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1 Introduction

As is apparent from most text books, the definition of a Markov process includes, in the
most natural way, processes that are time inhomogeneous. Nevertheless, most modern
references quickly restrict themselves to the time homogeneous case by assuming the
existence of a time homogeneous transition function, a case for which there is a vast
literature.

The goal of this paper is to point out some interesting problems concerning the
quantitative study of time inhomogeneous Markov processes and, in particular, time
inhomogeneous Markov chains on finite state spaces. Indeed, almost nothing is known
about the quantitative behavior of time inhomogeneous chains. Even the simplest
examples resist analysis. We describe some precise questions and examples, and a few
results. They indicate the extent of our lack of understanding, illustrate the difficulties
and, perhaps, point to some hope for progress.

We think the problems discussed below have an intrinsic mathematical interest (in-
deed, some of them appear quite hard to solve) and are very natural. Nevertheless, it is
reasonable to ask whether or not time inhomogeneous chains are relevant in some appli-
cations. Most of the recent interest in Markov chains is related to Monte Carlo Markov
Chain algorithms. In this context, one seeks a Markov chain with a given stationary
distribution. Hence, time homogeneity is rather natural. See, e.g., [26]. Still, one of
the popular algorithms of this sort, the Gibbs sampler, can be viewed as a time inhomo-
geneous chain (one that, despite huge amount of attention, is still resisting analysis).
Time inhomogeneity also appears in the so-called simulated annealing algorithms. See
[12] for a discussion that is close in spirit to the present work and for older references.
However, certain special features of each of these two algorithms distinguish them from
the more basic time inhomogeneous problems we want to discuss here. Namely, in the
Gibbs sampler, each individual step is not ergodic (it involves only one coordinate)
whereas, in the simulated annealing context, the time inhomogeneity vanishes asymp-
totically. Other interesting stochastic algorithms that present time inhomogeneity are
discussed in [10].

In many applications of finite Markov chains, the kernel describes transitions be-
tween different classes in a population of interest. Assuming that these transition
probabilities can be observed empirically, one application is to compute the stationary
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measure which describes the steady state of the system. Examples of this type include
models for population migrations between countries, models for credit scores used to
study the default risk of certain loan portfolios, etc. In such examples, it is natural to
consider cases when the Markov kernel describing the evolution of the system depends
on time in either a deterministic or a random manner. The reason for the time inho-
mogeneity may come, for example, from seasonal factors. Or it may model various
external events that are independent of the state of the system. Even if one decides that
time homogeneity is warranted, one may wish to study the possible effects of small but
non-vanishing time dependent perturbations of the model. It seems rather important
to understand whether or not such perturbations can drastically alter the behavior of
the underlying model. This type of practical questions fit nicely with the theoretical
problems discussed below.

A large class of natural examples of time inhomogeneous chains comes from time
inhomogeneous random walks on groups. These are discussed in [2], [28]. A special
case is the semi-random transpositions model discussed in [14], [21], [22], [28].

2 Merging and stability

This section introduces the two main properties we want to focus on: merging (in total
variation or relative-sup) and stability. Given two Markov kernels K1, K2, we set

K1K2.x; y/ D
X

z

K1.x; z/K2.z; y/:

Given a sequence .Ki /
1
1 and 0 � m � n, we set

Km;n D KmC1 : : : Kn; Km;m D I:

2.1 Merging. Recall that an aperiodic irreducible Markov kernel K on a finite state
space admits a unique invariant probability measure � . Further, for any starting measure
�0 and any large time n, the distribution �n D �0Kn at time n is both essentially
independent from the starting distribution �0 and well approximated by � .

Consider now the evolution of a system started according to an initial distribution
�0 and driven by a sequence .Ki /

1
1 of Markov kernels so that, at time n, the distribution

is �n D �0K1K2 : : : Kn. In [1], [4] such a sequence .�n/1
1 of probability measures is

called a “set of absolute probabilities” but we will not use this terminology here. In many
cases, for very large n, the distribution �n will be essentially independent of the initial
distribution �0. Namely, if �0; �0

0 are two initial distributions and �n D �0K1 : : : Kn,
�0

n D �0
0K1 : : : Kn, then it will often be the case that

lim
n!1 k�n � �0

nkTV D 0:

We call this loss of memory property merging (total variation merging, to be more
precise).
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One may also want to know whether or not

lim
n!1 sup

x

²ˇ̌̌
ˇ�

0
n.x/

�n.x/
� 1

ˇ̌̌
ˇ
³

D 0:

We call this later property relative-sup merging. Total variation merging is often dis-
cussed under the name of “weak ergodicity”. See, e.g., [1], [4], [6], [15], [16], [18],
[24]. We think “merging” is more appropriate.

If there is merging, then one may want to ask quantitative questions about the
merging time. For any � 2 .0; 1/, we set

T1.�/ D inf ¹n W 8�0; �0
0; k�n � �0

nkTV � �º (2.1)

and

T1.�/ D inf
²
n W 8�0; �0

0;

�����0
n

�n

� 1

����1
� �

³
: (2.2)

The next definition introduces the collective notions of merging and merging time
for a given set Q of Markov kernels.

Definition 2.1. Let Q be a set of Markov kernels on a finite state space. We say that
Q is merging in total variation (resp. relative-sup) if any sequence .Ki /

1
1 of kernels in

Q is merging in total variation (resp. relative-sup). We say that Q has total-variation
(resp. relative-sup) �-merging time at most T .�/ if the total variation (resp. relative-sup)
�-merging time (2.1) (resp. (2.2)) is bounded above by T .�/, for any sequence .Ki /

1
1

of kernels in Q.

Let us emphasize that, from the view point of the present work, it is more natural
to think in terms of properties shared by all sequences drawn from a set of kernels than
in terms of properties of some particular sequence.

2.2 Stability. In the previous section, the notion of merging was introduced as a natural
generalization of the loss of memory property in the time inhomogeneous context. The
notion of stability introduced below is a generalization of the existence of a positive
invariant distribution.

Definition 2.2. Fix c � 1. Given a Markov chain driven by a sequence of Markov
kernels .Ki /

1
1 , we say that a probability measure � is c-stable (for .Ki /

1
1 ) if there

exists a positive measure �0 such that the sequence �n D �0K0;n satisfies

c�1� � �n � c�:

When such a measure � exists, we say that .Ki /
1
1 is c-stable.

Example 2.3. Let K be an irreducible aperiodic kernel. Then the chain driven by K is
1-stable. Indeed, it admits a positive invariant measure � and �Kn D � . Further, for
any probability measure �0 with k.�0=�/�1k1 � �, the sequence �n D �0Kn, n D
1; 2; : : : , satisfies .1� �/� � �n � .1C �/� . Indeed, in the space of signed measures,
the linear map � 7! �K is a contraction for the distance d.�; �/ D k.�=�/�.�=�/k1.
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In the next definition, we consider the notion of c-stability for a family Q of Markov
kernels on a fixed state space. This definition is of interest even in the case when
Q D fQ1; Q2g is a pair.

Definition 2.4. Fix c � 1. Given a set Q of Markov kernels on a fixed state space,
we say that a probability measure � is a c-stable measure for Q if there exists a
positive measure �0 such that for any choice of sequence .Ki /

1
1 in Q, the sequence

�n D �0K0;n satisfies
c�1� � �n � c�:

When such a measure � exists, we say that Q is c-stable.

Example 2.5. Assume the state space is a group G and let Q be the set of all Markov
kernels Q such that Q.zx; zy/ D Q.x; y/ for all x; y; z 2 G. This set is 1-stable with
1-stable measure u, the uniform measure on G.

Example 2.6. On the two-point space, a finite set Q of Markov kernels is c-stable if

and only if it contains no pairs fQ1; Q2g with Qi D
�

ai 1�ai

1�bi bi

�
such that Q1 ¤ Q2,

a1 D 0, b2 D 0. This condition is clearly necessary. It is not immediately obvious that
it is sufficient. See [29].

Remark 2.7. Consider the problem of deciding whether or not a pair Q D fQ1; Q2g
of two irreducible ergodic Markov kernels with invariant measure �1; �2, respectively,
is c-stable. This can be pictured by considering a rooted infinite binary tree with edges
labeled Q1 (= left) and Q2 (= right) as in Figure 1. Obviously, any sequence .Ki /

1
1

with Ki 2 Q corresponds uniquely to an end ! 2 � where � denotes the set of the ends
the tree. Given an initial measure �0 (placed at the root), the measure �!

n D �0K0;n

is obtained by following ! from the root down to level n. Thus, for each choice of �0,
we obtain a tree with vertices labeled with measures.

�0?�����

����
Q1 Q2

� �
�

�
�

�
Q1 Q2 �

�
�

�� �� �
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

Q1 Q2Q1�

�

��1 �2

Figure 1. The Q1; Q2 tree.

The question of c-stability is the problem of finding an initial measure �0 which, in
some sense, minimizes the variations among the �!

n ’s. At the left-most and right-most
ends !1, !2, we get �

!i
n ! �i . Note that, if Q1, Q2 share the same invariant measure
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�1 D �2 D � , then the choice �0 D � yields a tree all of whose vertices are labeled by
� . The existence of a c-stable measure �0 can be viewed as a weakening of this. The
difficulty is that the existence of an invariant measure and thus the equality between �1

and �2 can be viewed as an algebraic property whereas there seems to be no algebraic
tools to study c-stability.

2.3 Simple results and examples. We are interested in finding conditions on the
individual kernels Ki of a sequence .Kn/1

1 that imply merging. This is not obvious
even if we consider the very special case when all the Ki ’s are drawn from a finite set
of kernels Q D fQ0; : : : ; Qmg or even from a pair Q D fQ0; Q1g.

• Suppose that Q0, Q1 are irreducible and aperiodic. Does it imply any sequence
.Ki /

1
1 drawn from Q D fQ0; Q1g is merging?

The answer is no. Let �0 be the invariant measure of Q0 and let Q1 D Q�
0 be the

adjoint of Q0 on `2.�0/. If .Q0; �0/ is not reversible (i.e., Q0 is not self-adjoint on
`2.�0/) then it is possible that Q0Q�

0 is not irreducible. When Q0Q�
0 is not irreducible,

the sequence Ki D Qi mod 2 is not merging.

• Suppose that Q0, Q1 are reversible, irreducible and aperiodic. Does it imply any
sequence .Ki /

1
1 drawn from Q D fQ0; Q1g is merging in relative-sup?

The answer is no, even on the two point space! On the two point space, Q D fQ0; Q1g
is merging in total variation as long as Q0, Q1 are irreducible aperiodic but relative
sup merging fails for the irreducible aperiodic pairs of the type

Q0 D
�

0 1

1 � a a

�
; Q1 D

�
b 1 � b

1 0

�
;

with 0 < a; b < 1. See [29].
The following examples are instructive.

Example 2.8. On S D f1; : : : ; 5g consider the reversible kernels Q0, Q1 corresponding
to the graphs in Figure 2 (all edges have weight 1). Consider the sequence Ki D
Qi mod 2 so that K1 D Q1; K2 D Q0; K3 D Q1; : : : . If, at an even time n D 2`, the
chain is at states 2 or 5 then from that time on, the chain will be in f2; 5g at even times
and in f3; 4g at odd times. In this example, the chain driven by .Ki /

1
1 is merging in

total variation but is not merging in relative-sup.

Example 2.9. The kernels depicted in Figure 3 yield an example where total variation
(hence, a fortiori, relative-sup) merging fails. In this example, the sequence .Ki /

1
1 with

Ki D Qi mod 2 fails to be merging in total variation because the chain will eventually
end up oscillating either between 2 and 1, or between f4; 7g and f5; 6g, with a preference
for one or the other depending on the starting distribution �0.

Let us give two simple results concerning merging.
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Figure 2. A five-point example.
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Figure 3. A seven-point example.

Proposition 2.10. Assume that, for each i , there exists a state yi and a real �i 2 .0; 1/

such that
8 x; Ki .x; yi / � �i :

If
P

i �i D 1 then the sequence .Ki /
1
1 is merging in total variation. If, in addition,

each Ki is irreducible then the sequence .Ki /
1
1 is also merging in relative-sup.

Proof. For total variation, this can be proved by a well-known Doeblin’s coupling
argument (see, e.g., [13], [29]) and irreducibility of the kernels is not needed. Of
course, the mass might ultimately concentrate on a fraction of the state space.

Merging in relative-sup is a bit more subtle and irreducibility is needed for that
conclusion to hold (even in the time homogeneous case). A proof using singular values
can be found in [29].

Remark 2.11. Under the much stronger hypothesis 8 x; y; Ki .x; y/ � �i > 0, one
gets an immediate control of any sequence �n D �0K0;n, n D 1; 2; : : : , in the form

8 z; �n � min
x;y

fKn.x; y/g � �n.z/ � sup
x;y

fKn.x; y/g � 1 � .N � 1/�n

where N is the size of the state space.

Remark 2.12. The hypothesis 9 yi ; 8 x; Ki .x; yi / � �i > 0, is obviously too strong
in many cases but it can often be applied to study a time inhomogeneous chain .Ki /

1
1

by grouping terms and considering the sequence Qi D Kni ;niC1
for an appropriately

chosen increasing sequence ni . In the simplest case, for a given sequence .Ki /
1
1 , one

seeks � 2 .0; 1/ and an integer m such that K`m;`mCm.x; y/ � � for all x; y; `. When
such a lower bound holds, one concludes that (1) the chain is merging in total variation
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and relative-sup and (2) there exists c 2 .0; 1/ such that for any starting measure �0

and n large enough, the measures �n D �0K0;n satisfy c � �n.z/ � 1 � c. However,
this type of argument is bound to yield very poor quantitative results in most cases.

For the next result, recall that an adjacency matrix A is a matrix whose entries are
either 0 or 1.

Proposition 2.13. On a finite state space let .Ki /
1
1 be a sequence of Markov kernels.

Assume that:

(1) (Uniform irreducibility) There exist `, � 2 .0; 1/ and adjacency matrices .Ai /
1
1 ,

such that, 8 i; x; y; A`
i .x; y/ > 0 and Ki .x; y/ � �Ai .x; y/:

(2) (Uniform laziness) There exists � 2 .0; 1/ such that, 8 i; x, Ki .x; x/ � �.

Then the chain driven by .Ki /
1
1 is merging in total variation and relative-sup norm.

Moreover, there exist n0 and c 2 .0; 1/ such that for any starting distribution �0, all
n � n0 and all z, �n D �0K0;n satisfies �n.z/ 2 .c; 1 � c/.

Proof. Let N be the size of the state space. Using (1)–(2), one can show (see [29]) that
Kn;nCN .x; y/ � .minf�; �g/N �1. The desired result follows from Proposition 2.10
and Remark 2.12.

Note that this argument can only give very poor quantitative results!

3 A short review of the literature

The largest body of literature concerning time inhomogeneous Markov processes come,
perhaps, from the analysis of Partial Differential Equations where time dependent co-
efficients are allowed. The book [36] can serve as a basic reference. Unfortunately,
it seems that the results developed in that context are local in nature and are not very
relevant to the quantitative problems we are interested in. The literature on (finite) time
inhomogeneous Markov chains can be organized under three basic headings: Weak
ergodicity, asymptotic structure, and products of stochastic matrices. We now briefly
review each of these directions.

3.1 Weak ergodicity. One of the earliest references concerning the asymptotic behav-
ior of time inhomogeneous chains is a note of Emile Borel [2] where he discusses time
inhomogeneous card shufflings. In the context of general time inhomogeneous chains
on finite state spaces, weak ergodicity, which we call total variation merging, i.e., the
tendency to forget the distant past, was introduced in [19] and is the main subject of
[16]. See also [5] and the reference to the work of Doeblin given there. A sample
of additional old and not so old references in this direction is [15], [18], [23], [24],
[25], [32]. An historical review is given in [33]. The main tools developed in these
references to prove weak ergodicity are the use of ergodic coefficients and couplings.
A modern perspective, close in spirit to our interests, is in [10], [11], [13]. It may be
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worth pointing out that, by design, ergodic coefficients mostly capture some asymptotic
properties and are not well suited for quantitative results, even in the time homogeneous
case.

3.2 Asymptotic structure. One of the basic results in the theory of time homogeneous
finite Markov chains describes the decomposition of the state space into non-essential
(or transient) states, essential classes and periodic subclasses. It turns out that, perhaps
surprisingly, there exists a completely general version of this result for time inhomoge-
neous chains. This result is rather more subtle than its time homogeneous counterpart.
Sonin [34], Theorem 1, calls it the Decomposition-Separation Theorem and reviews its
history which starts with a paper of Kolmogorov [19], with further important contribu-
tions by Blackwell [1], Cohn [4] and Sonin [34].

Fix a sequence .Kn/1
1 of Markov kernels on a finite state space �. The Decompo-

sition-Separation Theorem yields a sequence .fSk
n ; k D 0; : : : cg/1

nD1 of partitions of
� so that:

(a) With probability one, the trajectories of any Markov chain .Xn/ driven by .Kn/1
1

will, after a finite number of steps, enter one of the sequence Sk D .Sk
n /1

nD1, k D
1; : : : ; c, and stay there forever. Further, for each k,

1X
nD1

P.Xn 2 Sk
n I XnC1 … Sk

nC1/ C P.Xn … Sk
n I XnC1 2 Sk

nC1/ < 1:

(b) For each k D 1; : : : ; c, and for any two Markov chains .X1
n /1

1 ; .X2
n /1

1 driven
by .Kn/1

1 such that limn!1 P.X i
n 2 Sk

n / > 0, and any sequence of states xn 2 Sk
n ,

lim
n!1

P.X1
n D xnjX1

n 2 Sk
n /

P.X2
n D xnjX2

n 2 Sk
n /

D 1:

The sequence .S0
n /1

1 describes “non-essential states” and a chain is weakly ergodic
(i.e., merging in total variation) if and only if c D 1, i.e., there is only one essential
class. We refer the reader to [34] for a detailed discussion and connections with other
problems.

The Decomposition-Separation Theorem can be illustrated (albeit, in a rather trivial
way) using Example 2.9 of Figure 3 above. In this case, � D f1; : : : ; 7g. We consider
the sequence of partitions .Sk

n /, k 2 f0; 1; 2g, where S0
2n D f1; 3; 5; 6g, S0

2nC1 D
f2; 3; 4; 7g, S1

2n D f2g, S1
2nC1 D f1g and S2

2n D f4; 7g, S2
2nC1 D f5; 6g. Any chain

driven by Q1; Q0; Q1; : : : will eventually end up staying either in S1
n or in S2

n forever.
The Decomposition-Separation Theorem is a very general result which holds with-

out any hypothesis on the kernels Kn. We are instead interested in finding hypotheses,
perhaps very restrictive ones, on the individual kernels Kn that translate into strong
quantitative results concerning the merging property of the chain.

3.3 Products of stochastic matrices. There is a rather rich literature on the study
of products of stochastic matrices. Recall that stochastic matrices are matrices with
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non-negative entries and row sums equal to 1. This last assumption, which breaks the
row/column symmetry, implies that there is significant differences between forward and
backward products of stochastic matrices. Given a sequence Ki of stochastic matrices
The forward products form the sequence

K
f
0;n D K1K2 : : : Kn; n D 1; : : : ;

whereas the backward products form the sequence

Kb
0;n D Kn : : : K2K1; n D 1; : : : :

There is a crucial difference between these two sequences: The entries K
f
0;n.x; y/ do

not have any general monotonicity properties but, for any y,

n 7! M.n; y/ D max
x

fKb
0;n.x; y/g

is monotone non-increasing and

n 7! m.n; y/ D min
x

fKb
0;n.x; y/g

is monotone non-decreasing. These properties are obvious consequences of the fact
that the matrices Ki are stochastic matrices. Of course, both limn!1 M.n; y/ and
limn!1 m.n; y/ exist for all y.

If, for some reason, we know that

8 x; x0; lim
n!1

X
y

jKb
0;n.x; y/ � Kb

0;n.x0; y/j D 0

then it follows that the backward products converge to a row-constant matrix …, i.e.,

8 x; x0; y; ….x; y/ D lim
n!1 Kb

0;n.x; y/; ….x; y/ D ….x0; y/:

The references [16], [19], [23], [25], [35], [38] form a sample of old and recent works
dealing with this observation.

Changing viewpoint and notation somewhat, consider all finite products of matrices
drawn from a set Q of N �N stochastic matrices. For ! D .: : : ; Ki�1; Ki ; KiC1; : : : / 2
QZ a doubly infinite sequence of matrices and m � n 2 Z, set

K!
m;n D KmC1 : : : Kn .Km;m D I /:

A stochastic matrix is called (SIA) if its products converge to a constant row matrix.
Here, (SIA) stands for stochastic, irreducible and aperiodic although “irreducible” really
means that the matrix has a unique recurrent class (transient states are allowed so that
the constant row limit matrix may have some 0 columns). A central result in this area
(e.g., [35], [38]) is that, if Q is finite and all finite products of matrices in Q are (SIA)
then, for any doubly infinite sequence ! 2 QZ,

lim
n�m!1

X
y

jK!
m;n.x; y/ � K!

m;n.x0; y/j D 0 (3.1)
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and
lim

m!�1 K!
m;n D …!

n (3.2)

where …!
n is a row-constant matrix. Let �!

n be the probability measure corresponding
to the rows of row-constant matrix …!

n . Observe that (3.1) and (3.2) imply

lim
n!1

X
y

jK!
0;n.x; y/ � �!

n .y/j D 0:

The following proposition establishes some relations between these considerations,
total variation merging and stability.

Proposition 3.1. Let Q be a set of N � N stochastic matrices. Assume that Q is
merging (in total variation) and c-stable w.r.t. a positive measure � . Then

(1) Any finite product P of matrices in Q is irreducible aperiodic and its unique positive
invariant measure �P satisfies c�1� � �P � c� .

(2) For any ! 2 QZ and any n 2 Z, �!
n satisfies c�1� � �!

n � c� , i.e., any limit
row � 0 of backward products of matrices in Q satisfies c�1� � � 0 � c� .

Proof. (1) As Q is c-stable w.r.t. � , there exists a positive measure �0 such that for
any finite product P of matrices in Q and any n, c�1� � �0P n � c� . Since Q is
merging, we must have limn!1 P n D …P with …P having constant rows, call them
�P . This implies c�1� � �P � c� . Since � is positive, �P must be positive and
limn!1 P n D …P implies that P is irreducible aperiodic. We note that (1) is, in fact,
a sufficient condition for stability. See [29], Proposition 4.9. Under the hypothesis that
Q is merging, (1) is thus a necessary and sufficient condition for c-stability.

(2) Fix ! 2 QZ. By hypothesis, on the one hand, there exists a positive probability
measure �0 such that c�1� � �0K!

m;n � c� . On the other hand, merging imply
that limm!�1 K!

m;n D …!
n and thus, limm!�1 �0K!

m;n D �!
n . The desired result

follows.

3.4 Product of random stochastic matrices. For pointers to the literature on products
of random stochastic matrices and Markov chains in a random environment, see, e.g.,
[3], [6], [27], [37] and the references therein. We end this section with short comments
regarding the simplest case of products of random stochastic matrices, i.e., the case
where the matrices Ki form an i.i.d sequence of stochastic matrices. The backward
and forward products Kb

0;n D Kn : : : K1, K
f
0;n D K1 : : : Kn become random variables

taking values in the set of all N �N stochastic matrices. Although these two sequences
of random variables have very different behavior as n varies, Kb

0;n and K
f
0;n have the

same law. Takahashi [37] proves that if

8 x; x0; lim
n!1

X
y

jKf
0;n.x; y/ � K

f
0;n.x0; y/j D 0 almost surely
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then K
f
0;n converges in law and the limit law is that of the limit random variable

limn!1 Kb
0;n. Rosenblatt [27] applies the theory of random walks on semigroups to

show that the Cesaro sums n�1
Pn

1 K
f
0;j .x; y/ always converge to a constant almost

surely. The articles [3], [6] discuss similar results under more general hypotheses on
the nature of the random sequence .Ki /

1
1 . Unfortunately, these interesting results

concerning random environments do not shed much light on the quantitative questions
emphasized here.

4 Quantitative results and examples

Informally, the question we want to focus on is the following. Let .K; �/ be an ir-
reducible aperiodic Markov kernel and its stationary probability measure. Let .Ki /

1
1

be a sequence of Markov kernels so that, for each i , Ki is a perturbation of K with
invariant measure �i that is a perturbation of � (what “perturbation” means here is left
open on purpose). For an initial distribution �0, consider the associated sequence of
measures defined by �n D �0K1 : : : Kn, n D 1; 2; : : : .

Problem 4.1. (1) Does total variation merging hold?
(2) Does relative-sup merging hold?
(3) Does there exists c � 1 such that, for n large enough,

8 x; c�1 � �n.x/

�.x/
� c‹

Obviously, these questions call for quantitative results describing the merging times,
the constant c and the “large” time n in terms of bounds on the allowed perturbations.

To understand what is meant by quantitative results, it is easier to consider a family of
problems depending on a parameter representing the size and complexity of the problem.
So, one starts with a family .�N ; KN ; �N / of ergodic Markov kernels depending on
the parameter N whose mixing time sequence .T1.N; �//1

1 (say, in total variation)
is understood. Then, for each N , we consider perturbations .KN;i /

1
iD1 of KN with

stationary measure �N;i close to �N and ask if the merging time of .KN;i /
1
iD1 can be

controlled in terms of T1.N; �/.

Problem 4.2. Let �N D f0; : : : ; N g. Let QN be the set of all birth and death chains
Q on VN with Q.x; x C �/ 2 Œ1=4; 3=4� for all x; x C � 2 VN , � 2 f�1; 0; 1g and with
reversible measure � satisfying 1=4 � .N C 1/�.x/ � 4, x 2 VN .

(1) Prove or disprove that there exists a constant A independent of N such that QN

has total variation �-merging time at most AN 2.1 C logC 1=�/.

(2) Prove or disprove that there exists a constant A independent of N such that QN

has relative-sup �-merging time at most AN 2.1 C logC 1=�/.
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(3) Prove or disprove that there exist constants A; C � 1, such that, for any N and any
sequence .Ki /

1
1 2 QN , we have

8 x; y 2 �N ; 8 n � AN 2;
1

C.N C 1/
� K0;n.x; y/ � C

N C 1
:

Here the time homogeneous model is the birth and death chain KN with constant
rates p D q D r D 1=3 and �N D 1=.N C1/, so that KN .x; y/ D 0 unless jx�yj � 1,
K.0; 0/ D K.N; N / D 2=3 and K.x; x/ D K.x; x ˙ 1/ D 1=3 otherwise. Of course,
it is well known that T1.KN ; �/ ' T1.KN ; �/ ' N 2.1 C logC.1=�// for small � > 0.
Problem 1.2 asks whether or not these mixing/merging times are stable under suitable
time inhomogeneous perturbations of KN and whether or not the limiting behavior
stays comparable to that of the model chain. To the best of our knowledge the answer
is not known and this innocent looking problem should be taken seriously.

There appears to be only a small number of papers that attempt to prove quantitative
results for time inhomogeneous chains. These include [11], [13], [14], [21], [22] and
the authors’ works [28], [29], [30], [31]. The works [14], [21], [22], [28] treat only
examples of time inhomogeneous chains that admit an invariant measure. Technically,
this is a very specific hypothesis and, indeed, these works show that many of the well
developed techniques that have been used to study time homogeneous chains can be
successfully applied under this hypothesis.

4.1 Singular values. A typical qualitative result about finite Markov chains is that an
irreducible aperiodic chain is ergodic. We do not know of any quantitative versions of
this statement. Let K be an irreducible aperiodic Markov kernel with stationary measure
� so that �n D �0Kn ! � as n tends to infinity, for any starting distribution �0.

If .K; �/ is reversible (i.e., �.x/K.x; y/ D �.y/K.y; x/) and if ˇ denotes the
second largest absolute value of the eigenvalues of K acting on `2.�/ then ˇ < 1 and

2k�n � �kTV � k�0=�k2ˇn (4.1)

where k�0=�k2 is the norm of f0 D �0=� in `2.�/. This can be considered as a
quantitative result although it involves the perhaps unknown reversible measure � .

If .K; �/ is not reversible, the inequality still holds with ˇ being the second largest
singular value of K on `2.�/ (i.e., the square root of the second largest eigenvalue of
KK� where K� is the adjoint of K on `2.�/). However, it is then possible that ˇ D 1,
in which case the inequality fails to capture the qualitative ergodicity of the chain.

Inequality (4.1) has an elegant generalization to the time inhomogeneous setting.
Let .Ki /

1
1 be a sequence of irreducible Markov kernels (on a finite state space). Fix

a positive probability measure �0 (by positive we mean here that �0.x/ > 0 for all x)
and set

�n D �0K0;n:

In the time inhomogeneous setting, we want to compare this sequence of measures
.�n/1

1 to the sequence of measures .K0;n.x; �//1
1 describing the distribution at time n

of the chain started at an arbitrary point x.
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To state the result, for each i , consider Ki as a linear operator acting from `2.�i /

to `2.�i�1/. One easily checks that this operator is a contraction. Its singular values
are the square roots of the eigenvalues of the operator Pi D K�

i Ki W `2.�i / ! `2.�i /

where K�
i W `2.�i�1/ ! `2.�i / is the adjoint operator which is a Markov operator

with kernel

K�
i .x; y/ D Ki .y; x/�i�1.y/

�i .x/
:

We let
	i D 	.Ki ; �i ; �i�1/

be the second largest singular value of Ki W `2.�i / ! `2.�i�1/. It is the square root
of the second largest eigenvalue of the Markov kernel

Pi .x; y/ D 1

�i .x/

X
z

Ki .z; x/Ki .z; y/�i�1.z/: (4.2)

Theorem 4.3. With the notation introduced above, we have

kK0;n.x; �/ � �nkTV � �0.x/�1=2

nY
1

	i

and ˇ̌ˇ̌K0;n.x; y/

�n.y/
� 1

ˇ̌ˇ̌ � Œ�0.x/�n.y/��1=2

nY
1

	i

For the proof, see [11], [29]. The proofs given in [11] and [29] are rather different
in spirit, with [11] avoiding the explicit use of singular values. Introducing singular
values allows for further refinements and is useful for practical estimates. See [28],
[29]. When coupled with the hypothesis of c-stability, the above result becomes a
powerful and very applicable tool. See, e.g., [29], Theorem 4.11, and the examples
treated in [29], [30]. Unfortunately, proving c-stability is not an easy task.

A good example of application of Theorem 4.3 is the following result taken from
[29]. We refer the reader to [29] for the proof.

Theorem 4.4. Fix 1 < a < A < 1. Let QN .a; A/ be the set of all constant rate birth
an death chains on f0; : : : ; N g with parameters p; q; r satisfying p=q 2 Œa; A�. The set
QN .a; A/ is merging in relative-sup with relative-sup �-merging time bounded above
by

T1.�/ � C.a; A/.N C logC 1=�/:

In contrast, note that the set Q D fQ1; Q2g where Qi is the pi , qi constant rate
birth and death chain on f0; : : : ; N g and p1 D q2, q1 D p2 cannot be merging faster
than N 2 because the product K D Q1Q2 is, essentially, a simple random walk on a
circle with almost uniform invariant measure. See [29], Example 2.17.
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It may be illuminating to point out that Theorem 4.3 is of some interest even in
the time homogeneous case. Suppose K is irreducible aperiodic kernel with stationary
measure � and second largest singular value 	 on `2.�/. Then we have

ˇ̌̌
ˇK

n.x; y/

�.y/
� 1

ˇ̌̌
ˇ � Œ�.x/�.y/��1=2	n: (4.3)

One difficulty attached to this estimate is that both Œ�.x/�.y/��1=2 and 	 depends on
the perhaps unknown stationary measure � .

Consider instead an initial measure �0 > 0 and set �n D �0Kn. Then we also
have ˇ̌ˇ̌Kn.x; y/

�n.y/
� 1

ˇ̌ˇ̌ � Œ�0.x/�n.y/��1=2

nY
1

	i (4.4)

where 	i is the second largest singular value of K W `2.�i / ! `2.�i�1/. In particular,
setting ��

0 D minxf�0.x/g,

ˇ̌ˇ̌ �.y/

�n.y/
� 1

ˇ̌ˇ̌ � Œ��
0�n.y/��1=2

nY
1

	i : (4.5)

The estimates (4.4)–(4.5) have the disadvantage that each 	i depends on �0 through
�i�1 and �i . They have the advantage that they do not depend in any direct way of � .
From a computational viewpoint, they offer a dynamical estimate of the error in the
approximation of � by �n.

4.2 An example where stability fails. In this section, we present a simple example
that indicates why stability is a difficult property to study from a quantitative viewpoint.
Let �N D f0; 1; : : : ; N g, N D 2n C 1. Fix p; q; r � 0 with p C q C r D 1, p ¤ q,
and �1 2 Œ0; 1/. Consider the Markov kernels Q1 given by

Q1.2x; 2x C 1/ D p; x D 0; : : : ; n;

Q1.2x; 2x � 1/ D q; x D 1; : : : ; n;

Q1.2x � 1; 2x/ D q; x D 1; : : : ; n;

Q1.2x C 1; 2x/ D p; x D 0; : : : ; n � 1;

Q1.x; x/ D r; x D 1; : : : ; 2n;

and
Q1.0; 0/ D q C r; Q1.N; N / D �1; Q1.N; N � 1/ D 1 � �1:

This chain has reversible measure �1 given by

�1.0/ D � � � D �1.N � 1/ D .1 � �1/p�1�1.N / D .1 � �1/p�1

N.1 � �1/p�1 C 1
:
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�	

p

p
�q C r �	


q

q

�r �	

p

p
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p
��1�	
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1 � �1

�r�	

q

q

�r��

Figure 4. The chain with kernel Q1.

Next, we let Q2 be the kernel obtained by exchanging the roles of p and q and
replacing �1 by �2 2 Œ0; 1/. Obviously, this kernel has reversible measure �2 given by

�2.0/ D � � � D �2.N � 1/ D .1 � �2/q�1�2.N / D .1 � �2/q�1

N.1 � �2/q�1 C 1
:

As long as p; q are bounded away from 0 and 1 and �1; �2 are bounded away from
1 these kernels Q1; Q2 can be viewed as perturbations of the simple random walk on a
stick (with loops at the ends). Their respective invariant measures are close to uniform.
In fact, they are uniform if �1 D q C r , �2 D p C r .

It is clear that, even if r�1�2 D 0, for any sequence .Ki /
1
1 with Ki 2 fQ1; Q2g

we have
min

x;y2�N

fKm;mC2N C1.x; y/g � .minfp; qg/2N C1 > 0:

Hence, if we let �0 D u be the uniform measure and set �n D �0K0;n then there exists
a constant c D c.p; q; N / 2 .1; 1/ such that

8 n; c�1 � �n.x/ � c:

Further, it follows that any such sequence .Ki /
1
1 is merging in total variation and in

relative-sup.
Nevertheless, we are going to show that the stability property fails at the quantitative

level as N tends to infinity. For this purpose, we compute the kernel of K D Q1Q2.
To understand K, it is useful to imagine that the elements of f0; : : : ; N g arranged on
a circle with the even points in the upper half of the circle and the odd points on the
lower half of the circle. The only points on the horizontal diameter of the circle are 0

and N .
The kernel K is given by the formulae:

K.2x; 2x C 2/ D p2; K.2x C 2; 2x/ D q2; x D 0; : : : n � 2;

K.2x C 1; 2x C 3/ D q2; K.2x C 3; 2x C 1/ D p2; x D 0; : : : ; n � 2;

K.0; 0/ D 2pq C r; K.x; x/ D 2pq C r2; x D 1; : : : ; N � 2;

K.x; x C 1/ D K.x C 1; x/ D r.p C q/ x D 1; : : : ; N � 2;

K.0; 1/ D q2 C r.1 � r/; K.1; 0/ D p2 C r.1 � r/;

K.N � 1; N / D p�2 C rq;

K.N; N � 1/ D .1 � �2/�1 C .1 � �1/r;

K.N � 2; N / D q2; K.N; N � 2/ D .1 � �1/p;
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K.N � 1; N � 1/ D p.q C 1 � �2/ C r2;

K.N; N / D �1�2 C .1 � �1/q:

The following special cases are of interest.

(i) r D 0, �1 D q; �2 D p. In this case �1 D �2 is uniform and K is the kernel of a
nearest-neighbors random walk on the circle with transition probabilities p2, q2

and holding 2pq. Of course, this chain admits the uniform measure as invariant
measure.

(ii) r D 0, �1 D �2 D 0. In this case, K is essentially the kernel of a p0 D p2; q0 D
q2; r 0 D 2pq birth and death chain. More precisely, after writing x0 D N; x1 D
N � 2; : : : ; xn�1 D 1; xn D 0; xnC1 D 2; : : : ; xN �1 D N � 3; xN D N � 1,
we have

K.xi ; xiC1/ D p2; K.xi ; xi�1/ D q2; K.xi ; xi / D 2pq

except for K.x0; x1/ D p, K.x0; x0/ D q, K.xN ; xN / D p C pq. This chain
has invariant measure

�.xi / D �.x0/p�1.p=q/2i ; i D 1; : : : ; N:

Using the same notation as in (ii) above, we can compute the invariant measure � of
K when r D 0 for arbitrary values of �1, �2. Indeed, � must satisfy the following
equations:

�.xi / D 2pq�.xi / C p2�.xi�1/ C q2�i .xiC1/; i D 2; : : : ; N � 1;

�.x1/ D 2pq�.x1/ C .1 � �1/p�.x0/ C q2�.x2/;

�.x0/ D .�1�2 C .1 � �1/q/�.x0/ C q2�.x1/ C p�2�.xN /;

�.xN / D p.q C 1 � �2/�.xN / C .1 � �2/�1�.x0/ C p2�.xN �1/:

Because of the first equation, we set �.xi / D ˛ C ˇ.p=q/2i for i D 1; : : : ; N . This
gives

.1 � �1/p�.x0/ D .ˇ C ˛/p2;

.p � �1.�2 � q//�.x0/ D q2.˛ C ˇ.p=q/2/ C p�2.˛ C ˇ.p=q/2N /;

.1 � �2/�1�.x0/ D ˛.q2 C p.�2 � p// C p�2ˇ.p=q/2N :

Since the equations of the system � D �K are not independent, the three equations
above are not either. Indeed, subtracting the last equation from the second yields the
first. So the previous system is equivalent to

.1 � �1/p�1�.x0/ D ˇ C ˛;

.1 � �2/�1�.x0/ D ˛.q2 C p.�2 � p// C p�2ˇ.p=q/2N :
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Hence, recalling that q2 � p2 D q � p since p C q D 1,

ˇ D .1 � �1/.q=p/ � .1 � �2/

q � p C p�2.1 � .p=q/2N /
�.x0/

and

˛ D .1 � �2/�1 � .1 � �1/�2.p=q/2N

q � p C p�2.1 � .p=q/2N /
�.x0/:

When �1 D �2 D 0 (resp. �1 D q; �2 D p), we recover ˛ D 0, ˇ D p�1�.x0/ (resp.
˛ D �.x0/, ˇ D 0).

The denominator q � p C p�2.1 � .p=q/2N / is positive or negative depending
on whether q > p or q < p. By inspection of these formulae, one easily proves the
following facts (the notation xi refers to the relabelling of the state space introduced in
(ii) above).

• Assume that q > p, r D 0. For any fixed �1 > 0, there is a constant c D
c.p; q; �1; �2/ 2 .1; 1/ such that, for all large enough N , we have

8 x; c�1 � .N C 1/�.x/ � c:

If �1 D 0 then there is a constant c D c.p; q; �2/ 2 .1; 1/ such that, for all large
enough N , we have

8 xi ; c�1 � .q=p/2i�.xi / � c:

• Assume that q < p, r D 0. For any fixed �2 > 0, there is a constant c D
c.p; q; �1; �2/ 2 .1; 1/ such that, for all large enough N , we have

8 x; c�1 � .N C 1/�.x/ � c:

If �2 D 0 then there is a constant c D c.p; q; �1/ 2 .1; 1/ such that, for all large
enough N , we have

8 xi ; c�1 � .q=p/2.i�N /�.xi / � c:

On the one hand, when r D �1 D �2 D 0 and 0 < p ¤ q < 1 are fixed, there
are no constants c independent of N for which the set Q D fQ1; Q2g is c-stable. One
can even take pN ; qN so that pN =qN D 1 C aN �˛ C o.N �1/ as N tends to infinity
with a > 0 and 0 < ˛ < 1. Then Q1 and Q2 are asymptotically equal but there are no
constants c independent of N for which Q D fQ1; Q2g is c-stable.

On the other hand, when 0 < p; q; r < 1, �1 D q C r and �2 D p C r , the uniform
measure is invariant for both kernels and Q is 1-stable.

It seems likely that for fixed �1; �2; r; p; q with 0 < p; q < 1 and either r > 0 or
�1�2 > 0 the set Q is c-stable but we do not know how to prove that.
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5 Time dependent edge weights

In this section, we consider a family of graphs GN D .�N ; EN /. These graphs are non-
oriented with no multiple edges (edges are pairs of vertices e D fx; yg or singletons
e D fxg). We assume connectedness. We let d.x/ be the degree of x, i.e., d.x/ D
#fe 2 E W e 3 xg and set

ı.x/ D d.x/P
x d.x/

:

For simplicity, we assume that these graphs have bounded degree, i.e.,

8 N; 8 x 2 �N ; d.x/ � D;

uniformly in N . A simple example is the lazy stick of length .N C1/ as in Problem 4.2
and Figure 5.

�� �� �� �� ��������

Figure 5. The lazy stick.

5.1 Adapted kernels. For any choice of positive weights w D .we/e2E on Gn, we
obtain a reversible Markov kernel K.w/ with support on pairs .x; y/ such that fx; yg 2
E, in which case

K.w/.x; y/ D wfx;ygP
e3x we

:

The reversible measure is

�.w/.x/ D c.w/�1
X
e3x

we; c.w/ D
X

x

X
e3x

we:

For instance, picking w D 1, i.e., we D 1 for all e 2 E, we obtain the kernel
Ksr.x; y/ D K.1/.x; y/ D 1E .fx; yg/=d.x/ of the simple random walk on the given
graph. The reversible measure for Ksr is �.1/ D ı.

Set
R.w/ D max

˚
we=we0 W e; e0 2 E

�
:

Observe that R.w/ � b implies

8 x; b�1ı.x/ � �.w/.x/ � bı.x/: (5.1)

For instance, to prove the upper bound, let w0 D minfweg and write

�.w/.x/ D c.w/�1
X
e3x

we � 1P
x d.x/

X
e3x

we

w0

� bı.x/:

The proof of the lower bound is similar. Further, we also have

8 x; y; .Db/�1�.w/.y/ � �.w/.x/ � Db�.w/.y/: (5.2)
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Indeed,
P

e3x we � Dbw0 � Db
P

e3y we .
For any N and b > 1, set

Q.GN ; b/ D fK.w/ W R.w/ � bg:

For any N , b > 1 and fixed probability measure � on �N , set

Q.GN ; b; �/ D fK.w/ W R.w/ � b; �.w/ D �g:

The set of weight Q.GN ; b; �/ may well be empty. However, we can use the Metropolis
algorithm construction to prove the following lemma.

Lemma 5.1. Assume that fxg 2 E for all x (i.e, the graphs GN have a loop at each
vertex) and that a�1 � �.x/=ı.x/ � a. Then the set Q.GN ; a2.b3 C bD/; �/ is
non-empty for any b � 1. It contains a continuum of kernels K.w/ for any b > 1.

Proof. Starting from any weight v with R.v/ � b, we define a new weight w by setting

8 fx; yg 2 E; x ¤ y; wfx;yg D vfx;yg min
²

�.x/

�.v/.x/
;

�.y/

�.v/.y/

³

and

wfxg D c.v/�.x/ �
X
y¤x

vfx;yg min
²

�.x/

�.v/.x/
;

�.y/

�.v/.y/

³
:

It is clear that �.w/ D � (Indeed, K.w/ is the kernel of the Metropolis algorithm chain
for � with proposal based on K.v/). Further, since

X
y¤x

vfx;yg min
²

�.x/

�.v/.x/
;

�.y/

�.v/.y/

³
� �.x/

�
c.v/ � vfxg

�.v/.x/

�
;

we have
�.x/vfxg
�.v/.x/

� wfxg � c.v/�.x/:

Now, since a�1ı.x/ � �.x/ � aı.x/ and v 2 Q.GN ; b/, we obtain

8 x ¤ y; x0 ¤ y0;
wfx;yg
wfx0;y0g

� b3a2:

and

8 fx; yg 2 E; x0; max
²

w¹x;yº
w¹x0º

;
w¹x0º
w¹x;yº

³
� a2bD:

Hence R.w/ � a2.b3 C bD/ and K.w/ 2 Q.GN ; a2.b3 C bD/; �/ as desired.
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5.2 Time homogeneous results. For each N , let 	N be the second singular value of
.Ksr; ı/, i.e., the second largest eigenvalue in absolute value of the simple random walk
on GN . For instance, for the “lazy stick” of Figure 5, 1 � 	N is of order 1=N 2. For
any w, let 	.w/ be the second largest singular value of .K.w/; �.w//. The following
lemma concerns the time homogeneous chains associated with kernels in Q.GN ; b/.

Proposition 5.2. For any b � 1 and any K.w/ 2 Q.GN ; b/,

b�2.1 � 	N / � 1 � 	.w/:

In particular, uniformly over w 2 Q.GN ; b/,ˇ̌ˇ̌K.w/n.x; y/

�.w/.y/
� 1

ˇ̌ˇ̌ � bd �1� 
N .1 � b�2.1 � 	N //n; (5.3)

with 
N D P
x d.x/, d� D minxfd.x/g:

Proof. This is based on the basic comparison techniques of [7]. In the present case,
it is best to compare the lowest and second largest eigenvalues of Ksr, call them ˇ�
and ˇ1, respectively, with the same quantities ˇ�.w/ and ˇ1.w/ relative to K.w/. The
relation with the singular value 	.w/ is given by 	.w/ D maxf�ˇ�.w/; ˇ1.w/g. For
comparison purpose, one uses the Dirichlet forms (recall that edges here are (non-
oriented) pairs fx; yg)

Ew.f; f / D 1

c.w/

X
eDfx;yg

jf .x/ � f .y/j2we

and

Esr.f; f / D E1.f; f / D 1


N

X
eDfx;yg

jf .x/ � f .y/j2:

Clearly, for any f ,

Esr.f; f / � c.w/b


N

Ew.f; f /; Var�.w/.f / � 
N b

c.w/
Varı.f /: (5.4)

This yields 1 � ˇ1 � b2.1 � ˇ1.w//. A similar argument using (the sum here is over
all x; y with fx; yg 2 E, which explains the 1

2
factor)

Fw.f; f / D 1

2c.w/

X
x;yWfx;yg2E

jf .x/ C f .y/j2wfx;yg

yields 1 C ˇ� � b2.1 C ˇ�.w//. This gives the desired result.

Example 5.3. For our present purpose, call “.d; �/-expander family” any infinite family
of regular graphs GN of fixed degree d , with j�N j D #�N tending to infinity with N

and satisfying 	N � 1��. See [17], [20] for various related definitions and discussions
of particular examples. Proposition 5.2 shows that for any K.w/ 2 Q.GN ; b/, we haveˇ̌ˇ̌K.w/n.x; y/

�.w/.y/
� 1

ˇ̌ˇ̌ � bj�N j.1 � �=b2/n;
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Let us point out that, beside singular values , there are further related techniques that
yield complementary results. They include the use of Nash and logarithmic Sobolev
inequalities (modified or not). See [8], [9], [28], [30]. For instance, to show that
on the “lazy stick” GN of Figure 5, any chains with kernel in Q.GN ; b/ converges to
stationarity in order N 2, one uses the Nash inequality technique of [8].

5.3 Time inhomogeneous chains. A fundamental question about time inhomoge-
neous Markov chains is whether or not a result similar to (5.3) holds true for time
inhomogeneous chains with kernels in QN .GN ; b/. Little is known about this.

Fix b > 1. Let .Ki /
1
1 be a sequence of Markov kernels in Q.GN ; b/ and Km;n

be the associated iterated kernel. Recall that the property “	N < 1” is equivalent
to the irreducibility and aperiodicity of Ksr. Because all the kernels in Q.GN ; b/ are
(uniformly) adapted to the graph structure GN , there exists ` D `.N; b/ and � D
�.N; b/ > 0 such that, for all n, Kn;nC`.x; y/ � �. As explained in Section 2.3, this
implies relative-sup merging for any such time inhomogeneous chain. However, this
result is purely qualitative. No acceptable quantitative result can be obtain by such an
argument.

Problem 5.4. Fix reals D; b > 1. Prove or disprove that there exists a constant A

such that for any family GN with maximal degree at most D, any sequence .Ki /
1
1 with

Ki 2 Q.GN ; b/, any initial distributions �0; �0
0 and any � > 0, if

n � A.1 � 	N /�1.log j�N j C logC.1=�//

then �n D �0K0;n and �0
n D �0

0K0;n satisfy

max
x2�N

²ˇ̌ˇ̌�0
n.x/

�n.x/
� 1

ˇ̌ˇ̌³ � �:

This is an open problem, even for the “lazy stick” of Figure 5. It seems rather
unclear whether one should except a positive answer or not.

Next, we consider another question, quite interesting but, a priori, of a different
nature. Recall that, given GN , ı denotes the normalized reversible measure of Ksr.

Problem 5.5. Fix reals D; b > 1. Prove or disprove that there exists a constant A � 1

such that for any family GN with maximal degree at most D, any sequence .Ki /
1
1 with

Ki 2 Q.GN ; b/ and any initial distributions �0, if

n � A.1 � 	N /�1.log j�N j/

then �n D �0K0;n satisfies

8 x 2 �N ; A�1 � �n.x/

ı.x/
� A:
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In words, a positive solution to Problem 5.4 yields the relative-sup merging in time
of order at most A.1 � 	N /�1 log j�N j, uniformly for any time inhomogeneous chain
with kernels in Q.GN ; b/ whereas a positive solution to Problem 5.5 would indicate
that, after a time of order at most A.1 � 	N /�1 log j�N j, uniformly for any time
inhomogeneous chain with kernels in Q.GN ; b/ and for any initial distribution �0, the
measure �n D �0K0;n is comparable to ı. In fact, because of the uniform way in which
Problem 5.5 is formulated, a positive answer implies that the measure ı is A-stable for
Q.GN ; b/.

At this writing, the best evidence for a positive answer to these problems is contained
in the following two partial results. The first result concerns sequences whose kernels
share the same invariant distribution. For the proof, see [28].

Theorem 5.6. Fix reals D; b > 1 and measures �N on �N . Assume that GN has
maximal degree at most D and that Q.GN ; b; �N / is non-empty. Under these circum-
stances, there is a constant A D A.D; b/ such that for any � > 0, any sequence .Ki /

1
1

with Ki 2 Q.GN ; b; �N / and any pair �0; �0
0 of initial distributions, if

n � A.1 � 	N /�1.log j�nj C logC.1=�//

then �n D �0K0;n and �0
n D �0

0K0;n satisfy

max
x2�N

²ˇ̌ˇ̌�0
n.x/

�n.x/
� 1

ˇ̌ˇ̌³ � �:

Note the hypothesis that Q.GN ; b; �N / is non-empty implies that b�1 � �N =ı � b.
The second result assumes c-stability. For the proof, see [30].

Theorem 5.7. Fix reals D; b; c > 1. Assume that GN has maximal degree at most
D. Let .Ki /

1
1 be a sequence of kernels on �N with Ki 2 Q.GN ; b/. Assume that the

distribution ı on �N is c-stable for .Ki /
1
1 . Then there exists a constant A D A.D; b; c/

such that for any � > 0 and pair �0; �0
0 of initial distributions, if

n � A.1 � 	N /�1.log j�nj C logC.1=�//

then �n D �0K0;n and �0
n D �0

0K0;n satisfy

max
x2�N

²ˇ̌
ˇ̌�0

n.x/

�n.x/
� 1

ˇ̌ˇ̌³ � �:

Theorem 5.6 can be viewed as a special case ofTheorem 5.7. Indeed, if Q.GN ; b; �N /

is not empty then we must have b�1ı � �N � b1ı so that ı is a b-stable measure for
any sequence of kernels in Q.GN ; b; �N /. By Lemma 5.1, it is not difficult to produce
examples where Theorem 5.6 applies. Finding examples of application of Theorem 5.7
(where the Ki ’s do not all share the same invariant distribution) is a difficult problem.

Under the stability hypothesis of Theorem 5.7, methods such as Nash inequalities
and logarithmic Sobolev inequality can also be applied. See [30].
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Remark 5.8. Consider the kernels Q1, Q2 of Section 4.2, with fixed p, q, r , �1, �2

with r D �1 D �2 D 0 and 0 < p ¤ q < 1. The kernels Q1, Q2 are adapted
to the graph structure of Figure 6. We proved in Section 4.2 that stability fails for

�� � � � ����

Figure 6. The underlying graph for the kernels Q1, Q2 of Section 4.2.

Q D fQ1; Q2g. Even on the “lazy stick” of Figure 5, we do not understand whether
stability holds or not. An interesting example of stability on the lazy stick is proved
in [29]. This example involves perturbations that are localized at the ends of the stick.
Further examples are discussed in [31].
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