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The Annals of Applied Probability 
1993, Vol. 3, No. 3, 696-730 

COMPARISON THEOREMS FOR REVERSIBLE 
MARKOV CHAINS 

BY PERSI DIACONIS AND LAURENT SALOFF-COSTE 

Harvard University and Universite de Paris VI CNRS 

We introduce geometric comparison inequalities that give bounds on 
the eigenvalues of a reversible Markov chain in terms of the eigenvalues 
of a second chain. The bounds are applied to get sharp results for the 
exclusion process. 

1. Introduction. Let x be a finite set. Let P(x, y) be an irreducible 
Markov kernel on X with stationary probability IT(x). Assume throughout 
that P, iT is reversible: 

1iT(X)P(X,9y) = iT(y)P(y, X). 

By symmetry, P has eigenvalues 1 = I03 > I381 > ?> I 31xI- 1 2 -1. This pa- 
per develops methods for getting upper and lower bounds on 8i3 by compari- 
son with a second reversible chain on the same state space. This extends the 
ideas introduced in Diaconis and Saloff-Coste (1993), where random walks on 
finite groups were considered. The bounds involve geometric properties such 
as the diameter and covering number of an associated graph along the lines 
of Diaconis and Stroock (1991). 

The main application gives a sharp upper bound on the second eigenvalue 
of the symmetric exclusion process. Thus, let S0 be a connected undirected 
graph with n vertices. For simplicity, we assume in this introduction that SW 
is regular. To start, r unlabelled particles are placed in an initial configura- 
tion, 1 < r < n. At each step, a particle is chosen at random; then one of the 
neighboring sites of this particle is chosen at random. If the neighboring site 
is unoccupied, the chosen particle is moved there; if the neighboring site is 
occupied, the system stays as it was. This is a reversible Markov chain on the 
r-sets of {1, 2, . . ., n} with uniform stationary distribution. Liggett (1985) gives 
background and motivation (he focuses on infinite systems). Fill (1991) gives 
bounds on the second eigenvalue of the labeled exclusion process on the finite 
circle ZZn 1 

We study this chain by comparison with a second Markov chain on r-sets 
that proceeds by picking a particle at random, picking an unoccupied site at 
random (not necessarily a neighboring site) and moving the particle to the 
unoccupied site. This is a well studied chain (the Bernoulli-Laplace model for 
diffusion). Its eigenvalues are known. We show that the comparison tech- 
niques apply to give upper bounds on the eigenvalues of the exclusion 
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process. For example, suppose that S0 is an n-point segment with a loop at 
each end. Our results give ,1 < 1 - 4/rn2. We also prove a sharp lower 
bound that, for this example, yields 1 - 1r2/2rn2 < 1 - (1 - cos(OT/n))/r < 
,81. These bounds improve upon results of Fill (1991). These techniques also 
yield interesting bounds for more complicated graphs. 

Simple exclusion is a well studied process related to a variety of other 
processes and to certain mechanical systems. Kipnis, Olla and Varadhan 
(1989) and Quastel (1992) are recent works on the limiting behavior of 
exclusion processes after an appropriate scaling, and they contain other 
references. Fill (1991) gives other motivations. Thomas (1980) connects the 
Hamiltonian of the quantum Heisenberg ferromagnets model in a finite box 
C Zd with simple exclusion processes. More precisely, he shows that the 
restrictions of this Hamiltonian to certain subspaces of its natural Hilbert 
space are unitarily equivalent to the generators of simple exclusion processes. 
Our bounds can be interpreted in this context. 

After a first draft of this paper was completed, Claude Kipnis informed us 
of the work of Quastel (1992). In his paper, Quastel studies the limiting 
behavior of a colored particle process on the d dimensional torus Zd. As a 
tool, he needs an upper bound on the second largest eigenvalue (i.e., a lower 
bound on the spectral gap) of simple exclusion. His approach to this question 
is very similar to ours and uses comparison with the Bernoulli-Laplace 
model of diffusion. The comparison argument is only a small part of his paper 
and we provide more details on this matter. The two works were done 
independently and take very different points of view. 

In Section 2A, we set out preliminaries on eigenvalues and the two- 
quadratic forms we use. The comparison techniques are developed in Section 
2B, which shows how they specialize to the results of Diaconis and Stroock 
(1991) and the comparison bounds for symmetric random walks on groups of 
Diaconis and Saloff-Coste (1993). A variant using multicommodity flows 
along the lines of the work of Sinclair (1991) is developed in Section 2C. The 
exclusion process is treated in Sections 3 (upper bound) and 4 (lower bound). 
Section 5 contains examples and Section 6 gives bounds on total variation in 
terms of eigenvalues and some final comments. 

2. Forms and eigenvalues. 

A. Preliminaries. Let X be a finite set. Let P(x, y), IT(x) be a reversible, 
irreducible Markov chain on X. Let 12(X) have scalar product (f,g) = 

EX E Xf(x)g(x)7(x). Because of reversibility, the operator f Pf, with Pf(x) 
= Ef(y)P(x, y), is self-adjoint on 12 with eigenvalues 0 = 1 > ,31 ? 82 > 

? 2,1xi- 2 -1. These eigenvalues can be characterized by the Dirichlet 
form X defined as 

(2.1) g,(f , f) =( p)fg f) = E (f(x)-_ f(y))2T(X)p(X9x y). 
x , y 
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We also use the form 

(2 g) (fg f) =<I+ P)f, f) a (f(x) + f(y))2_rxP(,y 
x, y 

Given a subspace W of L2(X), set 

Mr(W) = max{fo(f,f); IlflI2 = 1, f E W), 

mA(W) = min{((f, f); llfl12 = 1, f E W} 

and define M,(W) and m,(W) accordingly. The usual minimax characteriza- 
tion of eigenvalues [see, for instance, Horn and Johnson (1985)] gives, for 
0 < i < IXI - 1, 

1 - 8i = min{M,(W); dim W = i + 1} = max{m,(W); dim W= i}, 

1 + f3i = min{M,(W); dimW = IXI - ij 
= maxfm(W); dimW =IXI - i - 1}. 

If (x, y), 7I is a second reversible Markov chain on X, the minimax 
characterization yields, for 1 < i < IlXI - 1, 

a 
(,i < 1 - A(1 - 13j)9 if &7 < A&' 'r > air, 

(2.3) A 

8i > -1 + A (1 + ,i) if 5< AR, 1r 2 air. 

B. Comparison of Dirichlet Forms. This section develops a geometric 
bound between Dirichlet forms. Let P, -ir and P, X be reversible Markov 
chains on the finite set X. In the applications, P, iT is the chain of interest 
and P, s- is a chain with known eigenvalues. Both iT and -7r are assumed to 
be supported on X. For each pair x # y with P(x, y) > 0, fix a sequence of 
steps xo = x, x,, xx2,..., Xk = y with P(xi, xi+,) > 0. This sequence of steps 
will be called a path yxy of length lyxyl = k. Set E = {(x, y); P(x, y) > 0}, 
E = {(x, y); P(x, y) > 01 and E(e) = {(x, y) E E; e C yxyl, where e E E. In 
other words, E is the set of "edges" for P and E(e) is the set of paths that 
contain e. Here is a convention that we fix once and for all in this paper. All 
graphs are undirected graphs. However, we describe such a graph as a set of 
vertices X and a symmetric set of directed edges E c X x X. 

THEOREM 2.1. Let P, ir and P, IT be reversible Markov chains on a finite 
set X. For the Dirichlet forms defined in (2.1), 

with 

(2.4) A = max E lYy,IFT(x)P(x, y). 
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PROOF. Clearly, we can assume that none of the paths yX)y contains loops. 
For an edge e = (z, w) E E, let f(e) = f(z) - f(w). Then 

1 E 

( f(x) _ 
f(y))2_7XP(sy 

x, y EEX 

2 

2 E ( E f(e)}i (x)P(x,y) 2 x, y ee yxy 

1 1 
< 2-E IyxYLjr(x)P(x,y) E If(e)12 

x,yeX ee yxy 

< If(e) I ()( ) E I)XY1-if(X)P(X,Y) 2 e=(z,w) 'n-(z)P(z, w) yx~, 

<AX(f, f). 

To state a companion result, for x, y E X with P(x, y) > 0, let yx*y be a 
path with IJyx*y odd. For e E E, set E*(e) = {(x, y) E E; e E yx*}. Now, we 
cannot rule out the possibility of repeated edges along yx*y. Thus, we set 

(2.5) rxy(e) = #{(bi, bi+ 1) E YX*Y; (bi, bi+ 1) = el. 

Note that we can always assume that rxy(e) < 2. The "sum along the path 
argument" of Theorem 2.1 can be used to write f(x) + f(y) = (f(x) + f(x1)) 
- (f(x1) + f(x2)) + + (f(xk - 1) + f(xk)). The argument yields the follow- 
ing theorem. 

THEOREM 2.2. Let P, -r and P, Tr be reversible Markov chains on a finite 
state space X. For the quadratic form Ydefined in (2.2), 

< A*S 

with 

(2.6() A*{I max 
E 

rXY(z9w)IYX*YFfr(x)P(x9Y)} - )E ( 7 ( Z ) P( Z,W)E(ry(z 9 W)l * s(x)P(x,y (2.6) A*z= max= ( ,w)*(z, w)/ 

and rxy defined in (2.5). 

We begin with a simple example to demystify the notation. 

EXAMPLE 2.1. As a chain P of interest, consider the natural graph struc- 
ture of the 1 x m grid X = {1,...,1} x {1,..., m} modified by deleting a 
number of edges from the grid. To keep things simple, suppose no basic 
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square has more than one edge deleted. An example with 1 = m = 5 is 

Let the resulting graph be called W = (X, E). This is a connected graph with 
IEl edges. Take P to be the usual nearest-neighbor walk on S. Let d(i, j) be 
the degree of the vertex (i, j). The stationary distribution is Ir(i, j) = 
d(i, j)/IEl. The problem is to bound the eigenvalues of P. Note that these 
eigenvalues are not known in closed form even in the simplest case where no 
edge is deleted from the grid. 

A chain P on X, with known eigenvalues, can be constructed as follows. 
For each integer n, let P,n be the nearest-neighbor chain on the n-point 
segment with a loop at each end. The eigenvalues of Pn are given in Feller 
[(1968), page 436] and are equal to 

cos _,T O < j < n - 1 
n 

Now, set 

P = 1 (0 Id + Id 0 Am). 

In other words, 

P(( X9Y)(U, V)) = 2 (Pl( X U) 5yv + 5xuPm(Y9 V)) 

This has stationary distribution -r- 1/lm. Its eigenvalues are the numbers 

2(cos n + cos). 

In particular, assuming 1 > m, we have ,X = (1 + cos(T1/l)) and Plmin 2 
- cos(O/I). 

Observe that 

Im 41m 
(2.7) 7(i9j) < iT(i,j) < El (i, j). 

The pairs (x, y) E X x X with x = y and P(x, y) > 0 are exactly the edges of 
X as a usual grid. Using the notation of Theorem 1, choose a path connecting 
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them in S. This path will be of length 1 if the connecting edge has not been 
deleted. It will be of length 3 otherwise. Consider the comparison constant A 
in (2.4). For any edge e E E, there are at most two paths of length 3 and one 
path of length 1 using e. Using (2.4), ' < 7(IEI/41m)F. Hence, (2.3) and (2.7) 
yield 

pi < - -? < i < lm - 1. 
It is even easier to carry out a comparison in the other direction. Reverse the 
roles of P and P. Now, all paths can be chosen of length 1. We get 
9' < (41m/IEI)i. Thus, 

1 - 4(1 - f3i) < A9i 0 < i < lm - 1. 

Combining bounds, the second largest eigenvalue of P satisfies 

IT2 IT 13 1 IT IT2 1 
1- 12 < -1+ 2cos- <X31< - 1 =1- = 281 + 0 

1 2 1 1 14 14 1 2i8 12 (j4 

when 1 ? m. 
These inequalities show that the positive parts of the spectrums are quite 

close for the two processes. Here, the comparison constant A* between S and 
. is A* = Co because there is no path of odd length in V from a corner to 
itself. Indeed, I3min 2 - cosOT/l), whereas I3min = - 1. 

This example generalizes to higher dimension. Let X be a finite box of size 
11 x x d = n in Zd and set l = maxi{li}. Consider the simple random walk 
for the natural graph structure of the box X (for simplicity we do not delete 
edges here). Comparing with a product walk shows that the second largest 
eigenvalue of the simple random walk in this box satisfies 

Ir2 2 IT 1 IT 1- <1-~- c <8< - 1 co 
dl2 - d d - 

IT2 1 

=1- 2dl2 Vdis 

EXAMPLE 2.2. This example shows how present bounds include some 
previous results. Let P, Ir be a reversible Markov chain. Let P(x, y) = IT(y) 

for all x. This is a Markov chain with stationary distribution -r(x) = IT(x). 
Then '(f, f) = Var(f) = Ex E x(f(x) - f)2IT(x) with f = Ex E Xf(x)iT(x). The 
bound of Theorem 2.1 reduces to the geometric bound, 381 < 1 - 1/A, of 
Diaconis and Stroock [(1991), Proposition 1', page 38]. These authors, along 
with Fill (1991) and Sinclair (1991) have shown that this bound can be 
usefully applied in a wide variety of problems. See also Example 2.5 and 
Corollary 2.1. 

Now, take P(x, x) = 1 and P 0- otherwise. This trivial chain (P = Id) 
has any probability measure as invariant measure. Choose -r = Ir and apply 
Theorem 2.2. Because P(x, y) = 0 unless x = y, the paths we consider are 
loops of odd length o-x, x E X. In this case, Theorem 2.2 yields a variant of 
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Proposition 2 in Diaconis and Stroock [(1991), page 40]: The smallest eigen- 
value I3min of P is bounded by 

i3min 2 -1 + 2/A#, 
where 

(z,w)AE P(- Zm W T(Zw) I) 

with rx as in (2.5). When P(z, z) ? e > 0 for all z E X, we can take o-x to be 

the trivial loop at x and get 

P8min 2 1 + 2e. 

EXAMPLE 2.3. Diaconis and Saloff-Coste (1993) developed comparison 
techniques of similar flavor for symmetric random walks on finite groups. Fill 
has pointed out that Theorem 2.1 specializes to give exactly the previous 
bounds. This is useful because the geometric flavor of the bound was not 
apparent in the group case. To develop the details, suppose X = G is a finite 
group and F = {sl,..., Sm1 is a symmetric set of generators of G. Let q be a 
symmetric probability on G supported on F. Let q be a second symmetric 
probability on G. These probabilities define Markov chains P(x, y) = q(x'-y) 
and P(x, y) = q-(x-1y). Assume that each of these chains has the uniform 
distribution as its unique stationary distribution. 

For each wE E G, choose a representation a) = S1S2 .. SI with si E F and 
set I1i = 1. Let N(s, cv) be the number of times that a given s E F appears in 
this representation. Then, for any x, y e G, set y = (x, xs1, xs1s2,.. ., xs1 

sl), where co = x1y. Now, the edges that occur are of the form e = (z, zs) 
for z E G and s E F. For such an edge, 

E lxyllI(x)P(x,y)=- E Ic1(c) 
YXY 3e II(X, c9EQ 

where the sum is over 

fl = {(x, c): 3 i E {1, ...,} 1 such that xs1 ... si-1 = z, xs1, "sSi = zs}. 

For any fixed co, the number of x E G such that (x, c) E fl is exactly 
N(s, c), so 

A = max E IcvIN(s, cv)q(wcv). 
q(s) .OeG 

A similar analysis works for A*. Diaconis and Saloff-Coste (1992b, 1993) give 
many examples of the use of this bound. The connection will be useful here as 
well because bounds for random walks on graphs can be used to bound the 
eigenvalues of the exclusion process on these graphs; see Theorem 2.3. 

EXAMPLE 2.4. This example shows that removing a single edge can lead to 
bounds that are "off." Let X = {0, 1,2,..., n - 11. Let P be the nearest- 
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neighbor random walk on the circle ZZ = X. Thus 15(i, i + 1) = P(i, i - 1) 
= I 

with all entries mod n. Here iiT(i) = 1/n and the eigenvalues are easily 
shown to be f3B = cos(2 -gj/n), 0 < j < n - 1. As a different chain of interest, 
take the nearest-neighbor walk on the segment X with a loop at each end: 
P(0, 0) = P(0, 1) = 1 = P(n - 1,n - 1) =P(n - 1, n -2) with P(i, j)= 
P(i, j) for i + 0, n - 1. This also has ir(i) = 1/n. 

For the comparison, for each edge (i, i + 1), 0 < i < n - 2, let yi +l = (i, i 
+ 1). Take Yo, n- 1 = 0, 1,... n - 1. The maximum in (2.4) is taken on at (0, 1) 
with A = n. Here, the bound on eigenvalues is 

A -( ( n ) os( ))/n. 

For j = 1, this gives 

IT 21T2 1 
Cos- =I ?1-- + 0 

n n3 n 

which is clearly off by a factor of n. 

EXAMPLE 2.5. It is of interest to specialize Theorems 2.1 and 2.2 to the 
case where P and P are simple random walks associated with two nonori- 
ented graphs 3F = (X, E) and S' = (X, E) on the same underlying finite set 
X. Then, if d(x) and d(x) are the degrees of x E X, we have IT(x) = d(x)/lEl 
and P(x, y) = l/d(x) if (x, y) E E, P = 0 otherwise, and X(f, f) = 

(1/21EI)Ex yEEIf(x) - f(y)l2. It follows that the constant A in (2.4) is A = 

(IEI/IEj)A with 

(2.8) A = A(P, P) max( lYx) 

More generally, this is a reasonable way to bound A whenever P(z, w)IT(z) 
does not depend too strongly on z, w. A similar analysis can be used for A* if 
we consider 

(2.9) A*=A*(P,P)max (Erxy(e)lyxyl} 

Setting 6 = min x{(x)/d(x)}, the estimate (2.3) on eigenvalues yields 

(2.10) -1+ +*(1+pi)?<P <?1- A (1 - pi). 

Note that we did not need to compare JEl and lEl. For instance, applying 
(2.10) with P l/lIXI (i.e., with :' the complete graph) we get the following 
corollary. 
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COROLLARY 2.1. Let V = (X, E) be an undirected connected graph. The 
nontrivial eigenvalues of the nearest-neighbor random walk on (X, E) satisfy 

ixi IXI 
(2.11) -1+ d/* < 8i d,! 

where 

A*= max( r r(e)lyx*I}, A= max IYXY} 
e eE 

(X E)y e )e eE 
(yxy )e ) 

with rxy given by (2.5) and d = maxx d(x). 

Diaconis and Stroock (1991) consider 

y= maxlyxyl, 
x, y 

b = max #{yxy; e E yxy} 

which have simpler geometric interpretations than A < yb. The preceding 
upper bound is a slight improvement on their bound [Diaconis and Stroock 
(1991), Corollary 1, Section 1, page 39] 

(2.12) I1 < 1 - IEl/d2yb. 

Finding bounds on A (or y, b) can turn out to be a hard combinatorial 
problem. However, it is feasible for "simple" graphs and some more sophisti- 
cated ones; see Diaconis and Stroock (1991), Sinclair (1991) and Fill (1991). 
Babai, Hetyii, Kantor, Lubotzky and Seress (1990) discuss bounding y for 
Cayley graphs of finite groups. The main point in the method used in this 
paper and in Diaconis and Saloff-Coste (1993) is to compare P with a 
nontrivial known P. This reduces the complexity of the combinatorics of 
paths: Instead of having to deal with paths from any x E X to any y E X, one 
just needs to consider paths that link x and y when P(x, y) > 0. This is well 
illustrated in the study of simple exclusion; see Section 3. 

C. Comparison using multicommodity flows. Many variations on Theo- 
rems 2.1 and 2.2 are possible. We now describe one of them that will be 
applied later to exclusion processes. We adapt an idea of Sinclair (1991). 

Suppose we are in the situation of Theorem 2.1 and want to compare the 
Dirichlet forms X and X of two reversible Markov chains P, 7r and P, ir. It 
often happens that there is more than one path x = x0, x1, ..., Xk = y with 
P(x, xii+,) > 0 between x and y such that P(x, y) > 0 [i.e., (x, y) E E]. Let 
xy be the set of all simple paths connecting x to y as before and set 

= U(X, y) E EA xy Also, for e E E, let 0A(e) = {y Ec 9, e E y]. A function f on 
9 is called a flow or more precisely a (P, P5) flow if 

T f(p) = P(ix, y)th fx) 

The proof of Theorem 2.1 yields immediately the following theorem. 
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THEOREM 2.3. Let P, -7r and P, Tr be reversible Markov chains on a finite 
set X. For any (P, P) flow f, the Dirichlet forms defined in (2.1) satisfy 

X < A( f )g 

with 

(2.13) A(f) =max l yIf(y) 
(2.13) ~~~~(z, w) e E (IT ( Z ) P ( Z, W) 'w"(Z, W)) 

Clearly, Theorem 2.3 contains Theorem 2.1: Take f to be the flow defined 
by f(y) = 0 unless y = yXY is the chosen path for a pair (x, y) E E in which 
case f(yXY) = P(x, y)fr(x). The same idea yields a variant of Theorem 2.2, 
which we will not write down. 

EXAMPLE 2.6. Let (X, E) = W be a graph with automorphism group acting 
transitively on the set E of the oriented edges. This implies that S' is vertex 
transitive and thus regular; see Biggs (1974) for examples and more details. 
For the simple random walk on such a graph, Proposition 4 in Diaconis and 
Stroock [(1991), page 46] gives 

31 < 1- D2 

with 

D=(TTE loxl2) 1 

where for each x E X, loxI is the distance from the fixed point o E X to x. 
This can be obtained by comparing with the trivial uniform chain. In Theo- 
rem 2.3, take f uniformly supported on geodesic paths; that is, 

1 1 
f(y)= f-r(Y)f(X)= 1 g2 

if y is in fxy, the set of all geodesic paths from x to y. The point is that, for 
this f, 

E lylf(y) 
y3e 

does not depend on e E E. The result then follows as in Diaconis and Stroock 
(1991). 

EXAMPLE 2.7. Let KI,m =(X, E) be the complete bipartite graph with 
n = I + m vertices. To be precise, X= {1,...,I + m} and E = {1, ... .,1} x {l 
+ 1 ..., + m} u {l + 1 ..., l + m}x {1,. ..,l}. Sinclair (1991) used the case 
I = 2, m = n - 2 to demonstrate the effectiveness of random paths. Here, we 
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compare the simple walk P, ir on Kl,m with the chain P(x, y)= =w(y) 

ir = ir. Pairs (x, y) E X x X are of three types: 

Typel: (x,y) eE, 

Type 2: (x,y) E {1,...,112, 

Type 3: (x,y) Ec{I + 1,...,1 + m}2. 

If (x, y) is of Type 1, 0x,y = {(x, y)} and we set f(y) = r(x)ir(y) for these 
paths. If (x, y) is of Type 2,9 x y = {(x, i, y); i E {I + 1, ..., I + m}) and we 
set f(y) = (1/m)i(x)ir(y) for these paths. When (x, y) is of Type 3, x y = 
{(x, i, y); i E {1,..., 1) and we set f(y) = (1/1)X(x)Xi(y). For this flow the 
constant A(f) in (2.13) is 

( Im m2 12 

A(f) =21m (2?IM)2 ( 1) m(21m)2 + (m - 1)1(2 M)2 

3 1 1 

2 21 2m 

This yields 8I1 < 1 for any of these graphs. Of course, the eigenvalues of Kl m 
are known to be 1, 0 and -1 with multiplicities 1, n - 2 and 1. 

In fact, the preceding example is a special case of a generalization of 
Example 2.6. If the automorphism group of a graph W acts transitively on 
the set of undirected edges, we have 8I1 < 1 - 1/D2 with D2 = 

EX, y TY27(xry). 
The complete multipartite graphs Ku,,,, give examples where one has to 

use nongeodesic paths to get good bounds. An example of comparison between 
two nontrivial chains is given at the end of the next section. 

3. The exclusion process. Let X0 be a set with n elements. Let 
Eo c X0 x X0 be a symmetric set of edges such that (X0, EO) = WO is an 
undirected connected graph. Before defining the exclusion process of r < n 
unlabelled particles on WO, we fix some notation. Let do = max{d(x); x E X0} 
be the maximum degree in WO. According to (2.11) the nontrivial eigenvalues 
of the simple random walk on WO satisfy 

n n 
-1 + d0* < f3j < 1 - , i = l,... Xol -1 

0 d0A 

with 

(3.1) A O = max 3 ) A* = max f xr( e)Iy 
e0eE0 ) eoe0eE0 

k y3eo 

Our main result in this section shows that A, O* and do can also be used to 
bound the eigenvalues of the exclusion process of r particles hopping around 
on So. 
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For r < n, the exclusion process is defined as a Markov chain with values 
in the r-sets of X0. Informally, if the current state is the set A, pick an 
element in A with probability proportional to its degree, pick a neighboring 
site of this element at random and move the element to the neighboring site 
provided this site is unoccupied. If the site is occupied, the chain stays at A. 

Formally, let X = Xr be the set of the r-sets of X0 and A1 and A2 be 
r-sets. Define 

0, if IA1 nA21?< r - 2, 
0, if IA1nA2I=r-I 

and A1 = A u {a,}, 
A2 = A u {a2} with (al, a2) * E 

(3.2) P(Al, A2)= 1/ d (a), if IA, nA21 = r - I 
/ aeA1 and A1 = A u {a,}, 

A2 = A u {a2} with (a,, a2) E E 

, d*(Al) / E d(a), if A1 =A2, where 
aEAl aEAl d*(Al) =I{b eA1, (a, b) EE E}I 

The chain P can be interpreted as a nearest-neighbor random walk on a 
graph with multiple edges [there are Ea A d*(A) loops from the r-set A to 
A]. It is a reversible chain with stationary distribution 

(3.3) 7T(A) = EaE Ad(a) 

Hence, for A1 =A A2 and P(A1, A2) = 0, we have 

n 
(3.4) P(A1, A2)'Tr(A1) = 

Given 1 < r < n, we define the maximum mean degree dr over r-sets by 

(1 
(3.5) dr = max - , d(a) < do. 

AE-xrk 
r aE eA 

When Wo is do regular [i.e., d(a) do], then P is symmetric, 7r is uniform 
on the r-sets and dr = do. If Wo is not regular, a variant of the foregoing 
process is discussed briefly at the end of the paper. When r = 1, the preced- 
ing process reduces to the simple random walk on the underlying graph. 
When r = n, we get a trivial process with only one state (we will informally 
exclude this case). When r = n - 1, looking at the only unoccupied site gives 
a description of the process as a simple random walk with strange holding 
condition. 

Our main results are summarized in the following theorem. 

THEOREM 3.1. Let (XO, EO) be a connected graph and 1 < r < n as before. 
The Markov chain P at (3.2) of the exclusion process has its eigenvalues 8i(r), 
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1 < i < (n) - 1, bounded above by 

ki(n -. ki + 1) 

(3.6) Pn (r) < 1 rdrAo 

whereki =jwhen (121)?i < ( 0 <j< min{r,n -r}. In particular, the 

second largest eigenvalue l1(r) is bounded by 

n 

fl1(r) < 1 -rdrAo 

Moreover, the smallest eigenvalue of P satisfies 

n-r-1 

(3.7) Pmin(r) 2 -1 + d A* 

Here A0 and A1O are given in (3.1) and dr is the maximum mean degree over r 
sets defined at (3.5). 

REMARK 1. Because dr < do where do is the maximum degree in go, all 
the foregoing estimates hold with dr replaced by do. Examples 5.6 (a star) 
and 5.8 show that using dr instead of do can be useful. 

REMARK 2. Specialize to the case of XO = {1,..., n} with edges Eo {(i, i 
+ 1), (i + 1, i); i = 1 . . . , n - 1} u ((1, 1), (n, n)} (i.e., go is the n-point seg- 
ment with a loop at each end). In this case, do = 2, AO < n3/8, A*V < n3 (this 
last estimate is rough) and thus 

4 
1 = l1(r) < 1 - rn2 

and the negative eigenvalues are all bounded by 

n-r-1 

'Bm,n 
2 -1 + 

2n3 

For this case, Fill (1991) obtained the lower bound f1 2 1 - 6/rn2. This 
shows our result is sharp. Fill also obtained an upper bound fi1 < 1 - (3 - 
o(1))/2rn5. He used a path bound as in (2.12). The power of using comparison 
with a nontrivial chain can be seen here. Fill introduced methods for bound- 
ing nonsymmetric exclusion by comparison with symmetric exclusion. Other 
examples are discussed in Section 5. 

REMARK 3. Let yo denote the diameter of WO. As a crude but universal 
estimate we have AO < n2y0. This yields 13 < 1 - 1/rnyodr < 1 - 1/rn2do. 

PROOF OF (3.6). The argument proceeds by comparison with the classical 
Bernoulli-Laplace model of diffusion. This is a Markov chain P on the r sets 
of XO that can be described as follows: If the current state is the set A1, pick 
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an element in A1 at random, pick an element in A' = X0 \A1 at random and 
switch the two elements. Formally, let A1 and A2 be r-sets. Define 

(3.8) (0, if IA1 nA21 < r - 2orAl =A2, 
(3.8) P(Al,A2) \1/r(n - r), if IA nA2 = r - 1. 

The stationary distribution for this chain is uniform, i-(A) 1 /( ) and 
1~~~~~~ 

(3.9) P(A1,A2) r(Al) 
r(n - r 

when P(A1, A2) > 0. Diaconis and Shahshahani (1987) showed that the 
eigenvalues of P are 

j(n-j+ 1) 0<j 
r(n-r) 

with multiplicity ( j) - (- 1) In other words, 31 = f3 = 1- n/r(n - r) for 
1 < i < n and more generally, 

- k k(n - ki - 1) 
(3.10) /3i-1 ~~r(n -r) 

where ki = s if( n i < (n) and0 s min{r, n -r). 
In order to apply the comparison technique, we now describe a path YA1A, 

for each (A1, A2) such that P(A1, A2) 0 0; that is, for each (A1, A) such 
that Al n A2 =A, IAl = r - 1. We set A1 = {al} UA and A2 - {a2) uA. 
Denote by Yaja2 the fixed path from a, to a2 in (X0, EO). Say Yaja2 
(bl,..., bk) with 

a, = bl,b2,..., bk = a, 

We can assume that bi A bj if i 0 j (no loops). 
There are many paths from A1 to A2 that can be associated with Yaja2* 

In 
order to get a good bound, we have to choose one of them in a careful manner. 
We start with an informal description. First, we draw the path Yaja2 in the 
graph (X0, EO), and we mark the bis that belong to A1 by the symbol ?: 

b, = a,lI b5 b6 a2= b 

X9 x x X9 X x x X9 x x x 

Of course the part of A1 that does not meet Yal a2 is of no importance in the 
description of of our path from A1 to A2. (It will be there and stay there all 
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along.) Now, in the foregoing example, we start in the most obvious manner: 

a1 a2 

A1 = B1 ? x x ? ? x x ? x x x 

B2 x ? x ? ? x x ? x x x 

B3 x x ? ? 0 x x ? x x x 

Here, we realize that we are blocked (in our move toward a2) by the particles 
that are on the path. Our next moves are better described by drawing them: 

a, a2 

B3 x x ? ? ? x x ? x x x 
B4 x x ? ? x ? x ? x x x 
B5 x x ? ? x x ? ? x x x 
B6 x x ? ? x x ? x ? x x 

37 X X 0 0 X X 0 X X 0 X 

B8 x x ? ? x x ? x x x ? 

This ends the first part in the construction of our path: We have reached a2, 
but we have left some mess behind. However, it is easy to clean up: 

a, a2 

B8 x x ? ? x x ? x x x ? 

B9 x x ? o x x x ? x x o 
Blo x x ? x ? x x ? x x ? 

Bl x x x ? ? x x ? x x ? 

We are done, because B1 = A2. 
Before trying to formalize this, we emphasize that the preceding construc- 

tion is mechanical. In fact, given the path 7aja2' it is enough to be given an 
edge (Bi, Bi,+1) to be able to reconstruct the entire path in X. Here is an 
example of this fact. In the preceding example, assume we are given a,, a2 
and the edge B6, B7: 

a, a2 
B6 x x ? ? X x X x X x X 

B7 x X 0 0 X X 0 >x X 0 x 

First we see that this edge belongs to the first part of our path (moving 
toward a2) because a2 O B6 (not because a, 0 B6; see the other example that 
follows). In order to find A1, we look at the particles that are on the path Yaja2 
and to the left of the move indicated by the given edge (B6 -* B7) (including 
the particle involved in this move). Each particle that does not have a left 
neighbor has to be moved backward until it is blocked by another particle 
[start from the particle involved in (B6, B7) and then from right to left]. Here, 
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this gives 

a1 a2 

B6 x x ? ? x x ? x ? x x 

A1 ? x x ? ? x x ? x x x 

Alternatively, we could finish the construction of the path and thus find A2. 
We now formalize the foregoing construction (we also draw a second 

example): 

a, a2 

A1 ? ? x x ? x x ? ? x ? x 

l '2 '3 i4 5 i6 7 i zg 

First define il to be the smallest integer i ? 1 such that b+ 1 0 A = A1 \ {fal 
and let i2 be the smallest integer i ? i1 + 1 such that bi + E1 A. Then, define 
inductively i2j+ 1 to be the smallest integer i > ?2j + 1 such that bi + 1 0 A 
and i2j+2 is the smallest integer i 2 i2i + 1 such that bi + 1 E A or i2j+2 = k 
in case bi 0 A for all i ? 

i2j+1. Let v be the integer such that bi, = bk (i.e., 
i2, = k). Sot io - 1 and 

k' = (i2a - i2a -) + + (i2 - i') 

for 1 < a ? v. Also, define 

A' = (A1 \ {bil}) = (A u {al}) \{bil}) 

and, inductively, 

Al = (A'1 u {b-2,) \ {bi2j 

for 1 < a < v. This notation will be used to describe the first part of the path 
(toward a2). Namely, set 

B1 =A1 ==Al U bi111 

B2 =Al Ubi +1} 

Bj+l =Alu {bi+i}, 

for 1 ? j ? j2 - il = k'. More generally, for O < a < v and k' ? 1 ?j < k 
set 

Bj+1 =A+,1 U 
{bi2a+l+j-k'} 

and consider the edges (Bj, Bj+ 1). Note that 

Bk?l =A' u {bi2} =A' u {a2}. 

This ends the description of the move toward a2. 
In order to describe the "cleaning up" stage, we introduce the following 

notation for 1 < a < v: Set 

k'= kl, kit a1 = (i2a1 - '2(a-l)) + ka 
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and 
A> =AU {a2}, 

A"= (A"+1 U {bi2a+J}) \ {bi2a} 

Note that IA' I r - 1, whereas IA" I - r. The cleaning up starts with the 
edge 

Bk" + 1 Bk" (A U v 1) i2v- 1 

More generally, for k" + 1 < j < k> and 1 ? a < v, set 

Bj+1 = (Al U {bi2 2-j+k +?}) \ {bi21J?k^} 

and consider the edges (Bj, Bj+ 1). Note that the last of the Bj is obtained for 

j k + 1= i - i0) + (i'3 - i2) + ... 
+('2- v- 1 2(v- 1)) 

+ (2,- i2(v-l)) + +(i2 - i1) + 1 

-2, - iO + 1 = -2v = k. 
Hence, the length of the path that we just described is equal to k - 1, which 
is also the length of Yla2 In fact (and this will be important later on when 
looking at A*), each edge of Yala2 corresponds to exactly one edge of YA1A2* 

Finally, we check that the foregoing path does what we want (i.e., Bk = A2) 
by checking that whatever is to be to the right of the particle that is moved at 
one given step describes exactly the intersection of A with the right part of 
Yala2. 

Now, assume that we are given an edge e = (Cl, C2). How many of the 
preceding paths can pass through e? [This is the question we have to study in 
order to bound the constant A in (2.8)]. Assume that C1 = C U {cl} and 
C2 = C U {c2}. First, we choose a path Yala2 that contains the corresponding 
edge eO = (cl, c2) e Eo. This fixes the endpoints a, and a2 in XO. Now, we 
claim that we know enough to describe completely the two ends A1 and A2: 
A1 = A U {a,) and A2 = A U {a2} corresponding to Yala2 and the given edge 
(C1, C2). Indeed, we can first determine whether (C1, C2) appears in the 
"moving toward a2" or in the "cleaning up" phase of this path. This only 
depends on whether or not a2 ( C1. 

Suppose first that a2 - C1. Then we are in the "moving toward a2" phase. 
For instance, consider 

a, C1- C2 a2 
Cl ? ? X ? ? X X ? X X X 

C2 ? ? x ? ? x X x ? ? x 

In this case, starting with cl and proceding from right to left, we move to the 
left (as much as possible) the particles that do not have a left neighbor. This 
gives A1: 

al a2 

A1 X ? ? x ? ? x x x ? x 
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and A2 is then of course given by 

a, a2 

A2 x ? ? x ? ? x x x ? ? 

Assume now that a2 e C1. Then we are in the "cleaning up" phase. For 
instance, 

a, C1* C2 a2 
Cl X ? ? X ? X ? ? X X ? ? 
C2 x ? 0 X 0 X 0 X 0 X 0 0 

Here again, we can find A1 and A2. To find A2, starting from the left of c2, 
we just move each particle one step to the right: 

a, a2 

A2 x x s o x o x o o x o o 

A1 0 x 0 ? x x 0 x 0) x 

Hence, given an edge e = (C1, C2) with C1 = C U {c1} and C2 = C U {c2}, we 
established a one-to-one correspondence between the paths Yala2 in XO going 
through e0 = (c1,c2) and the paths YA1, A2 in X containing the edge e. 
Moreover, the length of the paths is preserved in this correspondence. Hence, 
we certainly have 

(3.11) A = max= mx EIYala2I = AO. e A1A2 3e eO wYala2 3) eo 

From (3.4), (3.9) and (3.11) we deduce the following lemma. 

LEMMA 3.1. The comparison constant A defined in (2.4) with P being the 
exclusion process (3.2) and P the Bernoulli-Laplace model of diffusion (3.8) 
satisfies 

IEOl/o 

n(n - r) 

The corresponding stationary distributions satisfy 

(3.12) E0 2 , 
ndr 

where dr is the maximum mean degree over r-sets in (3.5). Hence, (2.3) 
implies that 

~,8 < 1 -(n - r) 
( 

drA,0 (1P) 

and (3.6) follows from the values of 83i given in (3.10). O 
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PROOF OF (3.7). In order to estimate the negative eigenvalues of P, we 
now construct a path of odd length YA* from A1 to A2 when P(A1, A2)> 0. 
Thus, let A = A1 n A2, A1 = A U {a1l, A2 = A U {a2} and consider the fixed 
path Y)a*a2 of odd length in (XO, EO). First, we construct YA*1A2 from Yca*a2 as 
before. Here, we face a small difficulty: Y a* = (bl,..., bk) might contain one 
"holding edge" (c, c) (we can always suppress an even number of holding 
edges). We have to specify when the corresponding holding edge in TA*jA2 
should occur. This difficulty is easily dealt with: Suppose bi = bi? 1 = c. Then, 
if i = 1, we start the path YA*1A2 with the holding edge (A1, A1). If i > 1, we 
attach the edge (bi, bi 1) to (bi_1, bd) and whenever we perform the move 
(bi- 1' bi) in the construction of YA*I1A2, we immediately follow it by the "holding 
edge" corresponding to (bi, bi 1). This make sense because each edge of Ya*ia2 

yields exactly one edge of YA*1A2. 

Now, set h(C) = EC Cd*(C) [h stands for holding and d* is defined in 
(3.2)]. We claim that we have 

E IA1A2I?<h(C)A*O, ife=(C,C), 
YA1A2 De 

(3.13) E rA1A2(e)Iy1A2I ? Ao, if e = (C1,C2), C1 * C2, 

yA1A23e P(C1, C2) > O. 

First, consider the case when e = (C, C). Let TA*jA2 be a path that contains 
e. Of course, YA*1A2 is constructed from a path Yia*a2 that contains an edge 
eo = (c, c) with c E C. Moreover, if we fix c E C in advance, the correspon- 
dence between paths is one-to-one and preserves the length. Finally, the 
number of c E C that can be used to define a holding edge eo = (c, c) is 
smaller than h(C) because (c, c) E Eo and c E C implies d*(C) ? 1. This 
proves the first inequality. 

Second, assume that e = (C1, C2) with C1 k C2 and C1 = C U {c1}, C2 = C 
U {c2}. For this case the argument is identical to the one used in the proof of 
(3.6) except when eO = (cl c2) is a double edge of Ya*a2 (multiple edges can 
always be reduced to double edges). Indeed, if eo is a double edge of Ya*a2 
either there is one path YA*1A2 corresponding to Ya*a2 and e is a double edge in 
that path or there are two paths YA*1A29 YA*1A' corresponding to Ya*ia2 and (C, C) 
is a simple edge of each of these paths. In any case, we obtain 

L rAjA2(e)1YA1A2I1 
= 

L raja2( eO ) I Yaa2 
YA1A2 3 e Yala2E 3eO 

when C1 k C2, and this proves the second inequality in (3.13). 
To finish the proof, note that (3.2) and (3.3) imply that 

P(C,C)ir(C)- nh(C) 
r(= n A)II 
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Hence, (3.4), (3.9) and (3.13) imply that the comparison constant A* in (2.5) 
with P and P as in (3.2) and (3.8) satisfies 

IE0oA* 
A n(n -r) 

Together with (2.3) and (3.12), this yields 38i ? - 1 + [(n - r)/dr A*](1 + f3i) 
and (3.7) follows from the fact that I3min - 1/(n - r). This ends the proof of 
Theorem 3.1. LI 

REMARK. If there exists (x, y) E X02 such that there is no path of odd 
length from x to y, we set A* = oo. This is the case if and only if the graph 
(XO, EO) = V0 is bipartite. Even so, it is clear that the smallest eigenvalue 
P8min of the exclusion process (3.1) satisfies I3min> -1 as soon as r ? 2. 
Indeed, given an r-set A c X0, let a, and a2 be two elements of A such that 
I Ya1a2 I is minimum. We can assume that Yala, does not intersect A except in 
a1, a2 (if it does, replace a2 by the first element of A on the path). Now, we 
can construct a loop oCA of odd length 2 1 Yaa2 I - 1 by moving the particle in a1 
along Ya1a2. Once the two particles are neighbors, we perform a holding edge 
and move back to the starting point. 

We claim that the constant A* in (2.6) for the exclusion process can now be 
bounded by 

A* < 2ryodrn, 

where y0 is the diameter of go. Indeed, if e = (C1, C2) is not a holding edge 
(C1 +k C2), 

loE IAlI(A) < rdr(2yo - 1)1X01, 

whereas if e = (C, C) is a holding edge, 
1 rd 

P(CC)1T(C) I J3AlT ( A) < h(C) (2yo - 1)IX01h(C). 

Hence, we conclude as in (2.6) that 

(3.14) I3min ? -1 + 
2rryodrn 

Combining (3.14) with Remark 2 following Theorem 3.1, we get the simple 
universal bound 

1 1 
(3.15) I3* ?1 - ?1 - 

2ryodr n 2rd0n2 ' 

where ,3* = max{I J0min, *(31}. The order of magnitude of the bound (3.14) can 
sometimes be improved by further geometric considerations. For instance, 
consider our running example of the n-point segment with a loop at each end. 
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If there are r particles, we can bound the length of the foregoing loops by 
2n/r and the number of loops using a given edge by n/r. This yields 

r 
8min 2 1+ 2. 

This is better than the bound given by (3.7). See also the examples in Section 
5. 

There is a variant of Theorem 3.1 using the multicommodity flow tech- 
nique of Section 2C. Let PO denote the simple random walk on go and let 
UO 1/n be the trivial uniform chain on go. A (PO, Uo)-flow is a function fo 
on simple paths in go such that 

E fo(Y) = 2 
E9oxy n 

where 90, xy is the set of all simple paths in Wo from x to y. Let A(fo) be the 
comparison constant at (2.13) associated with such a flow. Applying Theorem 
2.3 shows that the second largest eigenvalue I8 ? of PO is bounded by 

30 < 1 - JIEOI 
nd A( fo) 

Consider now the exclusion process. 

THEOREM 3.2. The second largest eigenvalue f31(r) of the Markov chain P 
in (3.2) of the exclusion process of r particles on Vo is bounded by 

IEOI 
131(r) ? 1 - rndrA(fo) 

for any (PO, Uo)-flow fo. Here, dr < do is the maximum mean degree over r 
sets defined at (3.5). 

PROOF. Using the construction in the proof of Theorem 3.1, we establish a 
one-to-one correspondence between a subfamily of simple paths joining the 
two given r sets A1 = A u {a1} and A2 = A U {a2} with (a1, a2) E Eo and 
simple paths in Vo joining a1 to a2. Thus, given fo, we obtain a (P, P)-flow f 
for comparison between the exclusion process and the Bernoulli-Laplace 
model by setting 

n2 

f(AAA) = 
r(n - r)) ( f r Yala2 

By construction, for an edge e = (C1, C2) with C1 = C U {c1} and C2 = C U 
{c2}, (c1,9c2)= eo E EoE ci * c2, we have 

1 =nIE0I nA(f) - E ylf() = 
_ E IyIfo(y) ? Af) 

P(Cl,C2)'7T(Cl) yle n -r 
yE eo n - 

ref 

Now, Theorem 2.3 yields the following lemma. 
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LEMMA 3.2. The Dirichlet forms 3 and ' of the exclusion process (3.2) 
and the Bernoulli-Laplace model of diffusion (3.8) satisfy 

n 

- n -r (to) 
for any (PO, Uo)-flow fo on go. 

Theorem 3.2, as well as further bounds on the other eigenvalues, follows 
from this, (3.10) and (3.12) as in the proof of Theorem 3.1. E 

4. Lower bound on the second largest eigenvalue of the exclusion 
process. This section gives a sharp lower bound for the second largest 
eigenvalue ,1(r) of the exclusion process of r particles on a connected graph 
(XO, EO) with n = IX01 and 1 < r < n. Let f3? be the second largest eigen- 
value of the simple random walk on (XO, EO). Of course, I3? = I81(1), because 
the random walk on the underlying graph corresponds to the (trivial exclu- 
sion) process of one particle. Recall that do is the maximum degree in 
(XO, EO) and let do = min, xo{d(x)1 be the minimum degree. 

THEOREM 4.1. For 1 < r < n, the second largest eigenvalue of the r parti- 
cle exclusion process (3.2) is bounded below by 

(4.1) 1(r) ? 1- d(1 I) d'r 

REMARK. Consider our running example of an n-point segment with a 
loop at each end. Then, 63f? = cos(g/n), do = do = 2 and we get 

1 / X \ zr~~~~~r 2 
13(r) > t1s- > 1- 2r' 

which has to be compared with our upper bound 8l1(r) < 1 - 4/rn2. Fill 
(1991) had the lower bound ,31(r) ? 1 - 6/rn2 for this case. 

PROOF OF THEOREM 4.1. Let 9P be an eigenfunction associated with 810 
for the random walk on (XO, EO). For any r-set A of XO, set 

p ( A) = E (po( x). 
xeA 

The variational characterization of 1 = p1(r) gives 

(4.2) f31 2 1- V( a( ) 

Here, 
1~~~~~~~~ 

V( f'f) = E If(A) -f(B) 12P(A, B)iT(A) 
A, B 

1 E lf(A) -f(B)12 

2(n r )!EOI A-B 
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where A -B means A =A' U {a}, B =A' U {b} with (a,b) eEo and the 
variance Var(f) = Var,(f) is taken with respect to the invariant measure Xr 
at (3.3). Now, for A - B as before, 

I (p(A) - (p(B)I =|po(a) - po(b) 
Counting the edges (A, B) corresponding to a given edge (a, b) E Eo yields 

n -r 
(4.3) (f ) = _(o) 
where 

1~~~~~~~~~~ 
Xo(fqf) = 2E E I f(a) - f(b)12 

IEOI(a, b) E Eo 

is the Dirichlet form on the underlying graph. 
To finish the proof, we recall the following classic fact also used by Fill 

(1991) for his lower bounds. 

LEMMA 4.1. Let an urn contain N balls, the ith ball labelled with the real 
number yi. Fix 1 < r < N and take a sample of size r from the urn without 
replacement. Let X be the sum of the numbers shown. Then 

E(X)=rY with -Y= NEy, 

Var(X) = (1-- E (Yi N N) N N- 1 i= 1 

Using Lemma 4.1 with balls labelled by the values of 9P shows 
n - r 

(4.4) Var*(P) = r n-1 Var*( P0), 

where the asterisk indicates that the variances are taken with respect to the 
uniform distribution on r-sets and the uniform distribution XO, respectively. 
Thus, 

dOn 
(4.5) Var(p) ? EIVar*(p) 

and 
1E0I 

(4.6) Var*(SP) > d Var(Po). 

Combining (4.2)-(4.6) with the fact that 

1 Var(Po) 

proves the stated bound. C1 
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Examples using Theorem 4.1 are given in next section. Sharp lower bounds 
are obtained for exclusion on the circle Z , a finite box in ZZd and other 
graphs. 

REMARK. The foregoing comparison of variances is a rather crude argu- 
ment to deal with graphs that are not regular. Direct arguments can be used 
on specific examples, leading to improved bounds; see Examples 5.6 and 5.8. 
In the same spirit, do can be replaced in Theorem 4.1 by the minimum mean 
degree over r-sets defined by d' = minA ex{(l/r)EaeAd(a)1. Note however 
that in the above proof of Theorem 4.1 we cannot replace do by the maximum 
mean degree dr in (3.5). 

5. Examples of simple exclusion processes. We specialize the theo- 
rems of Sections 3 and 4 to a number of graphs including the discrete circle 
Zn, the cube Yd, an I x m grid in Z2, the Cayley graph of the transpositions 
on the symmetric group Sk, a star and the complete bipartite graph Ki, m. In 
the following text we always consider the simple exclusion process of r 
particles on the given underlying graph S0 with n vertices and 1 < r < n. In 
particular, 81 and I3min are, respectively, the second largest and the smallest 
eigenvalue of this process. 

EXAMPLE 5.1. Let V be the Cayley graph of Zn with generators { +1, - 1}. 
Here, do = 2. Simple arguments show that A0 =mk 2 = m(m + 1)(2m + 
1)/6, where m = [n/2]. Hence, (3.6) yields 

12 1\ 
(5.1) '81 < 1 - 

rn2 
+ 

? n0 

For the lower bound, we have 132 = cos(2ir/n) and thus 

1/ 2X 2X72 
1,X3 2 1- -Cos- 21 2. 

When n = 2m + 1 is odd, we can use A* to bound the smallest eigenvalue: 

1)2 ~~~(n -1)(n +1)2 
A*= E (2i + 1)2+ 2 E 2i(n + 2i) 8 

i, 2i+ 1 <m i, 2i<m 

yields 

+ 4(n-r-1) 

)min 2 (n - 1)( n + 1) 

When n = 2m is even, A* = oo. However, if r ? 2 we can use an improved 
version of (3.14). Following the argument given there for the n-point segment, 
we get (for n odd or even) 

r 
This isbete ta (.2 a 3mion a _1 + 2 

This is better than (5.2) as soon as r 2 2. 
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EXAMPLE 5.2. Consider the cube ;d with is natural graph structure. Here 
n = 2d, do = d, A0 = (d + 1)2d-2 and 83? = 1 - 2/d; see Diaconis (1988). 
Thus 

2 4 
1- r1 rd(d + 1) 

We do not know if the extra factor of d is necessary for large r, but we 
believe it is not. 

This graph is bipartite. For r ? 2, (3.14) yields 

1 - o(1) 
I3min 2 -1 + 2-(22d 

Note, however, that if we add a trivial loop at each vertex of the cube, the 
chain P in (3.2) satisfies P(A, A) ? 1/(d + 1) for any r set A, and (3.6) and 
(2.7) give 

2 4 1 
1- ~~~< a8 < 1 - 

1)2 18i > -1+ 
r(d + 1) - ?- r(d + 1)2 Imin- d + 1 

EXAMPLE 5.3. Let VO be an I x m grid in Z2 with Im = n. Fix paths in SV 
that are of minimal length, have at most one turn and always start horizon- 
tally (unless they are vertical with no turn). For this set of paths, we find 

Im 
AO0< ? (+ m)max{l,m}. 

Here, do = 4, do = 2 and, assuming 1 ? m, (3.6) yields 

1 
f31 < 1- 2rl2* 

For the lower bound, we use comparison with a product chain as in Example 
2.1 to bound the second largest eigenvalue of the grid by f3? 2 cos(r/l). This 
and Theorem 4.1 yield 

(12 ?1- - cos9) ?1- 

This graph is bipartite. Using (3.14) yields 

1 
(5.4) I3min -1 + -- 

for r ? 2. There is an interesting argument that yields an improved bound. 
Let t = t(A) be the minimal distance between the r elements of a given r-set 
A c Xo. The balls of radius t/2 - 1 around each of our particles are pairwise 
disjoint. Hence, r(t + 2)t/8 < n and t* = maxA t(A) < 2 2n/r. Now, the 
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line of reasoning that gave (3.14) yields here Imin ? - 1 + 1/(16rt*(t* + 
1)(t* + 2)). Finally, we get 

cr 1/2 
(5.5) 8min 2 -1 + 3/2 

for a universal constant c. For a square (I = m = n1/2) and r = n/2 particles, 
(5.4) gives fmin ? -1 + 1/815, whereas (5.5) yields Imin 2 -1 + c/12. These 
bounds may be compared with the universal bound (3.15), which gives 
,8 * < 1 - 1/4 16 for this example. Here, using the geometry gives a big 
improvement. 

This example extends to higher dimensions. Consider a grid in Zd with 
size 11 X .. x Id = n and set I = max li. Fix paths on this grid by always 
moving first along the first axis, then along the second axis, etc. For this 
choice of paths, 

In dl2n 
AO 4 Eli < 

do = 2d, do = d and thus 

27r2 4 
1- rdl2 

<fll< 
rd212 

where the lower bound is obtained- as in dimension 2. 
We leave to the reader the details of the estimate 

c(d)rl/d 

>min 2 + 1l+ld 

which generalizes (5.5). As a variant of this we mention the natural Cayley 
graph of the group ZI, X .. X 7Zd. 

EXAMPLE 5.4. Let go be the Cayley graph of the symmetric group Sk with 
the transpositions as a symmetric set of generators. The exclusion process on 
this graph is better described as a way to choose a set of r permutations in 
Sk without repetition. Here n = k! and do = k(k - 1)/2. Using the analysis 
in Example 2.3 we find that A0 ? k((k - 1)!) = k!. Also, Diaconis and 
Shahshahani (1981) have shown that 8130 = 1 - 2/(k - 1). Thus, 

2 2 
(5.6) 1--k?<13i?< 1- rk(k - 1) 

We do not know whether or not the extra factor of k is necessary for large r 
in the upper bound. 

This graph is bipartite and (3.14) yields 

1 
I3min > + rk2 (k - 1)k! 
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This is probably a very bad bound when r = n/2, but it seems difficult to 
improve upon. 

EXAMPLE 5.5. Let G be a finite group and F = {gl, ... , gsj be a symmetric 
set of generators. Consider the Cayley graph go of (G, F). Example 3 in 
Section 2 above and Corollary 1 in Section 3 of Diaconis and Saloff-Coste 
(1993) show that AlO < Sy2, where yo is the diameter of go. Thus, in this case 
we have 

1 
81 <1- 2 

sryo 

EXAMPLE 5.6. Let XO = {1, ...,n} and Eo = {(1, i), (i, 1); i = 2, ..., n} so 
that VO is a star. The eigenvalues of the simple random walk on this graph 
are 1, 0 - 1, with multiplicity 1, n - 2, < 1. This graph is a tree, paths are 
forced and AO = 2n - 1, do = n - 1 and do = 1. Thus 

n 1 

f?1 
< 

r(2n-1)(n-1) ? 2rn 

This can be improved by using dr in (3.5). Indeed, here 

(1 \ n+r-2 
dr = max -1 d(a) J 

A E=Xr rae A 1 r 

Hence, 
n 

/31 < 1 - (n + r - 2)(2n -1) 

When r = n/2, this gives f81 < 1 - 1/3n. 
Direct application of the lower bound of Section 4 yields the uninformative 

inequality f81 ? 1 - (n - 1)/r. This is only due to the crude handling of the 
variances. Here, an eigenfunction p0 is obtained by setting p0(x) = 0 unless 
x = 2 or 3, in which case - 'Po(2) = 9p0(3) = 1. This has Var*(p0) = 2/n and 
Var(qp0) = 2/(2n - 1). Plugging this in at the end of the proof in Section 4 
yields 

2 
3 1 - -. 

r 
We believe this is of the right order of magnitude. 

EXAMPLE 5.7. Let VO be a graph with automorphism group acting transi- 
tively on the set of oriented edges. Let Ro and Do be the mean distance and 
the mean square distance, 

1 1/2 

Ro= ~~ loxi, o=~ E IOX12 1X01 xXE0X lIX0I xXE0X 
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where loxI is the distance between a fixed point o and x in Vo. Theorem 3.2 
and Example 2.6 yield 

f3 < 1- rD2 

For a lower bound, fix a point o E XO and consider the test function 
io(x) = loxi. This shows that 

)81 D21 
p13 ? 21- D-2 

where Do = Var(/0) = D - R2, and thus 

f31 2 1 - rD- 

EXAMPLE 5.8. Let Vo = Kl, m be the complete bipartite graph described in 
Example 2.7. We will use the notation introduced there and assume 1 2 m. 
We want to apply Theorem 3.2 to this example. However, the flow considered 
in Section 2C has to be modified. Namely, we set now fo(-y) = 1/n2 if y is a 
simple path joining x to y with (x, y) of Type 1, fo(-y) = 1/mn2 for Type 2 
and fo(-y) = 1/ln2 for Type 3. This has 

21m1 1-i m-1\ 

A(fo) = 2 1 + m + < 2. 

Here, do = 1, IEO1 21m and Theorem 3.2 yields 
m 

1 < 1 --. 
rn 

When r > m, the bound can be improved by using dr in (3.5) instead of do. 
Here rdr < 1 + m(r - m) < lm and we get 

1 1 

<1 n(l + (r -m)/l) <1 2n 

For the lower bound, Section 4 gives 

,(81 2 1- 
rm 

which is bad when 1 >> mn. We can fix this by considering the eigenfunction 
'po defined as follows. Picture the graph with 1 vertices on the left and m on 
the right. For [ 1/2] of the vertices on the left, let po(x) = -1. For [ 1/2] other 
vertices on the left, let 'po(x) = 1. Proceed similarly to define '0 on the right 
vertices. Then, Var*('po) = 2([1/2] + [m/2])/n and Var('p0) = 2([l/2]m + 
[m/2]1)/21m. This yields (for m 2 2) 

21 2 
/31?1 r(n-2) 1 r 
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Note that other choices of the eigenfunction are possible, but this one leads to 
the best bound. For some of these choices, the variances Var and Var* are 
indeed of different orders of magnitude. 

6. Further results and remarks. 

A. Time to reach equilibrium. Our main motivation in bounding eigenval- 
ues of a finite irreducible reversible Markov chain P, 7r is to estimate the 
time the chain takes to be close to equilibrium. Classically, the variation 
distance 

jPk' - ITITv = max{IPk (A) - 7T(A)I} 
AcX 

is used to discuss this question. Here Pk (y) = Pk(x, y) is the iterated kernel 
of the chain. The relation with eigenvalues comes from the estimate 

(6.1) 211Pk - irIIrv < ? -112 

where 7r* = min,{7r(x)} and X3* = max{j,lIminI,,81)}* See for instance Diaconis 
and Stroock (1991) or Fill (1991), which also has a version of this for 
nonreversible chains. If we consider the continuous time process 

t nP n 
Ht = e-t(I-P) = e-t E n!pn 

the inequality 

(6.2) 21Ht` - rIITv < ? - /2e-(1-8)t 

holds instead. There is no mystery behind (6.1) and (6.2); they follow from the 
observation that 211Pk - 7T/ITv = EYlPk(x, y) - IT(y)I, Jensen's inequality, 
and the following lemma. 

LEMMA 6.1. Let pk(x, y) = Pk(x, y)/l(y) be the kernel of the operator P 
with respect to the measure 7T and set h,(x, y) = Ht(x, y)/ir(y). Let (Pi, 
O < i < I XI - 1, be a basis of orthonormal eigenfunctions in 1 2(1T) correspond- 
ing to the sequence 1 = 80 > J81 2 ... > lix,-, of the eigenvalues. We have 

ixi-i l xii 

Pk(X,Y) = E PAPJi(x)Pi(y), ht(x,y) = E e't(li)pi(x)pi(y), 
0 0 

lXl- 1 1 

ixi- 1 I - T(x) X 

||pX - 1II2 = E 9P(X)pi2k < 

lx - x- 1=x1 IT(x ) llh 1112 
I1 I 

-_eT-(2)e(lt-lJ3,)< IIh - 2I~= E9(xet1z IT( X) 
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PROOF. For the first line, note that ( p", Cpj> = f3/'kpi(x). For the second 
equality, set Ax(x) = 7r(x)-' and Ax(y) = 0 otherwise. Then, (6x, 'pj> = pi(x) 
and 1 8X112 = 7r(x)-'. The last inequality follows. E 

In general (6.1) and (6.2) are far from optimal. The reason is not so much 
the use of Jensen's inequality, but because they only take into account the 
value of 81 and f3min. Indeed, these inequalities are easily complemented 
with 

(X- 1 1/2 
, pk(X/ y) - g(y) 17(X) < E Wk 

(6.3) X,Y =1 

IxI- 1 1/2 

E iHY(x,y) - r(y) I|(x) < ? e-2(1 - odt 

If P is vertex transitive [see Aldous and Diaconis (1987)], the quantity 
IIPkx - 7rIrTV does not depend on x and can be bounded by (E=1L li2k)l/2. 
Diaconis (1988) and Diaconis and Saloff-Coste (1993) give many examples of 
sharp bounds for random walks on groups that are obtained by using all 
eigenvalues. 

Now, there are many examples of graphs that are not vetex transitive but 
for which a heuristic argument indicates that IlPkx - 7TIITv does not depend 
much on x. For such graphs, one expects a bound of the order of (Lx=Ii 113*l2k)1/2 
for lIPkx - 7rllv. As an easy and typical example of this, consider the 1 x m 
grid W with (or without) some deleted edges as in Example 2.1. In this case, 
using (6.2), we find that 21IHtx - 7rTI1v < e-c when t is of order 12( 1 log(lm) 
+ c). If one believes the foregoing heuristic, t of order 12C should be enough. 
This is indeed the case, but the proof needs a different approach; see Diaconis 
and Saloff-Coste (1992b). 

For the exclusion process, Theorem 3.1 and the preceding inequalities yield 
the following theorem. 

THEOREM 6.1. Let W0 = (XO, EO) be a connected graph, n = IXOI; for 
O < r < n recall dr from (3.5). The chain P of the exclusion process (3.2) 
satisfies 

(6.4) IIHtx - 7TIrTV < le-c 

for t ? nlrdrAO/(log( ) + c), c > 0. In particular, if r = [n/2], (6.4) holds 

for t ? 'drAO(n + 2 + c), c > 0. 

If we specialize (6.4) to the circle Zn and r = [n/2] (Example 5.1), we get 
IIHtx - 7ri1Irv < le-c for t ? n3(n + 2 + c)/24. In this case, (6.1) and the 
estimates (5.1) and (5.3) on f1 and /3min also yield IlPkx - irilTv < le-c for 
k ? n3(n + 2 + c)/24 and n ? 7; compare with Fill (1991). 

As a different example, consider choosing k random permutations without 
repetition in Sk. Using our results, we find that running the exclusion process 
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on Sk with random transpositions yields an acceptable answer after order 
'k5 log k steps starting from any fixed choice. More precisely, IIH,0 - 7rII'rV 
<i2e-c for t = k3(k2 log k + c) and any 0E Sk. 

As an application of comparing all the eigenvalues, we get an improved 
bound for the mean variation distance at (6.3). 

THEOREM 6.2. Let V0 = (X0, EO) be a connected graph, n = IX01; for 
0 < r < n, recall dr from (3.5). The chain P of the exclusion process (3.2) 
satisfies 

(6.5) E IHY(x,y) - 7T(y) l1(x) < Ae-c/2 
x, y 

for t ? 2 rdn-1 (log n + c), c > 0. Here A is a universal constant. 

PROOF. Let f3i, i = 0, 1,..., (n) - 1, be the eigenvalues of the 
Bernoulli-Laplace model of diffusion. Diaconis and Shahshahani (1987) 
proved that 

n ~~~~1/2 
r ~~~~~r(n -r) 

( E -2(1-1,)tj ?Ae-c/2 fort? (logn+c). 2n 

Now, in Section 3, we proved (see Lemma 3.1) that 

1-I 
n - 

- 1 - pi < ~~(1 - pi), 
O00 

where the 8i3s are the eigenvalues of the exclusion process. Thus, we have 

n ~~~~1/2 
r ~~~~~~~~~rd0 A0 

e E -2(1-,6)t <?Ae-c/2 fort (logn+c). 

For the circle Zn and r = [n/2] particles, this yields IIHtx - 7rlbrv < Ae-c/2 
for t ? n3(1og n + c)/48. For the symmetric group Sk as before, we find that, 
on average, order k3 log k log log k steps are enough to chose k permutations 
at random by running the exclusion process. 

We believe that the improved estimate of Theorem 6.2 holds as well for the 
variation distance starting from any fixed state. In Diaconis and Saloff-Coste 
(1992c), we prove that this conjecture is correct up to logarithmic factors. 

B. Further comments. 

1. The results obtained in this paper raise the following question. What is the 
relation between the second largest eigenvalue ,13 of the nearest-neighbor 
walk on a graph V0 and the second largest eigenvalue 131(r) of the 
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exclusion process of r particles on Wo? Of course 80 = I13(1). Also, in 
Examples 5.1 and 5.3 we have 

(6.6) f31(r) < 1 - -(1 - 3f ). r 

It is tempting to conjecture that (6.6) holds universally. Note that Section 5 
yields a lower bound of this type for graphs that are nearly regular. What 
we have shown here is that (6.6) holds as soon as a bound of the right 
order of magnitude on I3 follows from the "Poincare technique" [compare 
(2.11) and (3.6)]. Diaconis and Saloff-Coste (1992a) give many examples of 
Cayley graphs that have this property. However, the cube Zd or the 
symmetric group Sk with random transpositions are examples where we 
do not know whether (6.5) holds or not. Note that (6.6) holds for the 
complete graph. Also, this conjecture agrees with a heuristic argument, 
often used for exclusion processes, where one "approximates" exclusion by 
the "free" product. Indeed, for the product 1 - (1 - 1310)/r is exactly the 
second largest eigenvalue. 

2. For simplicity, we restricted ourselves in Sections 3 and 4 to an exclusion 
process associated with a graph. The definition and our analysis can be 
generalized to exclusion processes associated with a reversible chain PO on 
XO. 

3. There is a class of labelled exclusion processes for which a similar attack 
should work. The new chain Plab is defined on r-tuples without repetition 
in a manner similar to (3.1). The difference is that when a particle chooses 
an occupied site, the two particles switch places. For r = n, this is a 
random walk on the symmetric group studied in Section 4.A of Diaconis 
and Saloff-Coste (1993). 

4. The main estimate in Theorem 3.1 can be rephrased by saying that the 
Dirichlet form ' of the exclusion process (3.1) satisfies 

2IfII2 ? rd,o2(f f) 

for all f with EAf(A)7i(A) = 0. The 12 norm is of course taken in 12(7r), 

where 7r is given by (3.2). Using the eigenvalues of the Bernoulli-Laplace 
model of diffusion and Lemma 3.1 (i.e., the comparison technique of this 
paper), it is possible to show that ' satisfies also the log Sobolev inequal- 
ity 

crdr Ao log n E 12 
n 

where L(f) = 2EAIf(A)12 log(If(A)I/1f 112)7r(A) and c is a universal con- 
stant. Using this, one can improve Theorem 6.1. For more of this, see 
Diaconis and Saloff-Coste (1992c). 

5. When the underlying graph W0 is not regular, there is another natural 
exclusion process of r particles on W0, different from (3.2). Informally, if 
the process is at A, pick a particle in A at random, and a neighbor of this 
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particle at random. If the neighboring site is unoccupied, the particle 
moves there; if it is occupied, the system stays at A. With this definition, 
the chain P of the process is given by P(A1, A) = O unless A1 : A2, 
A1 = A u {al}, A2 = A u {a21 and (a,, a2)c Eo, in which case 

1 
P(A1, A2) =rd(a) 

or A1 =A2 = A and 

P(A, E dA(a) 
a E-A rd(a) 

This is a reversible chain with reversible probability 
1 

rr(A) = =-d(a), 

where Z is a normalizing constant. We can compare this chain with the 
Bernoulli-Laplace model of diffusion. The paths are the same as in Section 
3. The only difference comes from the values of the transitions and the 
reversible measures. Here the comparison constant (2.4) is 

{ ~z 
A = maxt &Ao 

Al, A2 -(n -r)( n I)Hae AjnA2d(a)} 

where the maximum is taken over the pairs (A1, A2) with A1 = A2 and 
nonzero transition probability. Also, 

1 z A 
ii- 2 minl n r 

A 
1 ra E=Ad(a)J 

Set 

=6* min Hl d(a)}, 8* = max( l d(a)}, 
Al, A2 a E=A,nA2 A a E=A 

where the minimum is taken over the pairs (A1, A2) as before. Using (3.8) 
and (2.3), we get the bound 

8'n 
131(r) < 1- 

on the second largest eigenvalue f31(r) of this process. Clearly 8* and 8' 
are rather nasty quantities to bound. 

For Example 5.6 (i.e., a star), the preceding argument gives 
n 

r(2n-1)(n-1) 

which is the same bound as for the other exclusion process (if one uses do but 
not dr in Theorem 3.1).For Example 5.8 (i.e., the graph Klm, 1 + m = n), we 
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need to adapt Theorem 3.2 using the multicommodity flow technique. At each 
flow fo on V0, a flow f corresponds for the comparison between the exclusion 
process and the Bernoulli-Laplace chain with 

n2Z 
A(f) < A( fo) 

(n- r)(6E0I 

Thus, we get 

,P1(r) < 1- - 1( ) rn85 A( fo) 

For Kl,m, this specializes to 

Im51 

131(r) ?1 - rn . 

When 1 = m + A for a fixed A, we have * < 1, 1 ,, 2 (I - U)r-1 and thus 

131(r) < 1 - 2 - I 1 - -e -e2(l + (1/n) 

When m is fixed, we get instead 8, < lnMmrr-, mr-i < 8' and thus 

131(r) ? 1 

When 1 = 2m = 2r, these estimates are exponentially bad whereas, for the 
exclusion process of Section 3, the bound is always polynomial. 

Another simple example where we can get a good bound for the process of 
Section 3 but not for the preceding process is a finite square grid in Z2 with, 
say, one-tenth of the edges deleted according to the rule of Example 2.1. 

Acknowledgments. We thank J. Fill, C. Kipnis, J. Quastel and A. 
Sinclair for useful discussions related to this paper. 
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