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The classical wave equation utt = ∆u in n+ 1 dimensions, and its various modifications,
have been studied for centuries, and one of the most important features concerns the
domain of dependence of the solution u on initial data: u|t=0 = f , ut|t=0 = g. To take the
simplest example, the solution for n = 1 is given by the ancient formula of d’Alembert:

(1) u(t, x) =
1
2
(
f(x− t) + f(x+ t)

)
+

1
2

∫ x+t

x−t
g(y) dy

where one sees explicitly that the value of the solution at (t, x) depends only on the ini-
tial data within the ball of radius |t| centered at x. This is expressed as the finite speed
of propagation, and is a feature of a large class of equations called hyperbolic equations.
Remarkably, for n ≥ 3 and odd, the solution to the wave equation depends only on an
arbitrarily thin neighborhood of the boundary sphere. In fact, that’s what ensures our
ability (as far as classical physics goes) to see and hear sharp signals without residual
vibrations. This phenomenon is termed Huygens’ principle, and turns out to be ex-
tremely rare among hyperbolic equations. It was believed for a long time that the only
such second-order linear hyperbolic equations (i.e., wave operator plus lower-order terms
with non-constant coefficients) are the classical wave equation in odd spatial dimensions
(excluding n = 1). Since 1950s, non-trivial examples have been found, and one interesting
class arises from root systems (or rather, finite reflection groups) in Rn, and has been
explained by means of Dunkl operators (see below).

The proper setting to formulate Huygens’ principle, at least for linear equations, is the
theory of distributions. The solution to the classical wave equation can be expressed as

u(t, ·) = (∂tPt) ∗ f + Pt ∗ g
where Pt ∈ S ′(Rn) is the time t slice of a certain distribution P ∈ S ′(Rn+1). One may
write P = E−E−, where E is supported in the future cone C = {(t, x) ∈ R×Rn : |x| ≤ t},
and E−(t, x) = E(−t,−x) is supported in the past cone −C. Furthermore, E and E− are
both fundamental solutions of the wave operator: (∂2

t −∆)E = δ, and they are the unique
ones with the prescribed support1. (For n = 1, d’Alembert’s formula says that E is simply
1
2 of the characteristic function 1C .) The Huygens’ principle now becomes a question of
the precise support structure of E (and one should take it as the definition):

Huygens’ principle holds if and only if suppE ⊆ ∂C = {(t, x) : |x| = t}.

1One way to express the uniqueness is to say that D′(C) of distributions supported in a sharply peaked
convex cone C is an associative algebra under convolution, for which δ is the identity element. A funda-
mental solution is then an inverse to (∂2

t −∆)δ in this convolution algebra.
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There is an explicit form for E, from which one can see immediately that Huygens’ principle
holds if and only if n ≥ 3 and n is odd.

If we add non-constant coefficient lower-order terms to the wave operator, the funda-
mental solution should be thought of as (a family of) distributions E(·, ξ) ∈ S ′(Rn+1),
supported in the future cone ξ + C with apex at ξ ∈ Rn+1, such that LE(·, ξ) = δ(· − ξ).
For the wave operator L = ∂2

t−∆, it relates to the previous case via E(·, ξ) = E(·−ξ). It has
been shown that Huygens’ principle never occurs in even spatial dimensions [Hadamard],
and the only one for n < 5 is the wave equation in n = 3 [Mathisson, Asgeirsson].

In 1950s, Stellmacher discovered the first nontrivial example (for n = 5), and gener-
alizations of it point to root systems [Berest-Veselov]. For a root system R ⊂ Rn (and
parameters kα ≥ 0), the operator

(2) L = ∂2
t −∆ +

∑
α∈R+

kα(kα + 1)(α, α)
(α, x)2

satisfies Huygens’ principle if and only if n is odd, kα ∈ N and

(3) 3 + 2
∑
α∈R+

kα ≤ n

These operators actually arise from Dunkl operators (defined below), and also feature in
integrable systems.

Note that Huygens’ principle is still exceedingly rare, and for each n there are only
finitely many choices of kα. A remarkable recent result [Ben Säıd-Ørsted] has expanded
the horizon, though we are to leave the realm of local operators (differential operators).
For example, in one spatial dimension, the equation

(4) utt(t, x) = uxx(t, x) +
2ux(t, x)

x
− u(t, x)− u(t,−x)

x2

is solved by (take f = 0 for simplicity; compare with Eq. (1))

(5) u(t, x) =
1

2x

∫ x+t

x−t
ξ g(ξ) dξ − 1

8x2

∫ x+t

x−t

(
t2 − (x− ξ)2

) (
g(ξ)− g(−ξ)

)
dξ

When expressed in terms of fundamental solution E(·, ξ), one can check that the support
is actually the shaded region

Physically, if you stand at x and wait for the signal emitted from ξ, you will hear an
extended sound, but eventually it quiets down, as if the sound were canceled out by the
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“reflected” sound from −ξ. A similar phenomenon also happens with some higher-order
hyperbolic equations with constant coefficients, and was studied as the problem of lacuna
[Petrovsky, Atiyah-Bott-G̊arding].

Where does such an equation as (4) come from? The answer is again Dunkl operators
(with R = A1 and k = 1 in the notations below).

1. Dunkl operator

Let R be a root system in Rn, where the (standard) inner product is denoted by (·, ·).
Let W = 〈sα〉α∈R ⊂ O(n) be the associated finite reflection group, and choose (and fix) a
W -invariant function α 7→ kα ≥ 0 on R. Define the Dunkl operators by

(6) ∂ξf(x) = ∂ξf(x) +
∑
α∈R+

kα(α, ξ)
f(x)− f(sαx)

(α, x)
.

That is, the Dunkl operator ∂ξ differs from the usual directional derivative ∂ξ by a non-
local part involving the difference of the function f across each reflecting plane (α, x) = 0.
The fact that makes Dunkl operators so useful is that they commute: ∂ξ∂η = ∂η∂ξ for any
ξ, η ∈ Rn. Note also that if f is a polynomial, then ∂ξf is still a polynomial, of one less
the degree.

Thanks to commutativity, any polynomial P (ξ) ∈ C[ξ1, . . . , ξn] gives rise to a non-local
linear operator P (∂) as the Dunkl version of P (∂). Of particular importance is the Dunkl
Laplacian

∆f(x) =
n∑
i=1

∂2
ξi
f(x) = ∆f(x) +

∑
α∈R+

kα

[
2 ∂αf(x)

(α, x)
− (α, α)

f(x)− f(sαx)
(α, x)2

]
.

The new class of equations in [Ben Säıd-Ørsted] is simply the Dunkl wave equation:

(7)


utt = ∆u
u(0, x) = f(x)
ut(0, x) = g(x)

and we will solve it by developing a series of Dunkl analogues of basic notions in ordi-
nary analysis, to make sure everything works out the same way [Dunkl, Opdam, de Jeu,
Trimèche].

The Dunkl transform is the proper analogue of Fourier transform. In lieu of the usual
exponential kernel e(·,·), we have a unique holomorphic function e(·,·) on Cn×Cn satisfying

∂ξe
(·,w) = (ξ, w)e(·,w) and e(0,w) = 1

Now, the Dunkl transform of f ∈ L1 = L1(Rn, v(x)dx) is defined by

Ff(ξ) =
∫

Rn
f(x)e(x,−iξ)v(x)dx
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where the measure is given by

v(x) =
∏
α∈R+

|(α, x)|2kα .

The Dunkl transform enjoys many of the properties of Fourier transform, such as a
Plancherel formula in L2 = L2(Rn, v(x)dx), and that its inverse is given by

F−1f(x) =
1
c2

∫
Rn
f(ξ)e(x,iξ)v(ξ)dξ

where

c =
∫

Rn
e−|x|

2/2v(x)dx.

For purposes of solving Dunkl differential equations, we need the essential properties:

F∂j = iξjF ∂jF = F (ixj)

Furthermore, F (and its properties) extends to tempered distributions S ′(Rn) in the usual
way: 〈Fu, φ〉 = 〈u,Fφ〉 for u ∈ S ′ and φ ∈ S.

At the heart of the construction of e(·,·) is a certain linear isomorphism V that intertwines
the algebra generated by the Dunkl operators with the algebra of ordinary differential
operators:

∂ξV f = V ∂ξf f ∈ C∞(Rn)

Now the Dunkl translation defined by

τyf(x) = V xV y(V −1f)(x− y)

makes Dunkl operators “translation-invariant”: ∂ξτyf(x) = τy∂ξf(x). We will denote it
suggestively as τyf(x) = f(x−y), though it’s not to be taken that x−y means anything.

The Dunkl convolution ∗ is defined by means of this translation operator:

(f∗g)(x) =
∫

Rn
f(y)g(x−y)v(y)dy

for functions f and g that make the integral converge. For distributions S and T , their
Dunkl convolution, if exists, is defined via

〈S∗T , φ〉 = 〈S ⊗ T , φ(x+y)〉

which agrees with the previous definition for regular distributions. (For purposes of solving
linear PDEs, we are mostly interested in the convolution of a distribution with a smooth
function.) The important property that further justifies all these is

F (f∗g) = (Ff)(Fg)

from which it follows that f∗g = g∗f .
Finally, we can solve the Dunkl wave equation (7) by

(8) u(t, ·) = (∂tP t)∗f + P t∗g
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where

(9) P t(x) = P (t, x) = F−1 sin(t|ξ|)
|ξ|

.

An application of the Paley-Wiener theorem for Dunkl transform shows that suppP ⊆
C ∪ −C, which makes the convolution in (8) sensible.

2. Huygens’ Principle and Representation Theory of sl2

Huygens’ principle in general appears to be a rather rigid phenomenon and only happens
for special parameter values, so it does not come as a surprise that representation theory
has some bearing on it. In fact, we have Huygens’ principle for Dunkl wave equation (7)
in the sense that suppE ⊆ ∂C if and only if (compare with (3))

(10)
n− 3

2
+ γ ∈ N = 0, 1, 2, . . .

where γ =
∑

α∈R+ kα.
One way to ensure that a distribution u is supported in some set X ⊂ Rn is to have

fu = 0, where f is a smooth function that vanishes identically on X. For our case, P is
supported on X = ∂C ∪ −∂C if and only if

(11) (t2 − |x|2)mP = 0 for some m ∈ N+.

The necessity is due to the fact that every distribution is of some finite order. (Think
about xδ′ 6= 0, but x2δ′ = 0 in S ′(R).)

It turns out that we actually have a representation of sl2 on S ′(Rn+1) that is just right
for this kind of consideration. Let e, f, h be the standard basis of sl2, i.e.,

[e, f ] = h [h, e] = 2e [h, f ] = −2f

and define first a representation on S(Rn+1), or for that matter C∞(Rn+1) [Heckman]:

ω(e) =
1
2
(
t2 − |x|2

)
ω(f) = −1

2
(
∂2
t −∆

)
ω(h) =

n+ 1
2

+ γ + t∂t +
n∑
j=1

xj∂j

The correct representation ω′ on S ′(Rn+1) is given by the same expression for e and f , but

ω′(h) =
n+ 1

2
− γ + t∂t +

n∑
j=1

xj∂j

with a sign change2. Note that our P ∈ S ′(Rn+1) satisfies ω′(f)P = (∂2
t −∆)(E−E−) = 0,

and (11) becomes ω′(e)mP = 0 for some m. This will be a finite-dimensional sl2-module,

2What seems a contradiction is not so: the (natural) embedding T : C∞(Rn) → D′(Rn) is given by
〈T f , φ〉 =

R
Rn f(x)φ(x)v(x)dx, and v(x) is homogeneous of degree 2γ.
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if we can make sure that P is an eigenvector of ω′(h), which is nothing but the Euler
operator (up to an additive constant). The best way to see that is via δ ∈ S ′(Rn+1), which
is homogeneous of degree −(n+ 1), or

ω′(h)δ = −
(
n+ 1

2
+ γ

)
δ

so the fundamental solution E (and in turn P ) must also be an eigenvector of ω′(h), but
with eigenvalue 2 more than that of δ, i.e.,

ω′(h)P = −
(
n− 3

2
+ γ

)
P .

That means P is indeed a lowest weight vector in S ′(Rn+1), so the necessary condition for
it to generate a finite-dimensional representation is precisely (10):

n− 3
2

+ γ ∈ N.

That’s almost the whole story, except for a caveat that it is possible that P generates
an infinite dimensional representation, isomorphic to the Verma module, that has a finite-
dimensional quotient. For that, one needs more representation theory; in fact it seems
unavoidable to invoke the Lie group Mp(2,R), the double cover of SL(2,R).

The action of W (instead of O(n) in the classical case) commutes with Mp(2,R) on
S(Rn) (the spatial part), and we have the decomposition as W ×Mp(2,R) representations

S(Rn)W×t =
∞⊕
j=0

Hnj ⊗ Vn2 +γ+j

where Hnj = ker ∆ is the space of Dunkl harmonic polynomials of degree j on Rn, and Vλ
is the lowest weight sl2-module of lowest weight λ.

The temporal part needs to have highest weight modules:

S(R) = V − 1
2
⊕ V − 3

2

in order for the tensor product to be our representation ω on S(Rn+1). Now, it’s pure rep-
resentation theory to show that, under the condition (10), the “formal vector completion”
of the W -invariant piece

Vn
2
+γ ⊗ V − 3

2
(with j = 0)

indeed contains finite-dimensional representations, and the one generated by P is in here.


