩX )4 → ΩX , where K4

denotes the pentagon bounded by these two paths.
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The associahedron and homotopy

Stasheff and the associahedron

To compose 5 factors we get 14 possibilities corresponding to the 14 binary
trees with 5 leaves. Using m3 and m4 we obtain paths using the compositions
and faces linking the paths. The resulting sphere is the boundary of K5.

Figure : The associahedron K5
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The associahedron and homotopy

A∞-spaces

Stasheff defined cell complexes Kn of dimension n − 2 for all n ≥ 2 and defined
an A∞-space to be a topological space Y endowed with maps
mn : Kn × Y n → Y for n ≥ 2 satisfying some suitable compatibility conditions
and admitting a “unit”.

A topological space that admits the structure of an A∞-space and whose
connected components form a group is homotopy equivalent to a loop space.

Read more about this in Keller’s introductory notes:
http://arxiv.org/pdf/math/9910179v2.pdf (I took some pictures from this
paper for this talk.)
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Spaces tessellated by associahedra

Tesselations by associahedra

What happens if we admit commutation among the variables we are
multiplying?
(ab)c = (ba)c 7→ b(ac)

a b c a b c

a c b

Figure : Get all binary trees with their leaves labelled with three K3.

That means we can change the labels on the sides of the n-gon, or consider all
binary trees with their leaves labeled
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Spaces tessellated by associahedra

Nice pictures by Satyan Devadoss
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Spaces tessellated by associahedra

Space of phylogenetic trees

A rooted tree is a graph that has no cycles and which has a vertex of degree at
least 2 labelled as the root of the tree.

Its leaves are all the vertices of degree 1. We label them from 1 to n.

A phylogenetic tree is a rooted tree with no vertices of degree 2 such that each
internal edge is assigned a nonnegative length.

The space Tn of phylogenetic trees on n leaves parametrizes all such trees with
nonnegative internal edge measures.
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Spaces tessellated by associahedra

Space of phylogenetic trees T4

1 2 3 4

1 2 3 4

1 2 3 4
1 2 3 41 2 3 4

a=
b

a=0
b>0

b=0
a>0

a=b

a=0

b>0
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Spaces tessellated by associahedra

Space of phylogenetic trees

Its leaves are all the vertices of degree 1. We label them from 1 to n.

A phylogenetic tree is a rooted tree with no vertices of degree 2 such that each
internal edge is assigned a nonnegative length.

The space Tn of phylogenetic trees on n leaves parametrizes all such trees with
nonnegative internal edge measures.

The space of phylogenetic trees is used to encode evolutionary relationships
between species. Each leaf is a species and the tree structure records their
evolutionary history.

The space of phylogenetic trees Tn is “tiled” by n!/2 associahedra.
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Spaces tessellated by associahedra

Tesselations by associahedra in other areas

Figure : The moduli space M0,n(R) is tiled by 60 associahedra
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Spaces tessellated by associahedra

Thank you!
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