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 The Annals of Probability
 1993, Vol. 21, No. 4, 2131-2156

 COMPARISON TECHNIQUES FOR RANDOM WALK
 ON FINITE GROUPS

 BY PERSI DIACONIS AND LAURENT SALOFF-COSTE

 Harvard University and Universite de Paris VI CNRS

 We develop techniques for bounding the rate of convergence of a
 symmetric random walk on a finite group to the uniform distribution. The

 techniques gives bounds on the second largest (and other) eigenvalues in
 terms of the eigenvalues of a comparison chain with known eigenvalues.

 The techniques yield sharp rates for a host of previously intractable

 problems on the symmetric group.

 1. Introduction. This paper develops techniques for bounding the rate of

 convergence of a symmetric random walk on a finite group. Let G be a finite
 group of order I GI = g. Let id denote the identity of G. Let E be a symmetric
 set of generators: E-1 = E. This E can be used to define a random walk with
 steps chosen uniformly from E.

 Familiar examples include simple random walk on the integers (mod m)
 where E = {1, - 1}, the Ehrenfest walk on the cube Z d where E -

 {ei: 1 < i < d}, ei = the ith standard basis vector, or the random walk on the
 symmetric group Sn which proceeds by repeated random transpositions where
 E = {(i,j): 1 < i <j < n}.

 These examples have all been analyzed using Fourier analysis on the
 appropriate group. Diaconis [(1988), Chapter 3] gives background and details.
 Fourier analysis gives all the eigenvalues of the associated Markov chains in
 terms of the characters of the group. The main results of this paper show how
 these eigenvalues can be used to get good bounds for less symmetric measures.

 As a running example, consider G = Sn and the random walk generated by
 a transposition and an n-cycle:

 (1.1) E= {id,(1,2),(n,n - 1,n - 2,...,1),(1,2,...,n)}.

 In Section 3 we show that order n3 log n steps suffice to achieve randomness
 for this walk and that order n3 steps are necessary. This result follows from
 comparison with the walk generated by random transpositions. The same
 techniques work for a host of other walks that have defied previous analysis:
 two different models for the familiar overhand shuffle and some "two-dimen-
 sional" shuffles where the deck is arranged in a k X 1 grid, a card is chosen at
 random, and switched with one of its nearest neighbors. These are developed
 in Section 4.

 Received January 1992; revised September 1992.
 AMS 1991 subject classifications. 20B30, 60B15, 60J05, 60F99.
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 eigenvalues.
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 2132 P. DIACONIS AND L. SALOFF-COSTE

 Section 2 lays out preliminaries on norms, eigenvalues and the two quadratic
 forms we use. It gives bounds for standard distances such as total variation in
 terms of eigenvalues.

 Section 3 gives upper and lower bounds for eigenvalues by comparison. One
 can always compare with the uniform distribution and the bounds are shown
 to specialize to known results giving bounds on the second largest eigenvalue
 in terms of the diameter of the group in the generators E. These techniques

 are illustrated in example (1.1) and for a class of examples on Zm, the integers
 mod m.

 Section 5 treats natural product random walks.
 The techniques of this paper can be supplemented by volume growth

 estimates to give sharp results for random walks on nilpotent groups such as
 the Heisenberg group. This is carried out in Diaconis and Saloff-Coste (1992).
 Comparisons can also be carried out for reversible Markov chains where they
 offer a supplement to the geometric techniques of Diaconis and Stroock (1991).
 We use them to get sharp bounds on the eigenvalues of the simple exclusion
 process treated by Fill (1991) in Diaconis and Saloff-Coste (1993).

 The techniques in this paper often seem to give the correct order [viz.
 O(n3 log n) in example (1.1)]. They usually do not give sharp lead term
 constants and so do not lead to proofs of the cutoff phenomenon that so often
 occurs.

 2. Norms, forms, and eigenvalues. This section gives preliminaries on
 distances from uniformity, the two basic quadratic forms to be used and some
 comparison inequalities. The main result is Lemma 5 from uniformity which
 gives upper bounds on the L2 distance, of one probability in terms of a second
 probability in the presence of a comparison between their Dirichlet forms. The
 results are elementary, but we hope it is convenient to have them collected

 together.

 Norms. Given real-valued functions so, i on G, their convolution is the
 function so * qi defined by

 D * +f(X) = E q(Xy'l)+(y) = E(P(y)q(y-lx).
 Y Y

 We denote by T the operator T(Ip) = so * D and by (#(n) the convolution powers
 of Sp. Let U be the operator associated with u(x) 1/IGI. Thus UMP) is the
 mean of sp over G. There is one exception to our notation: The function equal
 to one at id and zero elsewhere is denoted aid (the Dirac mass at id). The
 associated operator is the identity I.

 For 1 < s < 0o, let
 denote t s or an n el a1/s

 =41 ( I~ ko(x.)IS) , II0I1o = max{(I p(x) 1),

 denote the usual i s norms of a function "~p. Recall that for 1 ? s' ?< s ? 00:
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 COMPARISON FOR RANDOM WALKS ON GROUPS 2133

 The variation distance IIp - PIITV = maxIcG{IP(I) - 3(I)I} between two prob-
 abilities p, - is just half the 11 norm of p - j. The operator norm of T from

 i to is is denoted II Il - I . The following classical inequalities are useful:

 IplIls --s ? IlifIi for all 1 < s < 0o,
 1 1

 I'plII8-l = IlP1-Y1 = IIqiII6 for all 1 < s < o,+ - = 1.
 S S

 In particular, for s = 2 we get 11/112 = 1IT112 - = 11T111,2.
 Throughout this paper, p denotes a symmetric probability on G. We are

 interested in bounding the rate of convergence of the convolution powers p(n)

 to the uniform distribution u. We concentrate on bounds for total variation.
 However, these are achieved by bounding the 11 norm by the 12 norm using
 the Cauchy-Schwarz inequality. More precisely, if we define a normalized
 distance

 ds(n) = gl - l/S p(n) - U lls 1 < s < 00
 our bounds on total variation are obtained from

 lp(n) - UIITV = jldl(n) < 'd2(n)
 and bounding d2(n) by eigenvalue estimates. In other words, all the bounds on

 11p(n) - UIITV stated in this paper are in fact bounds on (1/2)d2(n). This is also
 true of the bounds obtained by Fourier analysis in Diaconis (1988). The

 distance d1 is twice the total variation distance while dot is the maximum
 relative error. It turns out that in many interesting examples good bounds on

 d2 yield good bounds on total variation (however, see Example 1 below and

 Example 1 of Section 5). Note also that d2(n) < d,(n) and d,(2n) < d 2(n),
 whereas it is not possible in general to obtain good bounds on d2 or do from
 --bounds on total variation.

 Eigenvalues. Because p is symmetric, the matrix {p(y- 1x)}xYEG has real
 eigenvalues 1 = ro ? Trr ? ? * * rgi ? -1 . We set r * = max{w1 1, Ikrg 11}.
 The importance of wr * comes from

 liP- U112,2 =w*
 Note that Wrgl> - 1 as soon as p(id) > 0. Indeed:

 LEMMA 1. Wrgl ? -1 + 2p(id).

 PROOF. The result is true if p(id) = 0. If p(id) > 0, let q = (1 -
 p(id))-'(p - p(id)8id). This is a symmetric probability with smallest eigen-
 value bounded below by - 1, that is, - 1 < (1 - p(id)).- 7f&rg1 -p(id)). This
 gives the result. O

 Let us also consider the continuous time semigroup Ht = e-t(I-P) and its
 convolution kernel

 ?? tn
 ht = e- t A_ p(n)

 0 n
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 2134 P. DIACONIS AND L. SALOFF-COSTE

 The eigenvalues of Ht are the numbers e-tAi where Ai = 1 - iri are the
 eigenvalues of I - P and

 IIHt - U112,2 = e-Alt.

 The eigenvalues rr* and Al give simple estimates on the distance to
 uniformity as follows:

 LEMMA 2. Let p be a symmetric probability on a finite group G. Let rr* be
 the second largest eigenvalue in absolute value. Then

 (2.1) dj(n) = 21p(n) - uIITV < g1/211p(n) - U112 = d2(n) < g?v2,

 (2.2) gIlp(n) - UII. = d,(n) < gwn.
 The same estimates hold if we replace p(n) by ht and wr n by e-tAl.

 PROOF. For (2.1), write

 g1/21p(n) - u112 = g1/2||(Pn _ U)6id 112 = g1/211(p_ U)n- ||

 < g172IIP - UjIn=2I2dI2 = /rn
 For (2.2), use (2.1) and

 Ilp(n+k) - uaI < 11p(n) - U11211P (k) - u112.

 The argument for ht is similar. L1

 EXAMPLE 1. Usually, bounds that use only rr * are crude. To study this, for
 0 < 0 < 1, let u6 = (1 - 0)8id + ou be a probability on G. Then

 U (1 - 6) 8id + (1 - (1 -)n)
 and wrr = 1 - 0. It is easy to check that

 1/2

 Hu U(n) -_U112 = ( ) (1_0) n

 u (n)- ullOO = (i - )(1 - 0)

 IIuH ) - ull = 2(1 - -)(1 - 0)

 Thus the bounds (2.1) and (2.2) for the d2 and do norms are essentially
 equalities but the bound for the d1 norm can be far~wrong if g is large.

 The 12 norms have the clearest connection to eigenvalues. We have

 1 1 g-1

 (2.4) 1 1gE

 U 112 gt'1 -g g
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 COMPARISON FOR RANDOM WALKS ON GROUPS 2135

 The continuous time process is often used to avoid parity problems. The

 bounds (2.4) show that negative eigenvalues wri are important for bounding
 11p(n)- u 112 while they only appear in a minor way for the continuous time
 processes. Most examples worked out in the sequel are for discrete time and

 apply throughout to continuous time versions. In general, there is no.easy
 transfer of information between ht and p(n) except for the following simple
 result.

 LEMMA 3. Let p be a symmetric probability on a finite group G. Then

 (2.5) 11p(n) -112 < ? 2 + 1Ih - 112,

 (2.6) I1h2 -1u122 < e-2n + 11p(n) -_uI12

 PROOF. The first statement follows from (2.4) and the inequality 1 - x <
 e-X. In more detail,

 1 g-1 2 1 1
 IIp~ - u2 = - E vri <Wg2_i + - E 'n < 2n + - E -2nAi

 g 1 A1<1

 1 g11
 < T2n + E -2nA =2n + nil2

 The second statement follows from (2.4) and the inequality 1 - x ? e-2X for
 O <x < 1/2. Z

 In this paper, eigenvalues are used to study convergence to stationarity. Let

 vi = 1/(1 - rri), 1 < i < g - 1. Let a random walk start at a uniformly chosen
 point. Let r be the first hitting time to a previously specified point. Aldous

 (1989) shows E(r) = v, + v2 + +vgl,. Thus bounds on hitting times fol-
 low from bounds on eigenvalues.

 Forms. The eigenvalues of symmetric probabilities can be characterized
 using quadratic forms. Let

 , q') = 6'(p, q') = ((I - P)p, (P) = 2E (p(X) - 9(Xy))2p(y)
 X,y

 (2.7)

 3p,_ (p= 5op) =((I + P)qpqP) = 2E(9(X) +q9(xy))2p(y).
 X,y

 The form 6p is called the Dirichlet form. It can be used to get lower bounds
 on the eigenvalues Ai = 1 - wri of I - P. The form Vp is useful for getting
 lower bounds on negative eigenvalues wri.

 The eigenvalues can be characterized by the minimax principle, which we
 briefly recall [see, e.g., Horn and Johnson (1985), page 176]. Let V be a real
 finite-dimensional Hilbert space and Q a symmetric linear operator on V with

This content downloaded from 128.84.234.220 on Tue, 12 Nov 2019 21:09:14 UTC
All use subject to https://about.jstor.org/terms



 2136 P. DIACONIS AND L. SALOFF-COSTE

 eigenvalues q0 < q1 < * . . Given a subspace W of V, set

 m(W) = min{KQf, f )/>f, f ): f E W},

 M(W) = max{<Qf, f )/Kf, f ): f e W}.
 Then

 qi = maxfm(W): dim(W') = i} = min{M(W): dim(W) = i + 1).
 The next lemma follows immediately from the minimax principle.

 LEMMA 4. Let p and - be two symmetric probabilities on a finite group G

 with eigenvalues wri and Tri. If /< A4' then wri < 1 - (1 - -ri)/A. If F< AS,
 then wri 2 -1 + (1 + fri)/A.

 Lemma 4 coupled with the previous discussion gives the following bounds
 which are the principal results of this section.

 LEMMA 5. If 4< A4, then

 (2.8) IIp(n) - U112 < ?2_ + I/A - U2 < ?2n + e-n/A + 115([n/2A]) - U112

 (2.9) I1ht - UII2 - I|ht/A - UI2I

 If 4< A4, and SF< AS, then

 (2.10) ||p(n) - U112 < e-n/A + 113([n/2A]) - UI112

 PROOF. All results follow from (2.4), Lemma 4 and the inequalities 1 -

 x <e-x, 1 -x > e-2x 0 < x < 1/2. For example, from (2.4),

 1 g-1 1
 1p(n) - U112 = - 2n < n + - E 7i

 By hypothesis, wri = 1 - Ai < 1 - AJ/A < e-Ai/A. This yields

 p(n) -U112 < ,gr2n + _ n e2A ?/A + -rn I I

 g 1Ti>O

 which is the first claimed inequality. The second follows from (2.6). The proof

 of (2.9) is similar. For (2.10), set I = {i; 17ril < 1/2) and note that our
 hypothesis and Lemma 4 imply that 1 - l-ri I < A(1 - l TIl). Then write ||p(n) - I ??n - ( Ew7rz + n <en/A + - 2en(lI1tIl)

 ? en/A + - Ee(2n/AX1-ji) ? e-nA +1- e IC g IC

 < e- n/A + 11 pln/2A, - U 112
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 COMPARISON FOR RANDOM WALKS ON GROUPS 2137

 REMARKS. (a) If P1i P2 are symmetric probabilities, set p = (pi + P2)/2.
 The estimate (2.10) yields

 p(nf) - U112 ? e-n/2 + mm n jjp~lf/4]) - UI112
 2 -< e + m~in= 11p, 2 - i=1,2

 We do not see how to prove such a comparison directly.
 (b) Although the form F is useful in bounding negative eigenvalues, it is

 sometimes harder to use than &. Here is a trick that shows that the negative
 eigenvalues other than Wgg-1 do not play much of a role. Indeed, observe that

 g-1

 0 < gp(2n + 1)( id) Ern + 1l
 0

 It follows that

 rr Tn+2 < Errn

 IT< 1TI>O

 Hence, we can bound 1P(N) - u112 by writing N = n + n' + 1 and

 11P(N) _ U112 < g-1( a rn i2n )12_ + 2E v
 ,rij> 0 <,ri< 1

 From this, we deduce as before the following:

 LEMMA 6. If 4< A6, we have for N = n + n' +1,

 11p(N) - U112 < g-1w2n + e-n'/A 2ni + -1p([Wl2A]) _ U112wn

 + e-N/A + 113([N/2A]) - U11l2

 Examples that use this lemma are given in subsections 4A, 4B and 4C.

 REMARK. In Lemmas 3, 5 and 6 we used Wrg-1 to bound the negative
 eigenvalues of p. When p has no negative eigenvalues, 7lg-1 can be replaced
 by 0 in these lemmas.

 3. Comparison of forms and first examples. This section develops
 bounds of the type 6'< A4' for Dirichlet forms associated with symmetric
 probabilities - and p on a finite group G. The constant A is an average length
 which can often be usefully bounded in examples of interest. The techniques
 are illustrated for the chain generated by a transposition and an n-cycle, for a
 class of walks on Zm and for the Ehrenfest walk.

 Let E be a symmetric set of generators of the finite group G. For y E G,
 write; y = Z1Z2 ... Zk with z. e E. The smallest such k is called the length of
 y and denoted I yI = lYIE. By definition the identity id has length 0. Let

 (3.1) N( z, y) = number of times z E E occurs
 in the chosen representation of y.
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 2138 P. DIACONIS AND L. SALOFF-COSTE

 Clearly

 (3.2) N(z,y) < Iy.

 THEOREM 1. Let - and p be symmetric probabilities on a finite group G. Let
 E be a symmetric set of generators. Suppose that the support of p contains E.
 Then the Dirichlet forms defined in (2.7) satisfy

 64 < Ad'

 with

 (3.3) A = max l yIN(z,y) 3(y).
 x EE p(Z) yEG

 PROOF. Given x, y E G, suppose y = Z1Z2 ... Zk with z. E E. Then

 P(X) - P(Xy) = {(p(X) -P(XZ1)) + (p(XZ) - sP(XZ1Z2))

 + * + ( p(XZ1 ... Zk-1) - p(Xy))}

 Squaring both sides and using the Cauchy-Schwarz inequality,

 (9(X) - p(xy))2 < IyI (((x) - p(XZ1))2

 + +(p(XZ1 ... Zk-1) - P(Xy)) }

 Summing in x gives

 E (p(x) - p(xy))2 < IyI E (p(x) - p(xz))2N(y)
 xEG xEG

 zeE

 The result follows after multiplying both sides by j(y), summing over y E G,
 and dividing by 2. Then the left-hand side is 4(no, sp) while the right-hand side
 is

 - Ad (p ( x) - D(xz))) p(z) IyN(z, y) j(y) < A&(p,). n1
 2 xE=-G p(Z) yE-GP

 zeE

 Before developing further bounds we give some examples. The first result
 follows by choosing p = u, the uniform distribution:

 COROLLARY 1. Let G be a finite group and E a symmetric set of generators.
 Let p be any symmetric distribution with support of p containing E. Let
 7 = minzEE p(z), r = max{Iyj: y E G}. Then

 1 77
 (A.4) fri(p) <1 <1 2

 Versions of this inequality have been given by Aldous (1987), Babai (1990),
 Gangolli (1991) and Mohar (1989).
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 COMPARISON FOR RANDOM WALKS ON GROUPS 2139

 EXAMPLE 1. For our running example, G = Sn, E = {id, (1,2), (1,2, .. ., n),
 (n, n - 1, .. ., 1)}. Then '7 = 1/4. It is straightforward to show that the gener-
 ators (1, 2), (1, 2,.. ., n) require at worst 3( ) steps to represent any permuta-

 tion. The idea is to work from the bottom up. If the bottom i cards are in the
 correct order, with the i + 1st card somewhere above them, move cards from
 top to bottom until this i + 1st card is at the top. Then, transpose and shift
 repeatedly to bring this card just next to the original bottom block of i. Then
 cut these i + 1 cards to the bottom. Thus r < 3n2/2 and Trr < 1 - 1/(9n4).
 This will now be improved to 1 - c/n3 by comparison with a measure sup-
 ported on transpositions.

 Let -(id) = 1/n, j(s) = 2/n2 for s any transposition and j(w) = 0 other-
 wise. Diaconis and Shahshahani (1981) analyzed this chain, determining all
 the eigenvalues using Fourier analysis on the symmetric group. The bound
 (3.3) gives

 A ? 4Ely123(y) < 36n2
 y

 The last inequality follows because any transposition can be written with at
 most 3n generators. Diaconis and Shahshahani (1981) showed 7r = 1 - 2/n.
 Using this in Lemma 4 gives

 r < 1 - 1/(18n3).

 To see that this bound is of the right order, consider (&rr) as the circular
 distance between rr-n(1) and vT-1(2). If permutations are associated to ar-
 rangements of n cards in such a way that v(i) denotes the label of the card at
 position i, then wr-1(i) is the position of the card labeled i and p(wrr) is the
 circular distance between cards labeled 1 and 2. Now the minimax characteri-
 zation of eigenvalues gives

 Wi 2 1 - 6 , )/Ilk - UP112

 It is straightforward to show that I 112 - U -I n2n!/48. On the other hand,

 D= (p(X) - q(Xy))2 s4(n - 1)!.
 xeG
 yeE

 These bounds give

 24 + o(1)

 w1 2?1-

 *~~~~~~ 8

 To finish this example, observe that use of just the second eigenvalue
 together with vg 1 2 - 1/2 (from Lemma 1 of Section 2) shows that order
 n4 log n steps suffice to drive the variation distance close to zero. This can be
 improved by making full use of the comparison as in (2.8).
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 2140 P. DIACONIS AND L. SALOFF-COSTE

 THEOREM 2. Let p be the uniform distribution on E = {id, (1, 2),
 (1,2, ... ,n), (n,n - 1, n - 2, .. .,1)} in the symmetric group Sn. If k =
 36n3(log n + c), then, for c > 0,

 11P k) _ U11TV < ae-c

 for a universal positive constant a.

 If k = cn3, then

 lim infllp(k) -U ITv ? 1- f(c)
 fl --- 00

 with f(c) tending to zero as c tends to zero.

 PROOF. Compare with j, the random transposition measure. The upper
 bound follows from 49 < 36n2, Wg 1 - 1/2 (from Lemma 1 of Section 2),
 and (2.8). Diaconis and Shahshahani (1981) showed that g~lj5(m) - uI12 < Be-2c
 for an explicit universal /8 > 0 when m = (1/2)n(log n + c).

 For the lower bound, consider po(rr), the circular distance between wr-1(1)
 and rr 1(2) as above. This takes values in {1, 2, ... , n/2}. It changes by at most
 1, doing this only when at least one of the cards labeled 1 or 2 is on top or in
 the second position. Elementary considerations, comparing with random walk
 on an interval with. geometric wait size, show that this distance requires order
 n3 steps to have an appreciable chance of being of order n, its size under the
 uniform distribution. Further details are omitted. M

 We turn next to bounds involving the form F defined in (2.7). The results
 here use paths in the following way: If x and y are elements of G and
 y = Z1Z2 ... Zk with k odd, then

 p(X) + sp(Xy) = (p(X) + P(XZ1)) - (p(XZ1) + qD(XZ1Z2))

 + + (Qp(XZ1 ... Zk-1) + Sp(Xy)).
 Thus, let IY I * be the length of the shortest representation of y as a product of
 an odd number of generators (if the identity is in E, then IyI * < IyI + 1). We
 set IYI * = oo if y cannot be so expressed. Now, lidi * > 0. The function
 N* (z, y) is defined as in (3.1). With this notation, the proof of Theorem 1 goes
 through word for word to give the following:

 THEOREM 3. Let - and p be symmetric probabilities on a finite group G
 with support of p containing E, a symmetric set of generators. Then the forms
 a, F defined in (2.7) satisfy

 with

 A = max Eyj * N* (z, y)j(y).
 zE=E p(Z) y-GP

This content downloaded from 128.84.234.220 on Tue, 12 Nov 2019 21:09:14 UTC
All use subject to https://about.jstor.org/terms



 COMPARISON FOR RANDOM WALKS ON GROUPS 2141

 Choosing - as the uniform distribution gives a lower bound for the smallest
 eigenvalue:

 COROLLARY 2. Let G be a finite group and E a symmetric set of generators.

 Let p be a symmetric probability with. support of p containing E. Let. -a
 minzEEp(z) and r* = max{lyl*: y e G}. Then

 1 71
 7rgi-(P)? -1+ 2 -1+ 2

 REMARK. It follows from Corollaries 1 and 2 that r* (p) < 1- 2/r*.

 EXAMPLE 2. Take G = Zm, the integers modulo m with m odd. Take
 E = {1, - 1) with p(l) = p(- 1) = 1/2. This is the classical gambler's walk.
 Compare with the uniform distribution. Clearly A* < (2/m)EyIy12 < 2m2,
 SOlTr ? - 1 + 1/2 m2. For this walk the eigenvalues are cos(2 wj/m), 0 <
 j < m. Thus the smallest eigenvalue is cos(rr - w/m) = -1 + wr2/2m2 +

 0(1/m4). Thus the bound is of the correct order for large m. Upper bounds on

 71 for this example are discussed in Example 4 below.

 EXAMPLE 3. Consider G = S, and E = {(1, 2), (1, 2, ... , n), (n, n -
 1, .. ., 1)) with p uniform on E. This is example (1.1) with the identity deleted.
 To avoid parity problems, suppose n is odd. Compare with the random
 transposition measure p described before Theorem 2. The quantity A * is
 bounded above by

 A* <?3 + 2 (n )9n2 < 3(n +9n2).

 The first term in curly brackets comes from the identity, the second term

 comes from the (n) transpositions. Diaconis and Shahshahani (1981) found

 Vg =- 1 + 2/n. Now Theorem 3 yields Wgl 2 - 1 + 1/15n3. An upper
 bound for A (see 3.3) follows as in Theorem 2. Using these results and Lemma
 5 of Section 2 shows that order n3 log n steps suffice for this set of generators.

 The next two examples show how the function N(z, y) enters the bounds.

 EXAMPLE 4. Let G = Zim. Let a E G with a < mi/2 and choose E =
 {-a, -a + 1, ..., a}. Take p uniform on E, so p(x) = 1/(2a + 1) for x c E

 and zero otherwise. We derive bounds on the second eigenvalue w, using
 Theorem 1. We show that, for a universal c > 0,

 *1 ca2
 (3.5) V1 < 1 - M2l

 this result being uniform in lal < m1/27. Here, Fourier analysis can be used to
 show that (3.5) is an equality up to a constant.
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 2142 P. DIACONIS AND L. SALOFF-COSTE

 For definiteness, suppose m and a are even. Break Z m into right and left
 halves working symmetrically with the two parts. Identify the right half with

 0, 1,... m/2. For y in the right half, write y = aa + /3, 0 < , < a. Represent
 y as

 a terms

 y = (O + a) + (1 +a- 1) + +(j + a -j) +/3.

 Here, if a > ak, the terms repeat cyclically. For example, if m = 27 and
 a = 3, represent 13 = (O + 3) + (1 + 2) + (O + 3) + (1 + 2) + 1. This is not
 the minimum length description but IYI in the definition of A in (3.3) (with

 1 = u) can be defined as 2a + 1 and the bound goes through as stated. This
 representation of y may use pairs (0, a), (1, a - 1) ... cyclically, and of course
 a given pair may need to be used many times. With these conventions, consider

 (2a + 1) m-i
 A = max -E IYIN(zXY).

 Z m y=o

 For any z, N(z,y) < N(a,y) + 1. For y = aa + /3, a = [y/a] and N(a,y) =
 [ra/al < y/a2 + 1. The sum over y in the right half is thus bounded above by

 m/2 mn/2( + 1Y
 E IyIN(a, y) < a + 1 ( + 2Y

 This implies that A < Cm2/a2 (recall that a < ml/2), which leads to the
 bound (3.5). Using more naive paths:

 a terms

 a +a + --+a +,l

 leads to a bound of the wrong order of magnitude for a large.

 EXAMPLE 5. Let G = 17d be the "cube" and choose E = {ei, 1 < i < d}
 with ej the usual ith basis vector. Take p uniform on E so p(x) = 1/d for
 x e E and zero elsewhere. There is a unique minimum length path up to order
 and for any choice of z E E,

 d d

 2 d ElyIN(zy) = F(d + 1)2d-2
 y

 Corollary 1 gives

 4

 w1 1 1- d(d + 1)

 As is well known [see, e.g. Diaconis (1988), Chapter 3], wrr = 1 - 2/d so that
 thIe bound is "off" by a factor of order d. Diaconis and Stroock (1991) show
 how to use paths on a collapsed chain to get the correct answer.

 REMARKS. (a) There has been considerable work in the computer science
 community deriving diameter bounds for groups. For example, Driscoll and
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 Furst (1987) show that the diameter of a permutation group of degree n
 generated by cycles of bounded degree is 0(n2). Babai, Hetyii, Kantor, Lubotzky
 and Seress (1990) contains a survey. Babai, Kantor and Lubotzky (1989) give
 generating sets of size less than 7 for the classical families of finite simple
 groups. Their paper contains many examples where one generating set is
 written in terms of a second.

 (b) Comparison bounds can be developed for reversible Markov chains.
 Such bounds are used in Diaconis and Saloff-Coste (1992b) to get sharp rates
 for a variety of exclusion processes. The bounds specialize to those given here
 when the Markov chain is symmetric random walk on a group and give a
 geometric interpretation to A as a measure of "bottlenecks" along the lines of
 Diaconis and Stroock (1991).

 4. Examples in the symmetric group. This section presents analysis of
 shuffling schemes on the symmetric group. They are arranged as: shuffles
 involving transpositions, shuffles involving cycles, overhand shuffles and other

 shuffles. A few of the shuffles have been analyzed before so we can evaluate the
 new techniques on problems with known answers. Many results below repre-
 sent the first analysis of a natural shuffling scheme that has previously defied
 analysis. In most cases the new techniques give the right answer up to small
 numerical constants (e.g., 3n log n where the right answer is n log n). We
 have not attempted to get the sharpest possible constants.

 A. Shuffles involving transpositions. Let a be an undirected graph on

 {1, 2, ... , n} with edge set E. Each edge (i, j) can be thought of as a transposi-
 tion in the symmetric group Sn. It is well known that a set of transpositions
 generates Sn if and only if 9 is connected. For example, any spanning tree
 gives rise to a set of generators. A random walk on Sn generated by 9 can be
 described as follows. To start, place cards labelled 1, 2,. . ., n at the vertices of
 S. At each stage, an edge is chosen at random and the two cards at the ends of
 the edge are switched.

 The main result of this section gives bounds on the rate of convergence to
 the uniform distribution in terms of the geometry of the underlying graph.
 The results follow by comparison with known results for the complete graph.

 To describe things, for each pair x, y let yxy be a path from x to y in S.
 Sometimes the choice of such paths is forced, as when S is a tree, but in
 general, it is still a matter of art to choose good paths. Let

 y be the length (number of edges) of the longest path,

 b = maxI{(x,y): e E yxy
 ee E

 The comparison bound may be formalized as follows.

 THEOREM 1. Let S be a connected graph on {1, 2, .. ., n} with edge set E.

 Define a probability p on the symmetric group Sn by p(id) = 1/n, p(i, j) =
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 (n - 1)/ lE In for (i, j) E E and p(rr) = 0 otherwise. Let

 k = {81EIyb/(n - 1) + n}(logn + c), c > 0.

 Then there is a universal constant a > 0 such that

 IIP(k) - UIITV < ae c.

 PROOF. Let j5 be the random transpositions measure corresponding to the
 complete graph. The comparison Theorem 1 of Section 3 gives c < A& where

 A = max F, IyIN(e,y)13(y).
 eeE p(e) Y Sn

 Here p(e) = (n - 1)/(nIEI), j3(y) = 2/n2 for y a transposition. Any transposi-
 tion (i, j) can be realized by transposing successive pairs corresponding to
 edges in yij, starting at i, and then reversing all but the final transposition.
 This gives I(i, j)I < 21yijl < 2y. A fixed edge e appears at most twice in such a
 series of moves, so N(e, y) < 2. Using these bounds gives

 A ? 8IElyb
 n(n- 1)

 Further, all paths described above have odd length. Considering further id
 leads to

 8IElyb

 n(n - 1)

 Using (2.10) and results of Diaconis and Shahshahani (1981) for random
 transpositions completes the proof. o

 REMARK. The quantity yb of Theorem 1 can be replaced by A -
 maxee E Eyxy eIYxyI < yb.

 EXAMPLE 1. Let v9 be a "star" with E = {(1, j): 2 < j < n}. This corre-
 sponds to the random walk on Sn which transposes a random card with the
 first card. This walk has been treated using Fourier analysis by Flatto,
 Odlyzko and Wales (1985), Diaconis (1989) and Diaconis and Greene (1989).
 These authors show that n log n + cn is the right number of steps, the
 variation distance tending to zero for c large, and tending to one for c small.
 The geometric bounds give the right answer "up to constants": This graph is a
 tree, so paths are forced. Clearly y = 2, b = 2(n - 1), IEl = n - 1. This shows
 that for k = 33n(log n + c), I (I) - UIITV < ae-c.

 -EXAMPLE 2. Let , be a "path" with E = {(i, i + 1): 1 < i < n - 1}. This
 corresponds to the random walk on Sn which begins with the cards in a row,
 picks a position 1 < i < n - 1 at random and transposes the card there with
 the card to its right. This graph is a tree with y = n - 1 = IEl and b < 2(n/2)2.
 Proposition 1 shows that if k = n(4n2 + 1)(log n + c), Ilp(k) - UIITv < ae-C.
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 A lower bound showing that the total variation distance is bounded away
 from 0 if k = cn3, for c fixed, follows from considering a fixed card (say the
 card labelled 1). This performs a nearest neighbor random walk with steps
 occurring at rate 1/n. As is well known, random walk takes >> n2 steps to get
 random on a path of length n, so this entails >> n3 steps. We conjecture that
 order n3 log n steps is the correct answer for this problem.

 EXAMPLE 3. Let a9 be a "double star": Take n = 2m and E = {(1, m),
 (2, m), . . ., (m - 1, m), (m, m + 1), (m + 1, m + 2),. . ., (m + 1, n)}. This
 graph is a tree with y = 3, JEl = n - 1, and b = 2m2. Proposition 1 shows
 that for k = n(12n + 1)(log n + c),

 11P() - UIITV < ae-c.

 A lower bound showing that order n2 log n steps are required follows from
 the following rough argument. Consider vertices {1, 2,. . ., m} as forming "urn
 1" and vertices {m + 1, ... , n} as forming "urn 2." Transfer between the two
 urns occurs at rate 1/n. The transfer process is essentially the Bernoulli
 Laplace process analyzed by Diaconis and Shahshahani (1987). Their results
 imply that (n/4)(log n + c) transfers must occur to ensure that the propor-
 tions in each urn are close to 1/2. This shows that for k = k(n) =
 (n2/4)(log n + c) with c fixed, lim infn JIl P(k) - UIITV > 0.

 EXAMPLE 4 (A two-dimensional shuffle). Consider n cards in an I x m
 grid. A random walk proceeds by picking a card at random and transposing it
 with one of its nearest neighbors. Observe that this walk has a dimensional
 aspect: If I = 1, it reduces to random transpositions on a "path" treated in
 Example 2. As shown below, the extra dimension speeds things up.

 To write things out, identify the grid with the integer lattice points in the
 positive quadrant between (0, 0) and (I - 1, m - 1). The lattice points in the
 grid will be denoted v = (x, y). Each edge on the graph gives a transposition.
 Let E be the associated set of transpositions. Thus JEl = (I - 1)m + (m - 1)1
 transpositions are involved altogether. The measure Pi described above is not
 uniform on E. Rather, for neighboring (v, v'),

 5/(6n), if v is a corner and v' is an edge cell or vice versa,

 ( ) 2/(3n), if v and v' are both edge cells,

 7/(12n), if v is an edge and v' is an internal cell or vice versa,
 t 1/(2n ), if v and v' are internal.

 To avoid parity problems, let

 1 1\
 (4.1) P = id + 1 -JPi.

 fl fl
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 THEOREM 2. Let I and m be positive integers with Im = n. Define a

 measure p on Sn by (4.1). Let k = (B + 1)n(log n + c) with B = 16(1 +
 m)max(l, m) and c > 0. Then, there is a universal constant a > 0 such that

 11P(') - UIITV < ae-c.

 PROOF. The result essentially follows from Theorem 1. The measure at
 (4.1) is slightly different from the measure of Theorem 1, but we omit the
 details. z

 REMARKS FOR THEOREM 2. (a) When I = n and m = 1, this shows order
 n3log n steps are enough as in Example 2. For I = m = Fn it gives order
 n' log n steps. The two walks have a comparable number of generators
 (order n). This provides a sense in which there is "more freedom" in two
 dimensions.

 (b) The technique of following a single card gives a lower bound showing
 that for fixed c > O k = cn(max(l, m))2 steps do not suffice. For I = m = F,
 this shows order n2 steps are not enough. We conjecture that order n2 log n is
 the right answer.

 (c) The argument can clearly be generalized to higher dimensions. In
 particular, take n = 2d, and use the graph of the "cube." Theorem 1 shows
 that order n(log n)2 steps suffice to achieve randomness. Following a single
 card gives a lower bound of order n (log n)(log log n).

 (d) Pemantle (1992) has used the techniques of the present paper to study a
 different two-dimensional shuffle in which random subrectangles of a grid of
 cards are rotated in place.

 GENERAL REMARKS. (a) It is possible to show that for any tree on n
 vertices, 4(n - 1) < yb < (n - 1)n2/2, the minimum occurring for a star, as
 in Example 1, the maximum occurring for a path, as in Example 2.

 (b) Preliminary considerations indicate that a random tree has yb concen-
 trated near n5/2.

 (c) For trees, a coupon collector's analysis of the number of fixed points
 shows that k = (n/2)(log n - c) steps can never be enough to drive the
 variation distance to zero.

 (d) Trees exist for which the bound is of order f(n), with n log n < f(n) <
 n3. Take a path of length m connected to a star of size n - m. These have

 IEl = n - 1, -y of order m, and b of order m(n - m). By appropriate choice of
 m, essentially any bound occurs.

 (e) There is another random walk classically associated with a graph S.
 This has a single particle hopping around on the graph by choosing its nearest
 neighbor. Call this the classical walk on -9. There are several connections
 between the walks. For simplicity, suppose the graph is regular. Following a
 single card in the permutation walk gives a classical walk run at rate 2/n. If
 KC, KI denote the smallest k such that variation distance is smaller than l/e
 for the two walks, this shows Kr ? (n/2)Kc.
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 Random Insertions. A different class of walks can be associated with a graph,

 and the same analysis applies. Let cij be the permutation in Sn resulting from
 taking card i and inserting it into position j. Thus for i < j, ci = (j, j -
 1,..., i) and for i > j, cij = cj17. Given a connected graph, a walk can be
 performed by choosing an edge {i, J} at random and performing c - or cji with
 probability 1/2. For the complete graph this is essentially the random to
 random shuffle. For a star with vertex 1 at the center, this becomes random to
 top or top to random (with probability 1/2 each). Even a star with a different
 vertex at the center has resisted analysis. For a path, it becomes the nearest
 neighbor transposition walk analyzed in Example 2.

 THEOREM 3. Let 9 be a connected graph on {1, 2, .. ., n} with edge set E.

 For cij defined above, let q(id) = 1/n, q(cij) = (n - 1)/21EIn for {i, j} E E
 and q = 0 otherwise. With b and y defined as in Theorem 1, let

 k = (81EIyb/(n - 1) + n)(log n + c)

 with c > 0. Then, there is a universal a > 0 such that

 llq() - UIITV < ae-c

 PROOF. The first step is to bound the rate of convergence (and Dirichlet
 form) for the random insertion process based on the complete graph. Here, a
 random card is removed and inserted in a random position. A straightfoward

 comparison with random transpositions shows that this process requires order
 n log n steps to achieve randomness. Bounds for more general graphs now
 follow by comparison with random insertions based on the complete graph:

 choosing paths, cij can be represented by a sequence of insertions along the
 paht from i to j. There is no need to "clean up" afterward. The stated bounds
 follow from these considerations. z

 We have not investigated lower bounds except in a few instances where we

 found the results sharp "up to constants." Observe that c12 and cin generate
 Sn So the graph need not be connected. We have not investigated this direc-
 tion.

 B. Overhand shuffles. The second most popular way of mixing cards is the
 overhand shuffle in which one drops small packets of cards from hand to hand
 reversing the order of the packets. A realistic model of this shuffle was
 analyzed by Pemantle (1989) who showed that order. n2 log n of his shuffles
 suffice while order n2 are not enough to achieve randomness. We here analyze
 two different models with neater shuffles. The results are somewhat surpris-
 ing, neater shuffles mix cards faster.

 Neat overhand shuffle. Let tj be the permutation that reverses the top i cards
 in place. Thus
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 Here t1 is taken as the identity. Define

 1

 (4.2) P(T)={n for v = tiq 1 < i < n
 09 O.otherwise.

 THEOREM 4. For p defined by (4.2) let k = 48n(log n + c) for c > 0. Then
 there is a universal constant a > 0 such that

 HP(" - UIITV < ae

 PROOF. Let us compare with j3, the measure based on "transpose random

 with top" analyzed in Example 1. The permutation tj-ltj (first perform tj,
 then perform tj-,) has the effect of bringing the top card to position j. It
 follows that (1, i) = ti -tA2t-1ti for 3 < i < n while (1, 2) = t2. The quantity
 A becomes

 n

 A ? max E 4N(ti,(1,j)).
 i j=1

 Since each tj is involved in at most three transpositions (1, j) and
 N(tj, (1, j)) < 2, A < 24. The result now follows using Lemma 6 of Section 2
 and known results for 13. r

 REMARK. A lower bound of order n log n follows by considering T(w), the
 number of i such that Iw(i) - r(i + 1)1 = 1. Under the uniform distribution,
 T(rr) is approximately Poisson(2) by standard arguments. If k = n log n - cn
 shuffles are performed for c = c(n) tending to oo arbitrarily slowly, the coupon
 collector's problem shows T(&) > 0 with probability approaching 1.
 Crude overhand shuffle. Here is a second simple model for an overhand
 shuffle. For 1 < a < b < n, let t(a, b) move cards as in the following picture:

 3

 2

 2

 3

 1

 Thus the top a cards are cut off and placed on the table. Then a packet of size
 b - a is cut off and placed on the original top packet. Finally, the remaining

 n - b cards are placed on top. There are 2 1) possible choices. These are
 made by choosing a uniformly in 1 < a < n and choosing b uniformly in
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 a < b < n. Thus

 (4.3) p(t(a, b)) = n(n + -a)
 This implies p(id) = 1/n.

 THEOREM 5. For p defined by (4.3), let k = 672 n(log n + c). Then there is
 a universal a > 0 such that

 11P(') - UIITV < ae c
 If k = (n/2)(log n + c), then

 11P(k) - U1ITV ? - ee + o(1).

 PROOF. The following elegant argument uses paths suggested by Pemantle.
 The argument is based on comparison with the measure associated to random

 transpositions 1i(id) = 1/n, (&rr) = 2/n2 if v is a transposition. Transposi-
 tions are represented by first representing "a to bottom" and "b to top" and
 their inverses. There are many ways to do this and the different choices must
 be taken in a balanced manner to get a good bound. The steps are easy but we
 find it helps to have a deck of cards on hand to check details.

 The cycle "a to bottom" can be represented as

 (n,n- 1,...,a) =t(n-b+ 1,n-a+ 1)t(a- 1,b)

 for any b, 2 < a < b < n;

 the cycle "b to top" can be represented as

 (1,2, . . ., b) = t(n - b, n - (a + 1))t(a, b) for any a, 1 < a < b < n.

 To avoid bottlenecks, transpositions (i, j) are split into 2 groups:

 GroupI: i +j < n; GroupII: i +j > n.

 In Group I, for 1 < i < j < n, the transposition (i, j) can be represented by
 the following:

 (a) Move card i to bottom by t(n - j + 1, n - i + 1)t(i - 1, j).
 (b) Move card i to position j by t(i, n - j + 1)t(j - 1, n - i - 1).
 (c) Move card j to bottom by t(i + 1, n -j + 2)t(j - 2, n - i).
 (d) Move card j to position i by t(n - j - 1, n - i + 1)t(i - 1, j).

 Observe that when choice was possible in a representation, the second variable
 was used to make the choice. Clearly, in Group I, J(i, j)J < 8 and no generator
 appears in more than seven transpositions. Further, N(t(a, b), (i, j)) < 3. In
 Group II, for i < j, the transposition (i, j) can be represented by the following:

 (a) Move card i to top by t(n - i, j - 1)t(n - j i).
 (b) Move card i to position j by t(n - j, n - i + 1)t(i, j).
 (c) Move card j to top by t(n - j + 1, n - i - 1)t(i, j - 1).
 (d) Move card j to position i by t(n - i, j + 1)t(n - j, i).
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 Again, in Group II, I(i, j)I < 8 and no generator appears in more than seven
 transpositions. Using these observations,

 A < max 2n(n + 1 - a) 336 = 672.
 a n

 Using this and the known results for random transpositions in Lemma 6 of
 Section 2 completes the proof of the upper bound.

 For the lower bound, let T(&) = I{i: Iw(i + 1) - r(i)l = 1}1. Under the
 uniform distribution, T(&) has a limiting Poisson(2) distribution. In particu-
 lar, u{T(w) = O} = e-2 + o(l). On the other hand, each shuffle breaks at most
 two "bonds" where pairs (1,2),(2,3) ... (n - 1,n) are initially considered
 bonded. An easy variant of the coupon collector's problem shows that
 p(k){T(w) = 0} < e-e + o(1) for k = (1/2)n(log n + c) with c < 0. This
 proves the lower bound. z

 Both overhand shuffles analyzed above require order n log n repetitions.
 This is perhaps surprising in light of Pemantle's results: he analyzed a shuffle
 with many more underlying generators (order 2n) yet found at least n2
 repetitions were needed.

 C. Other shuffles. The next example solves a problem posed by Borel and
 Cheron [(1940), pages 8-10 and 254-256].
 Borel shuffle. The basic step in this shuffle may be described as follows:
 Remove a random packet and place it on top. More precisely, for any a, b,
 1 < a < b < n, let Tab be

 1 2 .. b-a+ 1 b-a+2 .. b b+ 1 b+2 .. n

 aa+1 b 1 a-1 b+1 b+2 .. n

 Let

 (4.4) P [ O(n i ) iflT=Wabforsomeab,
 .0 otherwise.

 Observe p(id) = 2/(n + 1).

 THEOREM 6. Let p be defined by (4.4). Let k = 16n(log n + c) for c > 0.
 Then, there is a universal constant a > 0 such that

 11p(k) - UIITV < ae

 If k = (1/2)n(log n + c) for c < 0,

 - uIITV> e2 - eec + o(1)
 Thus, the variation distance does not tend to zero.

 PROOF. The upper bound is achieved by comparison with the shuffle
 associated with removing a random card and inserting it at a random position.
 Here, for 1 < a, b < n, let cab be the cycle (b, b - 1, . . ., a) if a < b,
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 and (b, b + 1, ..., a) if a ? b. Define 3(w) = 1/n2 if v = cab for some
 a, b with j3(w) = 0 otherwise. Theorem 3 of this section implies that if m =
 4n(log n + c),

 (4.5) 1113(m) - UII12 < n!1113(m) - u112 < ae C.

 For the comparison, write Cab in terms of 17cd as

 Cab = b-a+1,b-lTa+1,bq if a < b,

 Cab = a-b+la-lb+laq if a > b.

 Here,

 A = max EIW IN(Wrab X ,)3( O)v
 a,b P(Wab) ,

 Clearly JrI < 2 and any fixed Tab appears in the expression of at most two
 Ccd'S, whence N(rabq r) is 1 for two different terms in the sum. These bounds
 give A < 2(1 + 1/n). Using this, Wgi 2 -1 + 4/(n + 1), and (4.5) in Lemma
 6 of Section 2 proves the upper bound.

 For the lower bound, take T(&) = I{i: Ir(i + 1) - r(i)l = 1}1. Under the
 uniform distribution, T(&) has an approximate Poisson distribution with
 mean 2. In particular, u{T(w) = 0} = e-2 + o(1). On the other hand, for
 k = (1/2)n log n + cn, p(k){T(rr) = O} = e-e + o(1). 0

 A rapidly mixing shuffle with small support. This example gives a probability

 supported on six permutations which achieves randomness extremely rapidly.
 The generators were developed by Babai, Hetyii, Kantor, Lubotzky and Seress
 (1990) for group-theoretic algorithms. They can be described as the two types
 of perfect shuffles of an even deck together with a single transposition. More

 precisely, suppose n is even. Let Sn act on the n set X = Zn-1 U {oo}. Let
 ro: x -* 2x and sr1: x -> 2x + 1 be two permutations of X (both fix oo). Let

 g72 = (O, oo). Take

 E = (idq'Tr1qo-l1q'rTl qGT21
 Define

 (4.6) p(Wr) = 1/6 if rr E E and zero otherwise.

 THEOREM 7. Let p be defined by (4.6). Let k = 24n(log n)2(log n + c) for
 c > 0. Then there is a universal constant a > 0 such that

 IV~k)- UIITV < ae-c.

 PROOF. Babai et al. (1990) show that for any fixed j, 0 < j < n - 2, there
 is a product of at most log n terms involving -ro and srr that gives a
 permutation oj taking j to position 0. Thus, -1j-1172J = (j,oo). Thus any
 transposition (j, oo) can be written using at most 2 log n + 1 generators.
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 Comparing with -(id) = P j, oo) = 1/n, 0 < j < n - 2,

 1
 A = max -EI(I, o)IN(s-, (joo)4)(j, oo) < 12(log n + 1) log n.

 Now, use of (2.8) together with known results for - give the result. E

 REMARK. Any fixed number of generators require order n log n steps.

 Thus, up to logarithmic factors, this is as fast as possible. We do not know if
 part (or all) of the extra log2 is necessary.

 5. Products. Random walk on the hypercube (Example 5 of Section 3) is
 an example of a natural walk on a product group. In this section we analyze
 two natural walks on the d-fold product of an arbitrary group. We were led to
 study them because they are natural problems where comparison techniques
 do not work well (see Example 1 below). Our analysis is based on elementary
 use of eigenvalues combined with Lemma 6 of Section 2 in which the corre-
 sponding continuous time process is crucial. No comparison argument is used.
 However, the walks we analyze here can be used to study other walks on
 products by comparison. We had been unable to get the results of this section
 (in particular, Example 2) by Fourier analysis or any other technique.

 Let G0 be a finite group with IG 0 = go. Let u0 be the uniform probability
 on Go: u0 go- For d > 1, let G = Gd be the product of d copies of Go.
 Also let u = uod god be the uniform probability on G.

 Given an arbitrary symmetric probability PO on Go, consider the symmetric
 probability on G defined by

 l d

 P dE aid .. (PoO ?& aid)

 i-i1 d -i

 when aid is point mass at id in Go. The probability p has a simple interpreta-
 tion: Pick a coordinate at random and put a random choice from PO in that
 coordinate.

 Define

 q = PO 0 PO * o od.

 Let 7ro = 1? 2i ?_ ? >2 gl > - 1 be the eigenvalues of pO and let pi be
 the eigenfunction associated with i-i. We make the following observation:

 The eigenvalues of p are the gd numbers

 s ' d E r~~~-1i) I E {?) .. *Xgo I}dX
 d iEj1I

 whereas the eigenvalues of q are the god numbers

 YI= 7i I{O,...,go _ .
 iGI
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 COMPARISON FOR RANDOM WALKS ON GROUPS 2153

 Both rr, and yi are associated with the eigenfunction 40j(x1, .j. , Xd) =
 Pip(xi) ... pid(Xd) where I = (i1, . ., id)'

 A bound for q follows easily.

 THEOREM 1. Assume that goj/2Ip(') - u0112 < ae-C for some a > 0 and
 k = B0(B1 + c), for all c > 0. Then, for K = B0(B1 + (1/2)log d + c), c > 0,
 we have

 211q(K) - UIITV ? llq() - U112 <? ae(a2/2)C

 PROOF. Using eigenvalues and the inequalities

 (1+x)d-1 = dfx(1+y)dl dy < dx(l + x)d < xedx

 we see that

 gllqK) - U112 = (1 + gollp(K) - Uoii2) - 1
 gll(')- < c00~p/ 2

 <dgo I|| p (K) -u | edgojjptK '-UO1122[

 In order to study p, consider first the semigroup kernels

 o ( tn
 hot= e-t _p(n)

 0 0 n.

 and

 oo tn
 ht= e-t E_ p(n).

 0 n.

 Observe that ht = ho, t/d ? * * h0, t/d* Indeed, this can be checked on eigen-
 functions. Note also that the smallest nonzero eigenvalue of aid - p is Al/d,
 where A1 = 1 - r is the smallest non zero eigenvalue of aid - Po*

 THEOREM 2. Assume that g1/211h O. -U 0u112 < ?e -c for some constant a > 0
 and all t = Bo(B1 + c), c > 0. Then, for T = dBO(B1 + (1/2)log d + c), c > 0,
 we have

 211hT - UIITV < g1/2 IhT - u112 < ea2/2c

 PROOF. Using the above observation and eigenvalues, write, for T = s' + s,

 I1hT - I2 < hsIe2sA/d - (ho2d(id) e

 By hypothesis, we have A1 > 1/BO and ho,2S'/d(id) < gO1(1 + a 2e-2C), for
 s'/d = Bo(B1 + C) and any C > 0. Take s' = dBO(B1 + (1/2)log d), s = dBoc.
 Putting this in the above estimate yields the desired result. C
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 2154 P. DIACONIS AND L. SALOFF-COSTE

 THEOREM 3. Assume thatg'2I1plkl) - u012 ? ae-c for some constant a > 0
 and k = B0(B1 + c), for all c > 0. Then, for

 K= 2dBo(max{B1, B-1 log(gl/2)} + log(d1/2) + c) + 1, c > 0,

 we have

 211p(K) - UIITV < ?11211p(K) - U112 < (1 + 2e +a2) / e-c.

 PROOF. Lemma 3 of Section 2 and the hypothesis implies that

 golIh0,2k - U0II2 < goe2k + gollp(k) - U0112
 0, 2k 2 - 222k

 < goe-2k + a 2e-2k'

 for k = Bo(B1 + k'), k' > 0. Reasoning as in the proof of Theorem 2, we get

 gIjh2t U112 < (1 + goe-2k/d + a2e2k'/d)de-2s/dBO
 for t = k + s, s > 0. This gives

 gIjh2K- U 112 < e1+a2-2c

 for K1 = dBo(max{B1, B-1 log(gl12)} + log d'1/2 + c). Next, the smallest
 eigenvalue of p is (1/d)EY d=r1go- 1 = rgo- 1' which satisfies L1wgo-11 < e-l/Bo.
 Now, the argument for Lemma 6 of Section 2 shows that

 g p ( N 2) - UI ? 2 ( - 2 n) 1 + 7FI
 71->0 0<17r-<1

 where N = n + n' + 1. Hence,

 gilp(N) - U112 ? + gIUh 1 - uII2wg2_1 + gIIh U- U112.

 Using g-1 = -1go and K as defined gives
 gjp(K) _ U112 <e-2dc + +a2-2dc + ea22c. E

 EXAMPLE 1. When po is uniform on Go (i.e., po = uo), one finds that the

 eigenvalues of p are the numbers i/d with multiplicity (d )(go - 1)d-i)
 i = O. ... , d. In this case, it follows from direct consideration of eigenvalues
 that there is a > 0 such that

 gllp(k) - U112 ae-c

 where K = (1/2)d{log(d(go - 1)) + c}, c > 0. This is of the same order of
 magnitude as the value given by Theorem 3 in this case. Also,

 gllp(k) - U112 ?d(go - k > O.

 Thus, order dlog(dgo) steps are necessary and sufficient to drive the d2
 distance to zero.

 Note that, in this case, the random walk associated with p proceeds by
 choosing a coordinate at random and picking a random element of Go. The
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 first time that each coordinate has been chosen is a strong stationary time in

 the sense of Aldous and Diaconis (1986). Thus, the coupon collectors' bounds
 give universal a > 0 such that

 11P(') - UIITV < ae c for k = d(log d + c).
 Here total variation converges more quickly than d2 distance when go grows
 with d. This gives an example where the usual use of Cauchy-Schwarz is
 "off" for bounding total variation. [See Stong (1991) for more of this.]

 EXAMPLE 2. Take Go = m' Pol(O) = Po(? 1) = 1/3. Here, the eigenvalues
 are known to be 1/3 + (2/3)cos(2rj/m), 0 < j < m - 1. This yields

 mI1pok) - U0112 <a2e2pk/m2 when k >

 for universal a, , > 0. Theorem 3 yields

 IIp(k) -UIITV < 3e c,

 where k = 2,8-1m2d[(1/2)log d + max(a,,8) + c], c > 0. This is sharp, up to
 constants.

 EXAMPLE 3. Take Go = Sn, po(id) = 1/n, po((i, j)) = 2/n2 (random
 transpositions). It is known that gollp (k) - u0112 < a 2e-2C for k -
 (1/2)n(log n + c). Theorem 3 yields

 11p(k) - UIITV ? 1 + 2e1? eC
 when k = (3/2)nd(log(nd1/2) + c) + 1, c > 0.

 REMARKS. (a) Our original approach to bounding 1p(k) - UIITV used com-
 parison with the version of p having pO replaced by u 0. We later realized that
 all the eigenvalues of p were available and could be used to get sharper
 results.

 (b) The techniques and results of this section carry over to products of
 reversible Markov chains: Bounds on the rate of convergence of components
 give bounds on the rate of convergence of the product. See Diaconis and
 Saloff-Coste (1993).

 (c) One can interpolate between p and q: For 1 < j < d, define pj on G d
 by choosing a random subset of j indices out of {1, 2, ... , d}, placing indepen-
 dent, identically distributed elements in these coordinates, and the identity in
 the remaining coordinates. Arguing as at the beginning of this section, for each

 I E {O, 1, ..., g0 - 1}d there is an eigenvalue irr = 1/(jE Hj=4 1j, with the
 sum over subsets s = {s, ... Sj) of size j from the set {1, 2,... ., d} and the
 proiduct over the coordinates of I = (i, 1. . , d)a determined by this subset.

 Acknowledgments. We thank Robin Pemantle for the argument for
 Theorem 5 of Section 4. We thank Jim Fill for extensive technical help and for
 having the patience of a saint.
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