A combinatorial approach to the study of divisors on $\overline{M}_{0,n}$

Laura Escobar

Encuentro Colombiano de Combinatoria 2012 June 14, 2012

イロト イヨト イヨト イヨト

The combinatorial Problem The cones $\mathfrak U$ and $\mathfrak L$ for the space of phylogenetic trees The algebraic geometry story

Goal

Goal: Illustrate how a problem from algebraic geometry can be approached using combinatorics

< ロ > < 同 > < 回 > < 回 > < 回 > <

The combinatorial Problem

- The space
- The players
- The game

2 The cones $\mathfrak U$ and $\mathfrak L$ for the space of phylogenetic trees

- The cone \mathfrak{U}
- ${\ensuremath{\, \bullet \, }}$ The cone ${\ensuremath{\mathfrak L} }$

- Moduli spaces
- Divisors
- Useful tool

The space The players The game

Outline

The combinatorial Problem

- The space
- The players
- The game

2) The cones ${\mathfrak U}$ and ${\mathfrak L}$ for the space of phylogenetic trees

- The cone £1
- The cone £
- 3 The algebraic geometry story
 - Moduli spaces
 - Divisors
 - Useful tool

Cones

Definition

A cone is the positive span of a finite number of vectors, i.e., a set of the form

$$\mathsf{pos}(v_1,\ldots,v_k) := \{\lambda_1 v_1 + \cdots + \lambda_k v_k : \lambda_i \ge 0\}$$

Cones can also be expressed as a finite intersection of halfspaces.

 $\begin{array}{c} \mbox{The combinatorial Problem}\\ \mbox{The cones \mathfrak{U} and \mathfrak{L} for the space of phylogenetic trees}\\ \mbox{The algebraic geometry story} \end{array}$

The space The players The game

Fans

Definition

A fan is a family of nonempty cones such that

- Every nonempty face of a cone in the fan is also a cone of the fan,
- Ithe intersection of any two cones is a face of both.

The combinatorial Problem The cones £ and £ for the space of phylogenetic trees The algebraic geometry story

Important example: Space of Phylogenetic trees

Definition

- A rooted tree is a graph that has no cycles and which has a vertex of degree at least 2 labelled as the root of the tree.
- The leaves of the tree are all the vertices of degree 1; we label them from 1 to *n*.

Each vertex of the tree corresponds to a subset of $\{1, \ldots, n\}$

• • • • • • • • • • • • •

The space The players The game

Coarse subdivision on $\mathcal{T}(K_n)$

- There is a fan whose cones are in 1-1 correspondence with rooted trees with *n* labelled leaves.
- Maximal cones correspond to binary trees.
- Rays correspond to subsets of $\{1, \ldots, n\}$ of size ≥ 2 , so a cone corresponding to the tree *T* is generated by the rays corresponding to the vertices of *T*.
- The union of the cones of this fan is the space of phylogenetic trees

The space The players The game

Star¹-convex functions

Definition

Given a fan Δ , $N(\Delta)$ is the set of piecewise linear functions $\varphi : \bigcup_{\sigma \in \Delta} \sigma \to \mathbb{R}$

that are linear on each cone of Δ .

 $N(\Delta)$ is isomorphic to $\mathbb{R}^{\# \text{ of rays}}$, i.e., a function φ is determined by its values on the rays.

Phylogenetic case

A function $\varphi \in N(\Delta)$ is determined by the values on the rays v_l where l is a subset of $\{1, \ldots, n\}$ of size ≥ 2 .

 The combinatorial Problem
 The space

 The cones £1 and £ for the space of phylogenetic trees
 The players

 The algebraic geometry story
 The game

Definition

Let $\sigma \in \Delta$, we say that $\varphi \in N(\Delta)$ is star¹-convex on σ if it satisfies that

$$\varphi(u_1 + \cdots + u_k) \leq \varphi(u_1) + \cdots \varphi(u_k)$$

for each u_1, \ldots, u_k such that

• $u_1 + \cdots + u_k \in \sigma$, and

2 each $u_i \in \tau_i$ where $\tau_i \supset \sigma$ and $\dim(\tau_i) = \dim(\sigma) + 1$, i.e., $\tau_i \in \operatorname{star}^1(\sigma)$.

Example

star¹(σ) of the cone σ corresponding to the red vertex.

Cones on $N(\Delta)$

Definition

Let σ be a cone of a fan Δ , define

- $\mathfrak{C}(\sigma)$, the set of functions $\varphi \in N(\Delta)$ that are star¹-convex on σ ,
- the set of functions in $N(\Delta)$ star¹ convex on all cones $\sigma \in \Delta$: $\mathfrak{L}(\Delta) := \bigcap_{\sigma \in \Delta} \mathfrak{C}(\sigma)$, and
- the set of functions in N(Δ) star¹ convex on all cones σ ∈ Δ of codimension 1:

$$\mathfrak{U}(\Delta) := \bigcap_{\sigma \in \Delta, \operatorname{ codim}(\sigma)=1} \mathfrak{C}(\sigma).$$

Question

Clearly $\mathfrak{L}(\Delta)\subseteq\mathfrak{U}(\Delta),$ but are the two cones equal for certain fans?

Outline

The combinatorial Problem

- The space
- The players
- The game

2 The cones \mathfrak{U} and \mathfrak{L} for the space of phylogenetic trees

- The cone $\mathfrak U$
- The cone $\mathfrak L$

3 The algebraic geometry sto

- Moduli spaces
- Divisors
- Useful tool

Theorem

Trees corresponding to cones of codimension 1 have only one vertex with exactly 3 children. Each of these trees gives a halfspace for \mathfrak{U} which depends only on this vertex and its children.

Example

For K_5 , \mathfrak{U} is the intersection of 65 halfspaces in \mathbb{R}^{26} . Some of the halfspaces:

$$arphi(123) + arphi(4) + arphi(5) + arphi(12345) \ \leq arphi(1234) + arphi(1235) + arphi(45)$$

$$arphi(12) + arphi(3) + arphi(45) + arphi(12345)$$

 $\leq arphi(123) + arphi(345) + arphi(1245)$

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Inductive approach

Theorem

If $\mathfrak{L} = \mathfrak{U}$ for the space of phylogenetic trees with n - 1 leaves and \mathfrak{U} is contained in the intersection of the cones given by the trees with only one internal vertex and at most n leaves, then $\mathfrak{L} = \mathfrak{U}$ for the space of phylogenetic trees with n leaves.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The combinatorial Problem The cones £ and £ for the space of phylogenetic trees The algebraic geometry story

Moduli spaces Divisors Useful tool

Outline

The combinatorial Problem

- The space
- The players
- The game

2) The cones ${\mathfrak U}$ and ${\mathfrak L}$ for the space of phylogenetic trees

- The cone II
- The cone £

3 The algebraic geometry story

- Moduli spaces
- Divisors
- Useful tool

Moduli spaces Divisors Useful tool

General idea

Theorem (Gibney and Maclagan)

The cones $\mathfrak L$ and $\mathfrak U$ give us a tool to compute an important cone which arises in algebraic geometry.

- A central goal in algebraic geometry is to understand maps X → P^k, for a projective variety X.
- A main tool in studying these maps is the nef cone of *X*.
- Interesting unknown case when $X = \overline{M}_{0,n}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Moduli spaces Divisors Useful tool

Moduli spaces

Definition

The moduli space $M_{0,n}$ is a geometric space whose points correspond to isomorphism classes of smooth curves of genus 0 with *n* distinct marked points.

- $M_{0,n} = \{\mathbb{P}^1 \text{ with } n \text{ distinct marked points}\}/ \text{ automorphisms.}$
- Smooth space of dimension *n* − 3.
- Understanding of this space tells us a lot about curves.

Deligne-Mumford compactification $\overline{M}_{0,n}$

Add every curve with *n* marked points whose group of automorphisms fixing those points is finite.

Moduli spaces Divisors Useful tool

Divisors (simplified)

Definition

A Divisor of a variety X is a finite sum of the form $\sum_i a_i D_i$ where each $a_i \in \mathbb{R}$ and each D_i is a codimension 1 subvariety of X.

Definition

- Let *D* be a divisor and *C* a curve in *X*, then $D \cdot C := \sum_i a_i |D_i \cap C|$.
- The nef cone of X is the cone generated by divisors such that D · C ≥ 0 for all curves C.

Example

 $D = \sum_{i} a_i D_i$ with $a_i \ge 0$ is in the nef cone.

イロン イロン イヨン イヨン

Useful tool

There is a natural embedding of $\overline{M}_{0,n} \hookrightarrow X_{\Delta}$, where X_{Δ} is the toric variety of the fan of the space of phylogenetic trees.

The cones $\mathfrak{L}(\Delta)$ and $\mathfrak{U}(\Delta)$ are cones of divisors on X_{Δ} .

Gibney and Maclagan use this embedding to pull back these cones to cones of divisors on $\overline{M}_{0,n}$ which give upper and lower bounds for the nef cone of $\overline{M}_{0,n}$.

If we can prove $\mathfrak{L}(\Delta_n) = \mathfrak{U}(\Delta_n)$, where Δ_n is the space of phylogenetic trees with *n* leaves, then we would have a nice description of the nef cone of $\overline{M}_{0,n}$, which is in general hard to compute.

This technique can also be applied to other projective varieties X for which there is a nice embedding to a toric variety.

The combinatorial Problem	Moduli spaces
The cones $\mathfrak U$ and $\mathfrak L$ for the space of phylogenetic trees	Divisors
The algebraic geometry story	Useful tool

Thank you!

▲■ ▶ ▲ 国 ▶ ▲ 国

크