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GAUSSIAN ESTIMATES FOR MARKOV CHAINS 
AND RANDOM WALKS ON GROUPS 

BY W. HEBISCH AND L. SALOFF-COSTE 

Wrociaw University and University of Chicago, 
and CNRS, Universiti Paris VI 

A Gaussian upper bound for the iterated kernels of Markov chains is 
obtained under some natural conditions. This result applies in particular to 
simple random walks on any locally compact unimodular group G which is 
compactly generated. Moreover, if G has polynomial volume growth, the 
Gaussian upper bound can be complemented with a similar lower bound. 
Various applications are presented. In the process, we offer a new proof of 
Varopoulos' results relating the uniform decay of convolution powers to the 
volume growth of G. 

1. Introduction. The first result proved in this paper is a fairly general 
Gaussian upper bound for Markov chains. This bound applies in particular to 
simple random walks on locally compact compactly generated unimodular 
groups. When the group has polynomial volume growth, the iterated convolu- 
tion kernel governing the random walk is shown to satisfy a two sided 
Gaussian estimate. Various applications of this estimate are discussed. 

Our Gaussian upper bound for Markov chains is as follows. Consider a 
symmetric Markov kernel k defined on a measure space X, and assume that 
there is a distance function p on X such that k(x, y) = 0 whenever x, y satisfy 
p(x, y) ? ro. Also assume that the iterated kernels kn satisfy the uniform 
estimate 

sup {kn(x, y)} < C0n-/2, n = 1,2, ... 
x,y 

for some D > 0. Then, we prove that 

kn(x, y) < C'n-D/2 exp(_p2(x, y)/Cn), xXy Xxn = 1, 2... 

Taken in this general setting, this result is similar to an estimate obtained by 
Varopoulos in [26] (see also [6] for a very nice proof of the Varopoulos 
estimate). Indeed, under the above hypotheses and if X is countable, Varopou- 
los' estimate yields 

k (xy) < C'n-D/2+e exp(-p2(xy)/Cn), xy eX,n = 1,2,..., 

for any E > 0. Such a result is also implicitly contained in [5]. However, the 
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strength of our estimate comes from the fact that it is sharp in certain 
situations. This will be crucial for most of the applications presented in this 
paper. There are various ways of discussing the sharpness of such an estimate. 
One of them is to obtain a corresponding lower bound and we will be able to do 
so in some cases. A more trivial way to test a Gaussian estimate is to try to 
integrate it. When the volume of the set {y/p(x, y) < n} is uniformly bounded 
by CnD, the integral of our Gaussian bound over X is uniformly bounded, and 
this is a good sign. We also want to stress the fact that the different ap- 
proaches used in [26, 6, 5] are adapted from methods that give sharp results 
when applied to the study of various (continuous time) heat kernels. Hence, it 
is rather surprising that these methods do not yield optimal results in the 
discrete time setting. Somehow, the discrete time case is more resistant. 

From what has been said above, it becomes apparent that Gaussian esti- 
mates are especially interesting when one can first link the uniform decay of 
the iterated kernels kn to the volume growth of balls. Thanks to the work of 
N. Varopoulos (see [25, 28, 31, 32, 20, 9, 21, 33]), one knows that such a link 
does exist in the setting of Markov chains on groups. In this paper, we present 
a new and simple proof of Varopoulos' uniform decay estimates of convolution 
powers (i.e., translation invariant Markov kernels); see Theorem 4.1 and 
Section 4. Our approach is adapted from the work [15] of the first of us where 
heat flow semigroups on Lie groups are studied. It yields sharp results in both 
the polynomial and superpolynomial volume growth cases. Let us emphasize 
here that these results do belong to harmonic analysis. In the absence of a 
group structure, there is no general link between uniform decay of Markov 
kernels and volume growth of balls; see [31]. This is one natural reason why 
this paper is mainly concerned with random walks on groups. 

In the main part of this work, we apply the above results to the case of 
simple random walks on compactly generated groups having polynomial vol- 
ume growth. In this case, the Gaussian upper bound can be complemented 
with a similar lower bound. Let us describe these results in more details in a 
special but typical case. Let F be a finitely generated group with neutral 
element e, and fix a finite set {y, ... , yj of generators. Define p(x) to be the 
smallest integer such that x = xl * where xi E {e, y1, .y. ., y+1}. The 
group F is said to have polynomial volume growth of order D if the number of 
elements x such that p(x) < n is comparable to nD. For instance, if r = ZD, 
then p is comparable to the Euclidean norm, and ZD has polynomial volume 
growth of order D. Let p be the probability density corresponding to the 
uniform distribution on the set {e, y 1, ...),+} (what is important here is 
that p is symmetric compactly supported and charges a set of generators). 
Consider the random walk on F governed by p. It is a translation invariant 
Markov chain, and the iterated kernels are given by the convolution powers 
p(n). When F has polynomial volume growth of order D, our general Gaussian 
uppker bound, together with the uniform decay estimate, yields 

p ?(n)(x) < Cn-D/2 exp(-p(x)2/Cn), X E F, n = 1 E, 2. 
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But we also prove the "gradient" estimate 

Ip(n)(X) - p(n)(Xyi? 1) lI< C'n- (D+ 1)/2 exp(_p(X)2/Cn), 

x EF , n = 1,2, ... 

and the Gaussian lower bound [note that p(n)(x) = 0 if p(x) > n] 

p(n)(x) ? (C'n)-D/2exp(-Cp(x)2/n) forp(x) <n,n = 1, 2,. 

Such estimates are powerful tools., For instance, they imply that positive or 
sublinear p-harmonic functions (i.e., u = u * p) are constant. They also yield 
Sobolev and isoperimetric inequalities, as well as partial results concerning 
operators that are analogous to the classical Riesz transforms. In Section 9, 
the rate of escape of the random walk governed by p is studied. The main 
result in this direction is a generalization of a theorem due to Dvoretzky and 
Erdds when r = ZD. Another important application of the above Gaussian 
estimates is that they yield similar estimates for the kernels of associated 
Markov chains on homogeneous spaces. This is developed in the last section of 
this paper. It is worth emphasizing that most of these applications depend on 
having both an upper and lower Gaussian bound. A remarkable feature of the 
approach used in this work is that it does not depend on any result describing 
the structure of the underlying group. 

2. Gaussian upper bounds. Let X be a measurable space endowed with 
a positive o-finite measure dx. Let p be a (measurable) distance function on 
X, and denote by B(x, r), x E X, r > -0, the ball of center x and radius r. Let 
k(x, y), (x, y) E X2, be a bounded symmetric Markov kernel such that 

(1) {y E X/k(x,y) O} c B(x, ro), X E X 

for some fixed ro > 0. The iterated kernel kn is defined by k(x, y) = 
Jk(x, z)k n_ - 1(z, y) dz. Here is the result which is the powerhouse of this paper. 

THEOREM 2.1. Let k be a symmetric bounded Markov kernel which satisfies 
(1), and assume that 

(2) sup(kn(x,y)} < Con""2, n = 1,2,. 
x,y 

Then, there exist two constants C, C' such that 

kn(xy) < C'Con-D/2 exp(-p2(X, y)/Cn) 

for all x, y E X, and all n = 1, 2,. Here, the constant C depends only on ro 
whereas C' depends on D and roI 
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This section is devoted to the proof of this theorem. First, we introduce 
some notation. The Dirichlet form 9, associated with k, is defined by 

( f Xg) = ((I - K) f Xg) = f( f(x) - f(y))(g(x) - g(y))k(xy) dxdy, 

fg eL2, 

where K is the symmetric Markov operator Kf(x) = fk(x, y) f(y) dy. Consider 
the weight functions ws, s E Da, given by ws(x) = exp(sp(xo, x)) where x0 is 
any fixed point in X, and define the operator Ks by Ks f(x) = w-sK(ws f )(x). 
Remark that the hypothesis (1) easily implies IIKsI I Pp < exp(roIsI) and 

(3) jjKsnjP'P < exp(rolsln). 

Also, (1) and (2) imply 

IlKsllpo < Co1P exp(rolsl). 

Unfortunately, this is not quite enough to show that kn admits a Gaussian 
upper bound. What is needed to obtain a Gaussian upper bound is indicated in 
the following technical lemma. 

LEMMA 2.2. Let k be a symmetric bounded Markov kernel which satisfies 
the uniform estimate (2), and such that 

IlKsIlpo < Ct"P exp(C1(s2 + 1)) 

for all s E DR and p 2 2. Assume also that 

(4) IlKn 112,2 < exp(C1(s2n + 1)), s E DR, n = 1, 2... 
Then, there exist two constants C, C' such that 

kn(xy) < CCon-D/2 exp(-p2(x, y)/C'n) 

for all x, y E X, and all n = 1, 2.... The constant C' depends only on C1 
whereas C depends only on D and C1. 

PROOF. Using the fact that K is a contraction on each LP space, and 
classical interpolation techniques, we deduce from (2) that 

IlKnllp +0 < C1/pn-D/2p 

for all p E [1, +oo[. Similarly, we deduce from (4) that IIK n 1IpIp < 
exp(Cl6(s2n + 1)) where 1/p = 0/2 + (1 - 0)/oo, with p ? 2. After replacing 
Os by s in this last inequality, it reads 

IIKnlJp p < exp(C1((p/2)s2n + 2/p)). 
We interpolate between these two inequalities and get 

IlKjnIIlpq < (C1/Pn-D/2P)10 exp(C16((p/2)s2n + 2/p)), 
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where 1/q = 0/p + (1 - 0)/oo, q ? p ? 2. Replacing again Os by s, we obtain 

IIKipq < (Con exp(C1((q/2)s2n + 2/q)). 

Set pi = 2i2, mi = ci-5 with c = (Ej ~i5Y1. For any fixed integer n, define 
N = N(n) to be the largest integer such that n17N > 1. Also, for i = 2,..., 
N - 1, define ni = ni(n) to be the largest integer less or equal to nmi, and set 
nj = n - EN-1ni. Remark that we have nj ? cn, Emr7ipi+l < +00, and 
supn{nD/PN} < +oo. Armed with this notation and the last estimate on 
IIKnlIp q, we obtain 

N-1 

IIK+11 I2 ? IInKSI2 HI K 1 nil 

N-1 

C1/PN H (ConTD/2)(l/Pi-l/Pi+1) 

Xexp(C1((pi+1/2)nis2 + 2pg-+1 + S2 + 1)) 

< C1/2 n-D(1/4-1/2PN)( H ri-Dl/Pi) 

Xexp(Ci((E71ipi+i)s2n + 2Epg-+1 + S2 + i)) 

< C(D)C1/2n -D/4 exp(Cj (s2n + 1)) 

Here, C(D) depends only on D whereas C' = CC1 for some numerical con- 
stant C (the exact value of C(D) and C' may change from line to line in the 
estimates below). Notice that, since Ks is the adjoint of Ks) we also have 

IIK nil, 2 < C(D)Con -D/4 exp(Cj (s2n + 1)). 

Hence, we get 

11Knil1, O < C(D)Con-D/2 exp(C' (s2n + 1)), 

or, equivalently, 

kn(x,y) < C(D)Con-D/2 exp(C (s2n + 1) + s(p(xO, x) - p(xoy))). 

Choosing xo = x, and s = p(x, y)/2C'n, we obtain 

kn(xy) < C(D)Con-D/2 exp(-p2(x, y)/4C'n + C'), 
which ends the proof of Lemma 2.2. [ 

Lemma 2.2 reduces the proof of Theorem 2.1 to checking that (4) holds 
under the hypothesis (1). With this goal in mind, we first state a lemma whose 
usefulness will be apparent later on. We could have extracted this lemma from 
[5]. However, the machinery introduced in [5] is not needed here and we 
include a proof for the sake of completeness. 
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LEMMA 2.3. Let k be a symmetric bounded Markov kernel which satisfies 
(1). There exists a constant C depending only on rO such that 

_9(Ws f, Wsf ) 2! _Cs2IfII22 

for all positive f E L2, and all s such that Isl < 1. 
PROOF. Fix s E [-1, 1], and set w = ws. Note that 

(5) Iw(x) - w(y)| < r0IsI(w(x) + w(y)), X E X, Y E B(X, ro). 
Replacing f by wf, we see that Lemma 2.3 can be reduced to the claim that 

_9(W2f) f) 2 _Cs21IWf 1122 

To prove this claim, we write 

49(f, w2f) = 2( f(x) - f(y))(w2f(x) - w2f(y))k(xy) dxdy 

=( f(x) - f(y))( f(x) - f(y)) 

X(w2(x) + w2(y))k(x,y) dxdy 

+f( f(x) - f(y))( f(x) + f(y)) 

X(w(x) - w(y))(w(x) + w(y))k(x,y) dxdy 
=E1 +E2. 

The first term E1 is nonnegative. Using the Cauchy-Schwarz inequality and 
(5), the second term can be estimated by 

1E21 < (fl(x) -f(y)12(w(x) + w(y))2k(x, y) dx dy) 

x (f (x) + f(y))2(w(x) - w(y))2k(x, y) dxdy) 

< CIsIE1/2(( f (x) + f (y))2( w(x) + w(y))2k(x, y) dx dy) 

< C'IsIE1/21wf 112 < E1 + C"s21IwfII1. 

Here the constants depend only on ro (note that we used the fact that Is I < 1 
to obtain the third inequality). Hence, we obtain El + E2 ? -C"s211Wf 112, 
which proves the claim and Lemma 2.3. Eo 

LEMMA 2.4. Let k be a symmetric bounded Markov kernel which satisfies 
(1). There exists a constant C, depending only on ro, such that 

IIKnI1122 < exp(C(s2n + 1)), s GE R, n = 1, 2. 
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PROOF. The proof has two steps. First, consider the symmetric Markov 
semigroup 

+00 
tn 

t = e- - et E - K n 

n =O 
and define the perturbed semigroups F, t by 

." t f~ - = W -x) rt(w, f () W E= R. 

We have adt fI112= -2(w (I - K)(w F.,tf),(Fstf)) and, using Lemma 
2.3, we obtain adII FfII2 ? Cs2II, t fII2 for IsI < 1. From this we deduce 
immediately that 

1IIsFtf 112 < exp(Cs2t)11 f 112, f E L2, t > 0, IsI < 1. 
The second step consists in passing information from Fs t to Kn. Denote by 
&(n) the set of the even integers i satisfying n - ?< i < n. For any 
nonnegative function f in L2, t > 0, IsI < 1, n = 1, 2, .. ., we have 

V 2 

e-t E i !K1 f; < IFrs t fl2 < exp(Cst1 l22 
4'(n) 

i! S 
2 

Note also that 

K- f < exp(Clslj)Kjf, s E Ra, j = 1, 2,... 
From this remark and (3), it follows that 

V +2 

t~~~ e-2tcsl E E~~)2 l 

i2ed(n)je(n) i*!J 

2 e-c'lsl~n-IK nf 112 e-t E i 

Stirling's formula yields e -n Ei E <(n)nf/i! ? c for some positive constant c 
independent of n. Hence, choosing t = n, we deduce from the above that 

IIKn 112 ,2 < exp(C(s2n + IsIFn + 1)), n = 1,2,..., 

for IsI < 1. But, using (3), we see that this estimate also holds for IsI > 1. This 
ends the proof of Lemma 2.4. Using Lemma 2.2 and Lemma 2.4 we also have a 
proof of Theorem 2.1. o 

Theorem 2.1 yields estimates on the corresponding Green kernel. More 
precisely, denote by 0 the modified Green potential operator 0 = E+ 'Kn (the 



680 W. HEBISCH AND L. SALOFF-COSTE 

usual Green potential is I + 0) and let O(x,y) = Ej jkn(x,y) be its kernel. 
From Theorem 2.1, we easily deduce the following: 

THEOREM 2.5. Let k be a symmetric bounded Markov kernel which satisfies 
(1) and (2) for some D > 2. Then there exists a constant C such that 

O(X,y) < Cp(x,y) 

for all x, y e X. 

REMARK 1. Inspection of the above proof, together with few simple adapta- 
tions, shows that the hypothesis (1) can be relaxed a little and replaced by the 
condition that p(x) < A exp( -ap(x)2) for some fixed positive constants a, A. 

REMARK 2. Here is a question left open by the above, and which corre- 
sponds to the case of time dependent coefficients in the classical continuous 
time setting. Let hi, i = 1, 2,. .. be a sequence of bounded symmetric Markov 
kernels. Assume that the hi's satisfy uniformly the condition that h i(x, y) = 0 
whenever p(x, y) ? ro, for some fixed ro > 0. Denote by Hi the corresponding 
operators, and let ki j be the kernel of Ki j = HjHj-1 ... Hi+1 for 1 < i <j. 
Finally, assume that the ki j's satisfy the uniform estimate 

sup {ki, j(x,y)) < C(j - i) D/2, for all j > i ? 1 
x,y 

(see [33] for examples where these hypotheses are satisfied). It is natural to 
conjecture that, under these circumstances, ki j also satisfies the Gaussian 
estimate 

ki,j(x,y) < C(j - i)D/2 exp(-p(x y)2/C(j _ i)). 

The above argument does not yield this result. Note however that Lemma 2.2 
can easily be generalized to this setting. 

3. Preliminary considerations on groups. In this section, we intro- 
duce some notation which will be used throughout the rest of this paper. Apart 
from the general results obtained in Section 2, most of the results in this paper 
deal with the case where the underlying space X is a group and the Markov 
kernel k is invariant under left translation. More precisely, consider a locally 
compact unimodular group G, and assume that G is compactly generated. Let 
A be a probability measure on G. After n steps, the distribution of the random 
walk on G governed by /. is given by the convolution power i('n). Assume that 
,4 has a bounded symmetric density p with respect to the Haar measure of G, 
and denote by P the Markov operator defined by 

Pf(x) =f*p(x) = f(y)p(y -x)dy. 

Of course, this situation corresponds to the case when the Markov kernel k 
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satisfies k(x, y) = k(zx, zy), x, y, z c G. In this case, setting p(x) = k(x, e), 
where e denote the neutral element of G, we have k (x, y) = p(n)(y-lx). 

Fix a symmetric open neighborhood ?l of e which is relatively compact and 
generates G (i.e., G = U ,fln). The volume growth function V is defined by 

V(n) = IQnI, n = 1,2,..., 

where I Al is the Haar measure of the set A c G. There is also a left invariant 
distance function p associated with fQ. Namely, for x c G, we set 

p(x) = p(e, x) = inffnlx E fVn} 

and p(x,y) = p(x'-y) = p(y'-x). The sets xrn are balls for the distance p. In 
general, we set B(x, r) = {y E G, p(x, y) < r}. If f,1 Qf2 are two neighbor- 
hoods of e as above, it is not very difficult to check that there exists C > 0 
such that C' ? P2/P1 < C and that the corresponding growth functions 
satisfy V1 = V2, by which we mean that V1(C'n) < V2(n) < V1(Cn), n = 
1, 2, .... Hence, in some sense, V and p are invariants attached to G, and it is 
possible to define the type of growth of the group G as a notion independent of 
fQ. It is easy to see that V is at most of exponential type. Several deep 
theorems relate the volume growth to the structure of G. The approach used 
in this work does not depend on any of these theorems. However, they 
certainly help understanding the real meaning of the results obtained in this 
paper, and we briefly recall them now. 

1. (Y. Guivarc'h [14]) If G is a connected Lie group, or if G is solvable, then 
either there exists D = 0, 1,..., such that V(n) D nD, or V(n) exp(n). 

2. (M. Gromov; see [12, 27]) If G is finitely generated, then either G is almost 
nilpotent and V(n) nD for some D = 0 1, .. ., or V is of superpolynomial 
growth. 

3. (R. Grigorchuk [13]) There exist 0 < 3 < a < 1 and a finitely generated 
group such that 

exp(C'- 1n 3 ) < V(n) < exp(Cna), n = 1,2,... 

We say that G has polynomial volume growth of order D when V(n) 
Nilpotent groups are examples of groups having polynomial volume growth; 
see [14, 3], and the Appendices to [12] by Tits. Suppose, for instance, that G is 
a nilpotent simply connected Lie group with Lie algebra 4 and set 4, = 4, 
Si = [4, Si -1] for i = 2, .... Since G is nilpotent, there exists an integer m 
such that Sm + 1 = {0}. The order D of the polynomial volume growth of G is 
given by D = Ejmi dim(Si/~i l). Similarly, if G is a finitely generated nilpo- 
tent group with lower central series {0} c Gm c c G2 c G, = G, then G 
has polynomial volume growth of order D = Ejmi rk(G/GJ+,), where rk(H) is 
the (torsion-free) rank of the abelian finitely generated group H. Note however 
that certain solvable (but not nilpotent) Lie groups also have polynomial 
volume growth; see [14, 33]. 
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The following notation will turn out to be useful. The "gradient" Vf of a 
function f is defined by 

Vf(x) = sup {I f(x) - f(xy)}. 

Also, define V2f(X) = (fl2jf(X) - f(xy)I2 dy)1/2 and V f(x) = falf(x) - 
f(xy)l dy. All these notions are essentially equivalent. More precisely, we have: 

LEMMA 3.1. For all x E G and f E L1 n L', the gradients V, V1, V2 satisfy 

V1f(x) < IjfI1/2V2f(x) < 2 IQ21 sup {Vf(xz)}, 
zEN 

Vf(x) < 21fI -1/2 sup {V2f(Xz)}. 
zeK 

PROOF. The first string of inequalities is clear. To prove the last inequality 
stated in the lemma note that, for y E Q, we have 

f (x) - f (xy) I < f (x) - I 1 f (xz) dz + f (xy) - IQl - 1 f (sz) dz 

< I?i-1 If(x) - f(xz) I dz + fI f(xy) - f(xz) I dz) 

? Ii -1/2(f If(x) _ f(xz) 12 dz) 

+ (I2I f (xy) - f(xyz) 2 dz), 

from which the desired conclusion follows. E 

The next simple lemma (which is taken from [9]) will play an important role. 

LEMMA 3.2. Let K be a symmetric Markov operator, and fix an integer 1. 
There exists Cl such that we have 

|( - K21)1/2Knf 112 < Cln-1/211 f 112, fE L2, n = 1, 2*... 

PROOF. Let K2 = JJA dEA be a spectral decomposition of the symmetric 
positive operator K2. Clearly, it is enough to prove the lemma when n = 2s is 
even. In this case, we have 

- 
K2)l/2 K2sf 02 = f'(A2s - Al+2s) dEA( f, f) 

and the lemma follows since sup{A2s - Al+2s, A E [0, 1]} < 1/4s. Note that this 
lemma has nothing to do with the group structure. E 
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4. Uniform decay of convolution powers. In this section, we give a 
new proof of results which are essentially due to Varopoulos, and which relate 
the uniform decay of convolution powers (i.e., the decay of p(n)(e)) to the 
volume growth of the group G. Here is the result that we prove: 

THEOREM 4.1. Let p be a symmetric bounded probability density on G and 
assume that there exists an open generating neighborhood U of e such that 

(6) inffp(x), x E U) > 0. 

(i) If V(n) 2 CnD for some D ? 0, then p(n)(e) = O(n-'12) as n tends 
to +00. 

(ii) If V(n) ? exp(Cna) for some 0 < a < 1, then there exists K > 0 such 
that 

p(n)(e) - O(exp(-Kna/(a+2))), as n tends to +.oo 

Other type of growth can also be considered; see the last paragraph at the 
end of this section. Apart from technical details, the above theorem is due to 
Varopoulos. Part (i) is proved in [27, 28]. A simpler proof is also given in [20]. 
Part (ii) is proved in [31, 32] in the case of finitely generated groups. There is a 
common feature to all these proofs. They depend on the equivalence between 
the decay properties of p(n)(e) and certain functional inequalities (e.g., the 
Sobolev inequality); see [9, 20, 21, 27, 28, 31, 32]. The proof presented below 
differs completely from the above ones. It does not use any kind of functional 
inequality. The arguments are adapted from an approach discovered by the 
first of us in the context of the heat flow semigroup on Lie groups; see [15]. 
The fact that the Markov chains which we consider are translation invariant 
(i.e., have a convolution kernel) plays a crucial role in these arguments. The 
following result is crucial for our proof of Theorem 4.1. It can be interpreted as 
a sort of weak Harnack inequality. 

THEOREM 4.2. Let p be a symmetric bounded probability density satisfying 
(6). There exists CO such that, for all n, m = 1, 2, .. ., we have 

p(2n+m)( x) 
_ p(2n )(e) I < C0p(x)m-?/2p(2n)(e) 

PROOF. First, note that 

lp(2n+m)(X) -p(2n+m)(e) I < p(X) | Vp(2n+m) 1. < Cp(x) 11,V2p(2n+) I., 

where the last inequality follows from Lemma 3.1. This reduces the proof of 
Theorem 4.2 to the claim that 

(7) | 1V2 p(2n+m)j < Cm l/2p(2n)( e). 
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Writing p(2n+m) = p(n) * p(n+m), we obtain 

2 1/2 

JV2p(2n+m)(x) = (2 (p(n+m)(y-X) p(n+m)(y-lXZ))p(n)(y) dy dz) 

fGt (I (nf+ m)(y-1X) _ p(n+m)(y-1XZ) 12 dz} p(n)(y) dy. 

Using the Cauchy-Schwarz inequality and the invariance of the Haar measure 
(this is the only place where the group structure and the translation invariance 
of the Markov chain are really used), we get 

(8) || ~~jV2 p(2n+m) ||w < ||p(n)llivpn) V| (8) JJ121?II~III V2p(n+m) J12 
The hypothesis (6) implies that there exists some integer n0 such that (see for 
instance [9], page 433, Proposition 5) 

(9) inf{p(2no)(x), x E fQ2} > 0. 

Hence, setting po = p(2f0), we have V2 f(x) ? C(Jlf(x) - f(xy)j2po(y) dy)'12, 
which yields 

IIV2p(n +m)112 = (fGfI2P(n+m)(X) p(n+m)(xy)I dydx) 

12PO(Y~~d 1/2 
< C(f p(n+m)(X) -p(n+m)(xy)1|p(y) dydx 

- C'|(I - 
p2no)1/2pmp(n)12 

By (8) and Lemma 3.2, we get 

11V2p(2n+m)(l < Cm-l/211p(n)112 = Cm 

which proves the claim (7) and thus Theorem 4.2. 

PROOF OF THEOREM 4.1. Given n, m = 1, 2, .. ., set 

r( n, m) = ml/2p(2n+m)(e)/2C p(2n)(e), 

where CO is the constant appearing in Theorem 4.2. With this notation, 
Theorem 4.2 yields 

p(2n+m)(x) 2 ip(2n+m)(e), p(x), r(n, m). 

Integrating over the ball {p(x) < r(n, m)) and setting A(n) - p(n)(e), we 
obtain 

(10) A(2n+m) <2V(r(n,m))'. 

Armed with this fact, we now give a proof of Theorem 4.1. 
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PROOF OF PART (i) (Polynomial case). Assume that V(n) ? CnD, n = 
1, 2,.... In this case, (10) becomes 

A(2n + m) < C(rml/2A(2n + mr)/A(2n)) 

Choosing m = 2n and setting 6 = D/(1 + D), we get 

A(4n) < (Cn- 1/2A(2n))0. 

For n > 3, define o-(n) to be the smallest integer such that 2 - (n)-1n < 1. We 
have n > 2,(n) and 

a(n)- 1 
A(n) < A(2of(n)) < Fl {Cot2oi(iU-o(n))/2}A(2)o(n)l 

1 

? C'2 D(n)12 < D/2 

which proves the first part of Theorem 4.1. 

PROOF OF PART (ii) (Superpolynomial case). Let n, m = 1,2,.... be such 
that m < n. On the one hand, if for some integer i E [1, n/m], we have 

A(2n + 2im)/A(2n + 2(i - 1)m) > 1/2, 

then, by (10) and the fact that A is nonincreasing, we obtain 

A(4n) < 2{V(rml/2/C)} 

On the other hand, if 

A(2n + 2imr)/A(2n + 2(i - 1)rm) < 1/2 

for all integers i E [1, n//m], then we get 

A(4n) < 22-n/mA(2n) < 22-n/? 

Hence, we always have 

(11) A(4n) < max{2V(rMl/2/C) l22-n/mA(2)} m < n. 

If we assume that V(n) ? exp(Cna), n = 1, 2, .. ., for some 0 < a < 1, choos- 
ing m n2/(2 +a) in (11) yields 

A(4n) = O(exp(-Kna/(a+2))), 

for some K > 0, which ends the proof of Theorem 4.1. 0 

We now discuss the sharpness of Theorem 4.1. When doing so, we have to 
restrict the class of functions p under consideration: If p is too spread out, 
pn) (e) might have a faster decay than the one given by Theorem 4.1. Hence, 
we assume in the following discussion that p satisfies the hypotheses of 
Theorem 4.1 and has compact support. Concerning the polynomial case, it is 
known that, if G is a finitely generated nilpotent group, or a nilpotent Lie 
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group, with V(n) nD, then 

C-1 p(2n)(e)nD/2 < C n = 1,2,...; 

see [27] and the references given there. In the next section, we show that this 
holds on any group having polynomial growth of order D. When G has 
exponential growth, it may happen that p(n)(e) has exponential decay: This is 
the case if and only if G is nonamenable (note that any nonamenable group 
has exponential volume growth). However, there are examples of groups G 
having exponential volume growth, and for which the type of decay given by 
Theorem 4.1, part (ii) is correct. Namely, let G be a finitely generated group 
which is polycyclic but not almost nilpotent. By Theorem 4.1 and a result of 
Alexopoulos [1] we have, in this case, 

exp(-Cn1/3) < p(2n) (e) < exp(-nl/3/C), n = 1, 2, ... 
(note that polycyclic groups are solvable hence also amenable, and that a 
finitely generated solvable group that is not almost nilpotent has exponential 
growth). Hence, part (ii) of Theorem 4.1 is rather sharp in this case. 

As a closing remark, it may be of interest to note that other types of growth 
can be considered. For instance, suppose that G has a slow superpolynomial 
volume growth in the sense that 

V(n) ? CnA exp(y(log(n))P), n = 1, 2, ..., 

for some A EE R, y ? 0, p > 1. Then, choosing m = Kn/(log(n)), < n in (11), 
we obtain 

p(4n)(e) < max{Cle( - y{log(K1/2n1/2 / C2(log(n)),3/2))13) e(-(og(n))-( / C3K) 

and, choosing K small enough, 
p )( e ) < n'' /2e2 -y((1/2)1og(n)) + O(C(log(n)) -1(log(log(n))))) 

Unfortunately, we do not know if there exist groups having this type of 
growth. 

5. Gaussian bounds for convolution powers. We now apply the re- 
sults of Sections 2 and 4 to obtain a Gaussian upper bound for convolution 
powers. By taking advantage of the fact that we are dealing with convolution 
kernels, we are able to complement the Gaussian upper bound with a gradient 
estimate. For the same reason, we easily obtain a Gaussian lower bound. We 
want to emphasize that a number of key points of the argument presented 
below are specific to the case of translation invariant Markov chains (i.e., 
random walks). A further discussion of this aspect is given at the end of this 
section. The main estimates proved below are gathered in the following 
theorem.- 

THEOREM 5.1. Assume that G has polynomial volume growth of order D. 
Let p be a symmetric bounded probability density. Assume that there exists an 
open generating neighborhood U of e such that inf{p(x), x E U) > 0 [i.e., p 
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satisfies (6)]. Also assume that there exists ro such that 

(12) p has support in B(e, ro). 

Then, there exist three positive constants C, C', C" such that, for all x E G and 
all integers n, we have 

( 13) p (n)( x) < Ch -D/2 exp(_p( X )2/C' n), 

(14) Vp(n)(X) < Cn-(D+1)/2 exp(_p(x)2/C'n), 

(15) p(n)(x) ? (Cn)-D/2 exp(_C'p(x)2/n) if x E B(e, n/C"). 

Moreover, if D > 2, the modified Green kernel = p(n) satisfies 

(C (X))-D+2 < (8(X) < Cp(X)-D+2 X E G 

and 

V(X) < Cp(X)-D+l, x E G. 

Note that the statement concerning the Green kernel follows easily from 
(13), (14) and (15). The inequality (13) is an immediate application of Theorem 
2.1 and Theorem 4.1. The rest of this section is devoted to the proofs of (14) 
and (15). We start with an easy consequence of (13). 

LEMMA 5.2. Set ws(x) = exp(sp(x)), x e G. Assume that G has polynomial 
volume growth of order D and let p be a symmetric bounded density of 
probability satisfying (12) and (6). Then, for 1 < q < + oo, we have 

P (n)ws 11 < Cn -D(l - 1/q)/2 exp(C's2n), s > On = 1,2. 

This result follows from the elementary fact that 

exp(sp -p2/Cn) < exp(Cs2n -p2/2Cn), s > O. p > O ,n = 1,2,..., 

together with (13) since we have 
+ 00 

e -P(x)2/Cn dx < e-p(x)2/Cn dx + E 2ne-P(X)2)Cn dx 
ps<n 0 in <p(x) <2i"'n 

+ 00 

? C'n D/2 2iD/2e-2/C < D/2 
0 

PROOF OF (14). We adapt a method used in [22] in a continuous time 
setting. Fix s > 0, v = n + m, and note that esP(x) < esP(Y'x)esP(Y) and p(v = 

p(n) * p(). This implies 

(16) esP(x)V2p(v)(x) ? ]esp(y-x)V2p(n)(y -1x)esP(Y)p(m)(y) dy 
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Lemma 5.2 yields a good bound for 11 WSp(m) 112. Using (9) and the notation 
introduced right after it, the other factor can be estimated by 

|2 W2s(X) ||p(n)(X) p(n)(xy) Po(Y) dy dx 

fW2s(x){Ip(n)(X) 
2 - 2p (n)(X)p(n+2no)(X) 

+ f p(n)(xy) 12po(y) dy) dx 

- 2fw2s(x)p(n)(x)(I _ p2no)p(n)(x) dx 

+ f(W2s(X) - W2s(X(y)) p(n)(xy) 12Po(Y) dydx 

E1 + E2. 

Using the Cauchy-Schwarz inequality, Lemma 3.2 and Lemma 5.2, we get 

(17) E1 <IIw2sp(n) 1121(I _ 
p2no)p(n) 112 < Cn-1-d 2 exp(C's2n). 

To estimate E2, first note that the invariance of the Haar measure and the 
symmetry of p imply 

E2= (W2s(xy) - W2s(s))lp(n)(x) 2p0(y) dydx 

- 2f(W2S(Xy) - w2(X))(I p(n)(X) 2 
-I p(n)(Xy) 2 )pO(y) dydx 

Using (5) and the Cauchy-Schwarz inequality, this yields 

E2 < Cs ((I _ p2no)1/2p(n)) ||w28p(n)l2 

Finally, by Lemma 3.2 and Lemma 5.2, we get 

(18) E2 < Csn- 1/2-D/2 exp(C's2n). 

Hence, choosing n = m or n = m + 1 depending on whether v is even or odd, 
and using (16), (17), (18) and Lemma 5.2, we obtain 

exp(sP(x))V2p(v)(x) < C(1 + SF)11/2 V7D/2-1/2 exp(C's 2v). 

Choosing s = p/2C'v in this last inequality yields the estimate 

V2P(v)(x) < CV 1/2-D/2 exp(-p(x)2/C'V), 

and by Lemma 3.1, this ends the proof of (14). El 

PROOF OF (15). We start by proving the following much weaker version of 
(15): 

(19) p(n)(e) 2 (Cn)-D/2, n= 1,2. 
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Note that it is enough to prove the above when n is even since p satisfies (6). 
Using the Gaussian upper bound (13), we see that, for some fixed A large 
enough, 

f p(2n)(x) dx < C'AD/2 Y22iD/2exp(-2iA/C) < 1/2 
p(x)2 >An 

uniformly for n = 1, 2,.... Hence, we obtain 

C(An) D/2p (2n)(e) ? 4 ()2An (X) dx 2 1/2, 

which yields the desired estimate. In a second step towards our Gaussian lower 
bound, we improve (19) by using Theorem 4.2 [or the gradient estimate (14)]. 
Indeed, we have 

IP (n)( X) - p(n)( e) I < Cn-DI2 1/2p(X ) 

which, together with (19), shows that there exist two positive constants C0, C1 
such that 

(20) p(n)(x) ? (Con) D/2 for all x, n such that p(x) < VI/C1. 
From here, (15) is obtained by adapting a classical chaining argument. Fix 
x E G and an integer n. If p(x) < v/-/C1, (20) yields the desired estimate. 
Hence, assume that p(x) ? v/C1. Write n = n1 + n2 + ... +nj where ni ~ 
n/j and j < n is an integer to be fixed later. Also, fix a sequence xl = e, 
X2,.. , xJ+ 1 = x of elements of G such that p(x 'xi + 1) < p;(x)/j. For n large 
enough, choose j to be the smallest integer such that j ? lOClp(x)/l v. 
This is compatible with the condition j < n when lOClp(x) < n. Assuming 
that x, n satisfy this additional condition, (20) yields 

inf(p(nj)(y-1yi+j), y E- Bi, yi+l E- Bi+,), 2 (Coni) D2 

where Bi = B(xi, V/7/l10Cj) and 1 < i <j. Hence, we obtain 

p(n) ? f ... fp(f1)(y2)p(n2)(y- ly3) 
... p(ni)(y- 1x) dy2 ... dyj 

? f |.. f p~'~(Y2) ... p(ni)(y1 X) dY2 ... dyj 
B2 B, 

2 (n/;) -D-lc (C n) D/ x(Cfp(x)2 In), 

where the last inequality comes from the fact that j p(x)2/n. This ends the 
proof of the Gaussian lower bound (15). El 

As we mentioned before, the gradient estimate obtained above for convolu- 
tion powers is specific to invariant Markov chains. Hence, the proof of the 
Gaussian lower bound given above is also specific to this case. However, we 
have the following general Gaussian upper bound. 
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THEOREM 5.3. Assume that G satisfies V(n) 2 CnD , n = 1,2. Let k be 
a symmetric bounded Markov kernel on G satisfying (1), and assume that 
there exists an open symmetric generating neighborhood U of e such that 
(21) inffk(xy), x E X, y E xU} > 0. 
Then there exist two constants C', C" such that 

kn(xy) < C'n-D/2 exp(_p(x, y)2/C'n), x, y E X, n = 1, 2,... 
Also, if D > 2, the modified Green kernel 0 = E5j kn satisfies 

O(x,y) < C'p(x,y) , x,y E G. 

The proof follows from Theorem 2.1, Theorem 2.5 and the fact that under 
the above hypotheses we have kn(X~y) < Cn-D/2, n = 1,2,.... Indeed, this 
uniform estimate is a (by now well known) consequence of the volume growth 
hypothesis and (21). It follows, for instance, from Theorem 4.1 and Proposition 
4, page 430, of [9]. 

REMARK 1. Note that the volume growth hypothesis in Theorem 5.3 is 
weaker than the one in Theorem 5.1. If, for instance, we know that G has 
exponential volume growth, then we can combine Theorem 4.1 and the 
preceding result to conclude that any bounded symmetric probability density p 
satisfying (6) and (12) also satisfies 

p(n)(x) < Ci exp -| C ))| x E G, n = 1,2,. 

We do not elaborate on this because such an estimate (whatever the constant 
C2 is) is rather poor. For instance, the integral of the right-hand side is not 
uniformly bounded as n tend to infinity. Much work seems still to be needed 
in order to obtain better estimates in the nonpolynomial case. 

REMARK 2. Another aspect of Theorem 5.3 is that it offers an estimate 
from above for Markov kernels instead of convolution powers. We have no 
doubt that, if G has polynomial volume growth, a corresponding Gaussian 
lower bound [similar to (15)] holds for Markov kernels as well. However, we 
have not been able to prove this result. We hope to come back to this question 
in the future. Note that the gradient estimate similar to (14) does not hold in 
general for Markov chains. We expect a Holder continuity estimate to hold 
instead. Such a Holder continuity estimate would follow from a Gaussian 
lower bound similar to (15). 

6. Harmonic functions. In this section we present some applications of 
Theorem 5.1 to the potential theory associated with a symmetric bounded 
probability density p on a group G where p and G are as in Theorem 5.1 (in 
particular G has polynomial growth of order D). More precisely, we show that 
the p-harmonic functions which are either nonnegative or of sublinear growth 
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are necessarily constants. First, recall that a function u is said to be p- 
harmonic if it satisfies the equation Pu = u. Also, a function f is of sublinear 
growth if 

Mf (r) = sup{I f (x) I, x E B(e, r)} 

is such that r -1Mf(r) tends to zero as r tends to infinity. The estimate (14) in 
Theorem 5.1 yields easily the triviality of p-harmonic function having sublin- 
ear growth. Indeed, if u is p-harmonic, we have for any integer n, 

Vu (e) < fVp(n)(Z)I U (Z) I dz 

< Cln-D/2-1/2 exp(_p(z)2/Cn)I u(z)I dz 

< C2n D/21/Mu(1)f dx + /Mu(2 /rV)f eP(X)2 /Cn dx) 

< C3n -1/2 E2iD/2 exp(-27/C)Mu(2i /2 vn) 

If u has sublinear growth, given E > 0, we have Mu(g n) < 2/n i = 
0, 1, ... for n large enough. Hence, we get Vu(e) < CE, thus Vu(e) = 0 since 
8 > 0 is arbitrary. Applying this to the p-harmonic function ux(z) = u(xz) we 
obtain that Vu(x) = 0 for all x E G. Hence, we have proved the following: 

THEOREM 6.1. Assume that G has polynomial volume growth. Let p be a 
symmetric bounded density of probability satisfying (12) and (6). Then, any 
p-harmonic function which has sublinear growth is constant on G. 

In [18], Margulis proved that nonnegative p-harmonic functions are con- 
stant when G is nilpotent (hence extending to a noncommutative setting some 
of the results obtain in [7] by Choquet and Deny). Since nilpotent groups have 
polynomial volume growth, the following theorem extends Margulis' result. 
(Note that our arguments are completely different from those of [18]. Also note 
that [18] offers a description of nonnegative p-harmonic functions even when 
p is not symmetric nor has compact support). 

THEOREM 6.2. Assume that G has polynomial volume growth. Let p be a 
symmetric bounded density of probability satisfying (12) and (6). Then, any 
p-harmonic function which is bounded from below is constant on G. 

PROOF. Note that the Gaussian estimates (13) and (15) given by Theorem 
5.1 imply that there exist an integer a and a constant C > 0 such that, for any 
integer n and any x,y E G such that p(x-1y) < Vn, we have p (nx) < 
Cp(an)(y). Hence, any nonnegative p-harmonic function u satisfies u(x) = 

Pnu(x) < CPanu(y) = CU(y) for p(x-1y) < Vn. Since n is arbitrary, u is 
bounded and by Theorem 6.1, u is constant. Of course, the case where u is 
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bounded from below is easily reduced to the above. It is worth noting that the 
above argument can be applied to prove a Harnack inequality. Namely, we 
obtain the following result. 

THEOREM 6.3. Assume that G has polynomial volume growth. Let p be a 
symmetric bounded density of probability satisfying (12) and (6). There exist 
an integer a and a constant C such that, for all x E G, all integers n, and any 
sequence of nonnegative functions u i, i = 1, 2,. .., satisfying u i + 1 = Pu i, we 
have 

sup {un(y)} < C inf {uan(Y)} 
y eB(x, ,/) yeB(x, Fi) 

and 

sup {VUn(Y)} < Cn /2 inf {uan(Y)} 
yeB(x, ,F/) yeB(x, /i) 

7. Sobolev and isoperimetric inequalities. Recall that, in the Eu- 
clidean space, there are two kinds of Sobolev inequalities. The first kind 
involves the operator A1/2 (where A is the Laplace operator), and reads 

11 f Ip(D-p) < C(D p) II A1/2f |p f E @O(RD) 1 <p <D. 

The second kind involves the gradient instead, as in 

|| f IIDp/(D-p) < C(Dp)IIVf lip, f E e9O(RD) 1 <p <D. 

Of course, in this classical setting, and for 1 < p < + oo, the fact that the Riesz 
transform VA - 1/2 is bounded on LP establishes a direct bridge between these 
two families of inequalities (note that when p = 2 the two inequalities are 
identical). However, the most powerful of the inequalities of the second kind, 
namely 

11 f IID/(D-1) < CHI Vf 11, f E e9o(R D) 

has no full counterpart in the first family. This inequality is of special interest 
since it is equivalent to the isoperimetric inequality 

Vol n( U)( /D < C Voln-1(dU), 

where U is an open bounded set with smooth boundary dU. Because of this, 
the second family of Sobolev inequalities bears a more geometric meaning. 

In the setting of Markov chains, inequalities analogous to those of the first 
family have been obtained in [25, 9]. Indeed, it is shown in [9] that if k is a 
bounded symmetric Markov kernel satisfying 

sup kn(xy)} < CnD/2, n = 1,2,.... 
x, y 

it follows that 

11 Kf IIDp/(D-p) ? C(p)II(I - K)11'2f II, f E LP, 1 <p <D. 
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In this section, we make use of Gaussian estimates obtained in Section 5 to 
prove some geometric Sobolev inequalities on groups (i.e., inequalities analo- 
gous to those of the second family). 

Let G be a group having polynomial growth of order D. Denote by Q the 
operator of convolution associated with the probability density 6 = 
IQI - 11fl, where 1Q is the indicator function of fl which is the fixed generating 
neighborhood of e used to define the distance p and the volume growth 
function V; see Section 3. For y E fQ, define ay setting ay f(x) = f(x) - f(xy) = 
(I - ay - 1) f(x), x E G, where 8_ is the operator of convolution associated with 
the Dirac mass at z, and consider the operators 

+ 00 

SY = Q(I -Q)ly = A, Qndy 1 
1 

and Sy, f = nd f. Using the symmetry of A, we see that Sy n is given by 

Sy nf(x) = Yn(x-1z) f (z) dz, 

where ay, n(Z) = ay (z). Set 

orn(z) = sup {y,n(Z) )} Sn f(x) = fon(X-1z) f(z) dz. 
yefl 

Note that an satisfies o-n(x) < Cn-D/2-l/2 exp(-p(x)2/Cn). It follows that 
11 on -IL" < Cn-D/2-1/2. Reasoning as in the proof of Lemma 5.2, it also implies 
rn II < Cn-1/2. From this we deduce that 

(22) 11 Sn IIr-s < Cnf1/2-D(l/r-l/s)/2 n 1,. 2 

for 1 < r < s < +oo. Set S = E' S. The operator S is a kind of inverse of 
the gradient V1. Indeed, the symmetry of fl implies 

21Q |fSYYa dy = Q(I- Q) I f (2 aY-,) dy 

= Q(I - Q)-1(I - Q) = Q 
which yields 

(23) IQfI < iSVf[. 

LEMMA 7.1. Fix 1 < p < D and Dp/(D - p) < q < +oo. We have 

I{x E GI I Sf(x) I > A}| < (Cp, qk-lll p), A > 09 f E LP. 

PROOF. Assume that II f IIp = 1 and q = Dp/(D - p). For an integer m to 
be chosen later, set 

m-1 +00 

F1= ESJf, F-= ESnf 
1 rm 
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Using (22) with r = p, s = +oo, we see that 
+ 00 

11N01100 ? E n1/2-D/2p < C m-Dl2q 
m 

Hence, writing {ISfI > A} C {1F01 > A/2} U {(F1 > A/2) and choosing m to be 
the smallest integer such that ClmD/2q ? A/2, we obtain 

J(ISf I > Al I < I{IF11 > A/2}1 < (Ck-'IIF1llp)p 
But (22) with p = r = s yields IIF1IIp < CEm1-ln12 ? C'(m - 1)1/2 and 

If{ISfI > A}l < (CA-1(m - 1)1/2)P. 

Since m = 1 for large A, and m-D/2q _ A otherwise, we get I{ISfI > A}j ? 
(CA)-q for all A > 0, which ends the proof of the lemma when q = Dp/(D - p). 
Replacing D by a smaller number in the above yields the rest of the lemma. E 

The Marcinkiewicz interpolation theorem, (23) and Lemma 7.1 yield the 
following result. 

THEOREM 7.2. Assume that G has polynomial volume growth of order D, 
and let Q be as above. We have 

IIQf liq < C( D, p, q) )IV, f lip, 'f E- LP) 

for all 1 < p < D and Dp/(D - p) < q < + oo. Moreover, if D/(D - 1) < q < 
+ 00, we have 

IIQf liq < C(D, q) IIV1 f 111i f E L1. 

An isoperimetric inequality can be obtained as follows. Given an open 
relatively compact set A c G, define the "boundary" of A to be the set 
dA = {x E Althere exists y E fQ such that xy e A}. 

THEOREM 7.3. Assume that G has polynomial growth of order D, and fix a 
neighbourhood W of e. There exists a constant C such that 

IAI(D-1)/D < CIdAI 

for any open relatively compact set A that contains zW for some z E G. 

PROOF. Fix q EC ]O, 1[ and a neighbourhood W' of e such that Qlw(y) > 'q 
for y E W' [such -q and W' exist because Q1W is continuous and Qlw(e) > 0; 
they can be taken to depend only on fQ and W, which are fixed]. Consider the 
sets 

Afat= {x E A, Q1A(X) > 'q}, Athin = {x E A, Q1A(X) < ?1) 

Using Lemma 7.1 and (23), we get IAfatl(D-l)/D ? C?71V1l4II and it is easy to 
check that IIV11AII1 < CIdAI. We also have Athin C dA A A U thin = A and, 
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since A contains zW for some z E G, lAfati 2 C? ,w Hence, we can conclude 
that IAI(Dl1)/D < CldAI, which proves the theorem. o 

It is worthwhile specializing these results to the case where G = F is finitely 
generated. In this case, the operator Sy introduced above can be replaced by 
Sy = (I - Q) -1d l, and the result becomes (here IAI is the cardinality of the 
set A c F): 

THEOREM 7.4. Assume that F is a finitely generated group of polynomial 
growth of order D. For all finite sets A c F, we have 

IAI(Dl)/D < C(D)IdAI. 

Moreover, we also have 

11 f IIDp/(D-p) < C(D, p) IIV1fI, f E LP, 1 < p <D. 

To obtain the second statement with p = 1, we use the isoperimetric 
inequality and the proposition of Section 4 in [25] (i.e., we use a kind of co-area 
formula adapted to the situation). 

REMARK. The results stated in Theorem 7.4 are known and due to 
Varopoulos (see [27], [33]): By a theorem of Gromov (see Section 3), we can 
restrict ourselves to the case when F is nilpotent. Then, we can assume that F 
has no torsion. Thanks to a theorem of Malcev, such a F can be embedded as a 
cocompact lattice in a nilpotent Lie group G, and the isoperimetric inequality 
on F can be deduced from the isoperimetric inequality on G (once this last one 
has been obtained one way or another; see [33] for more details). The proof 
given in this paper is more direct, and does not use any structure theorem. 
Also, see [9] for a simple elementary proof when G = ZD. 

8. Riesz transforms. In the Euclidean space RD, the Riesz transforms 
are the operators (d/dxi)A-112, i = 1, ..., D. They are bounded on LP for 
1 < p < + oo. Generalizations of this result in the setting of Lie groups have 
been studied by several authors. A recent and difficult result of Alexopoulos [2], 
is that on a Lie group having polynomial growth, the Riesz transforms 
associated to a family of left invariant vector fields satisfying the Hormander 
condition are bounded on LP, 1 < p < + oo. Prior to Alexopoulos' theorem, 
partial results were obtained in [22] in the same setting. Clearly, analogous 
questions can be asked in the context of the present paper. Since the results 
we are able to obtain are not complete, we will be brief and sketchy. Also, for 
the sake of simplicity, we restrict ourselves to the case of, a finitely generated 
group F. In this case, the set fl = {e, W1, ..., Wm} is a finite symmetric set of 
generators. Setting 
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and f = (1/I~I)1Q, Qf = f * I, the Riesz transforms can be defined as the 
operators di(I _ Q)-1/2 and (I - Q)-1/2di, for i = 1, ..., m. Note that (I - 
Q)- 1/2 da is the adjoint of do-i(I - Q)- 1/2. It is natural to ask whether or not 
these operators are bounded on LP; 1 < p < + oo. Equivalently, one can ask 
whether or not 

11 (I _ Q) 1/2 f I1p = 11,Vf lip 1p < + 

where, according to our previous notation, Vf = supi{ldi fI} (note that, in this 
discrete setting, all the different gradients V, V2, V1 are comparable). Note 
that the Riesz transforms are obviously bounded on L2 since we have 
11(I - Q)112f 12 INVf 112. Denote by Ri the operator di(I - Q)-1/2 and by ri its 
convolution kernel. We have ri = E a d+0 (n), where the an's are such that 
(1 - x)-12 = Eanxn. Hence, we have lanI < Cn-1/2, and using the Gaussian 
estimate (14), we obtain 

Iri(x) I < Cp(x) D, x E F. 

Set d, f(x) = f(x) - f(yx). Using the fact that the operators d9 and dz com- 
mute, and the same method of proof that we used to obtain (14), we obtain 
(see [22] for more details in a continuous time setting) |di d (n)(x)I < 
C'n l-D/2 exp(_p(x)2/Cn), X E F, n = 1,...,i, j = 1,...,m. From this it is 
not hard to deduce that 

ayri<(x) x)D forallx,y E Fsuchthat2p(y) <p(x). 

Because of the above estimates on ri and the fact that Ri is bounded on L2 
we can use the general Calderon-Zygmund theory on spaces of "homogeneous 
type" developed by Coifman and Weiss to obtain that the Ri's are bounded 
from L1 to weak-L'. Hence, (by interpolation) the Ri's are also bounded on LP 
for 1 <p < 2 (see [8], Theorem (2.4), page 74). Of course,, the adjoints 
(I- Q)-1/2 i are thus bounded on LP for 2 <p < +oo. The above approach 
fails to yield a complete result because the methods used to estimate Ia a e I 
do not work for Id dje(n)I. For a better understanding of this fact we refer the 
interested reader to [22] and Alexopoulos' paper [2]. However, there is a case 
where the above analysis yields complete results. Indeed, if F is abelian, the 
above argument yields estimates on IdiQ is * and we obtain the follow- 
ing result. 

THEOREM 8.1. Assume that F is a finitely generated abelian group. For 
each 1 < p < + oo there exist two constants C, C' such that 

C-1IIVfip <II(,_Q)12fp< CIIVfIIp) fE LP. 

9. Rate of escape. - One of the motivating problems in the study of the 
uniform decay of convolution powers is to establish whether simple random 
walks on a given group are recurrent or not. Indeed, the random walk 
governed by p is recurrent if and only if the series Ep(n)(e) diverges. Clearly, 
Theorem 4.1 contains more than enough information to settle this question. 
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For instance, the only finitely generated groups that are recurrent are the 
finite extensions of {0}, Z, Z (Varopoulos [27]). Let xn be the random variable 
representing the position, after n steps, of the random walk governed by p 
and started at e. Assume that V(n) ? Cn' for some D > 2, and that the 
symmetric bounded probability density p satisfies (6) and (12). Setting rn = 
p(Xn), the transience of the random walk Xn amounts to the fact that, for any 
r > 0, lim inf(rn) ? r almost surely. Our main interest in this section is to 
generalize a result of Dvoretzky and Erdos. In [10], they proved that if xn is 
the simple random walk on ZZD with D > 2 and qf a decreasing function, 
'({lIXJll < qf(n)Fn i.o.}) equals 0 or 1 according as the series Eq,(2n)D-2 
converges or diverges. In other words, liminf(llxnll/qf(n)FH) equals 0 or +oo 
according to the above test (here, lix I is the Euclidean norm of x). For 
instance, lim(llxnlln- 1/2(l g WY + I(D-2))= +00 a.s. for any E > 0, but 
liminf(llxnll n-1/2(log(n))l/(D-2)) = 0 a.s. Also note that, in this classical set- 
ting, the law of the iterated logarithm asserts that 

lim sup(lXln 1/u(2n log log(n)) 1/2) = 1 a.s., 
where a-2 is the variance of p. In what follows, we prove a weak version of the 
law of the iterated logarithm and generalize the Dvoretzky-Erd6s result in the 
case of simple random walks on groups of polynomial growth. The proofs are 
adapted from the classical case, but depend on the estimates given by Theorem 
5.1. Some details are given for the sake of completeness. 

In order to describe the random walk governed by p, let W be the compact 
set containing the support of p and set Yf = G x YAd. On X, consider the 
family of the probability measures Rx = Ax ? OAN, where x E G and ,L is the 
measure of density p. When x = e, we set q= 9e. For w = (x, W 1 ... ) E X, 
set xn = xw1 ... Wn, rn = p(xn). The random variable xn represents the 
position, after n steps, of the random walk governed by p and started at x. 
Our main interest here is in the real random variables rn. 

Before considering the case where G has polynomial growth, it is of interest 
to note that, by the subadditive ergodic theorem, there always exists a real 
a ? 0 such that lim(rn/n) = a 9 a.s. Moreover, as explained in [26], a = 0 if 
and only if any bounded p-harmonic function is constant. Of course, if G has 
polynomial volume growth, a = 0, but a stronger result holds. 

THEOREM 9.1. Assume that G has polynomial volume growth. Let p be a 
symmetric bounded density of probability satisfying (12) and (6). There exists a 
positive constant C such that 

C-?1 < limsup(rn/Akn) < C ? aa. s., 
where A n = (n log log(n ))1/2. 

PROOF. The upper bound follows easily from the Borel-Cantelli lemma 
and the claim that 

m sup })< C exp(-m2/Cn) 
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for all integers n, m. But the Gaussian upper bound (13) shows that 

6P({rn ? m)) < Cexp(-m2/Cn) 
and this is enough to prove the claim; see [23], Lemma 3, for a proof which can 
easily be adapted to the present setting. In order to prove the lower bound, 
write xn = x(n), rn = r(n), An = A(n), and consider the events 

An = {p(x-1(an)x(an,1)) > C-1A(an+l - 
an)- 

where a is a large positive constant. The An's are independent, and when C is 
large enough, the Gaussian lower bound (15) shows that E9(An) = +X00 
Hence, I almost surely, we have 

r(an+1) > p(x-1(an)x(an+l)) - r(an) > C-lA(an+l - an) - r(an) 

for infinitely many n, when C is large enough. The desired conclusion follows 
by using the upper bound and choosing a large enough. Note that the proof of 
the estimate from above in Theorem 9.1 depends only on the Gaussian upper 
bound and the Markov property. Hence, this part of Theorem 9.1 also holds for 
Markov chains governed by a kernel k satisfying (1) and (21) (see Theorem 
5.3). 

We now pass to the generalization of the Dvoretzky-Erd6s result. 

THEOREM 9.2. Assume that G has polynomial volume growth of order 
D> 2. Letp be a symmetric bounded density of probability satisfying (12) and 
(6). For any decreasing function qf ? 0 we have 

6{((rn < q(n)x 4for infinitely many n}) = 0 or 1 

according as the series Eq,(2n)D-2 converges or diverges. In other words, we 
have 

lim(rn/qi(n)x) = +0oo 9as. or liminf(rn/0(n)v4) = 0 6Pa.s. 

according as the above series converges or diverges. 

The proof depends on two lemmas which are applications of Theorem 5.1 
and are of some independent interest. In what follows, G and p are as in 
Theorem 9.2. 

LEMMA 9.3. Fix x e G and set N = p(x). For n = 1,... denote by &(x, n) 
the probability that the random walk started at e ever enters xfn (i.e. the ball 
of center x and radius n). There exists a constant C > 0 such that 

min{1, C-(n/N)D-2) < &(x,n) < min{l1C(n/N) D-2. 

PROOF. Consider the function u(z) = ux, n(Z) which is equal to the proba- 
bility that the random walk started at z E G ever enters the set xWn. It is not 
hard to check that u is a positive bounded p-superharmonic function (i.e., 
u * p < u). Also, u = 1 on xWn, and u is p-harmonic outside xWn. Elemen- 
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tary potential theory shows that u = (I + O)v + h where v = (I - P)u, h 
lim + 00 P'u is a bounded p-harmonic function, and I + 0 = E +PP is the 
Green potential operator associated to P. By Theorem 6.1, we know that 
h is constant. This constant has to be 0 (to see this, one can show that 
lim X u(x) = 0 by using the Gaussian upper bound, or alternatively, one can 
interpret h has the probability of visiting xWl infinitely often, and conclude 
that h = 0 because of the transience of the random walk). Moreover, v has 
support in xfn \ xfn-'. Hence, we get 

u(z) = Ov(z) = fn\Xn _0(y z)v(y) dy. 

This inequality, the fact that u(x) = 1, and the two sided estimate on the 
kernel 0 given by Theorem 5.1 yield 

f v - nD-2. 
xfn \xnn-1 

From the same estimate on 0, we also get when p(x) = N > n, 

4'(x, n) = u(e) ND+2 v (n/N)D2. 
xfn \Xfn-1 

This ends the proof of Lemma 9.3. Note that the proof of each of the bounds 
stated in Lemma 9.3 depends on a two-sided estimate of the Green kernel. El 

Consider now the probabilities 

Ff(x, n, N) = ?x({r, < n for some v 2 N}) 
and 

S1(x, n, N, M) = 9x({rr < n for some N < v < M) 

LEMMA 9.4. There exists a constant C > 0 such that, for all integers 
n, N, M and any x, y E G, we have 

f(e, n, N) 2 C-1(n/V-)D-2 exp( Cn2/N) 
-D-2 

,F(x,n,N) < C(n/VK) 

,F(x, n, N, M) - f(y, n, N, M) I < C(p(x,y)/x/K)(n/xK) 

Hence, there exist a constant C' > 0 and an integer Mo such that, for all 
integers n, M, M satisfying n < K and M ? MO0, we have 

en, N M) 2C'-'(nlVN-) D-2 

and 

flx, n, N, M) - F(y, n, N, M) I < C'(p(x,y)/v)SF(e, n, 2N, M). 

PROOF. The conditional probability that rv < n for some v > N. knowing 
that XN = z, is given by the function u e, n(Z) introduced in the proof of Lemma 
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9.3, and is comparable to min{1, (n/p(z))DI2}. Moreover, we have 

7(x, n, N) = Ue, n(Z)p(N)(Z-lX) dz. 

Hence, the first part of Lemma 9.4 follows from the Gaussian estimates (13) 
and (15) of Theorem 5.1 by arguments similar to those of the proof of Lemma 
5.2. The H6lder continuity of F(x, n, N, M) follows from the Gaussian esti- 
mate (15) and the fact that 

,7(x, n, N, M) - F(z, n, N - N', M - N')p(N')(z-lx) dz 

for all N' < N (here we take N' N/2). The rest of Lemma 9.4 follows 
clearly from what we just proved since F(x, n, N, M) F(x, n, N) - 
F(x, n, M). El 

PROOF OF THEOREM 9.2. First, consider the case when the series Eqk(2n)D-2 
converges. Set An = {r, < qf'(v) v for some 2n < v < 2n+1}. Since qf is decreas- 
ing, we have P(An) < F(e, q/2(2n)2(n+l)/2, 2n) < Cif(2n)D-2. Hence, by the 
Borel-Cantelli lemma, a({rQn < q(n)Vn for infinitely many n}) = 0. 

Suppose now that the series Eqk(2n)D-2 diverges. Then, we can find a 
sequence of integers mi such that 

00 

(24) qf(2mi)D-2 = + lim (mi+l- mi) = +00. 
i==1 ti-00 

Set An = {r, < qf(v)Cv for some 2mn < v < M02m }, where MO is the integer 
given by Lemma 9.4. Using Lemma 9.4 and (24), we find that Eiq(Ai) = +oo. 
Hence, by a well-known extension of the Borel-Cantelli lemma (see [4], 
Theorem 6.4), the proof of Theorem 9.2 reduces to the claim that 

lim-=1 
k,n--oo Y(Ak n An) 

To prove the claim, consider two integers k, n large enough and such that 
k < n. Set j = M02mk, and 

1 = inf{v: 2mk < v and r, < qfi(v) V. 

Also, define two measures A, AO by setting, for any measurable set E e G, 
AO(E) = 9Y-(xj e EIAk), A(E) = p(xj e E). By the Markov property, we have 

p(x) dAo(x) = (9'(Ak)) Ef }P(i-)(Xix)p(x) dxdY 
_ {l=i} G 

? sup ( UpTi)z x)p(x) dx, i <j, p(z) ? Cj1/2} < C'j112. 



GAUSSIAN ESTIMATES FOR MARKOV CHAINS 701 

We also have fp(x) dA(x) < C'j'/2. The Markov property and the above yield 

I9(AlAk) - F(e, n, 2mn-j, M02mn _j)I 

< ||F(x, n X 2In -j, M02 In _ j) 

-fl(e, n, 2mn-j, Mo2mn-j) dAo(x) 

< C2 -Mn/2f(e, n, 2 n-j, M02mn -j)fp(x) dAo(x) 

< C2-(mn-mk)/2F(e, n, 2mn -j, Mo02n -j) 

and similarly, 

7'(An)- Y(e,n,2mn-j, M02mn _j) 

< C2-(mn-mk)/2F(e, n, 2mn -j, M02mn -j). 

This implies that 

,J(AnjAk) 

kn-roo S9(e, n, 2mn -M02mk M0(2mn - 2mk)) 

and 

lim 
,O(An) 

k,n-o F(e, n, 2mn -M02mk, MO(2mn - 2mk)) 1. 

Hence, 
't-P( A Pk ) ( An) * ( An ) 

lim -Y(k)Y(Al = lim -Y A- =1 
k,n- oo JO(Ak n An) k, n -oo 9An lAk) 

This proves our claim, and ends the proof of Theorem 9.2. C1 

REMARK 1. We want to emphasize the fact that the above proof of Theorem 
9.2 depends crucially on the two-sided Gaussian estimate obtained in Theo- 
rem 5.1. 

REMARK 2. It is worth noting that Theorems 9.1 and 9.2 also hold in the 
following related context. Let G be a connected Lie group having polynomial 
growth. Fix a set L = {L1,. .., Ls} of left invariant vector fields on G, and 
assume that L1, .., Ls together with their Lie brackets of all order generate 
the Lie algebra of G (H6rmander condition). Set A = -E1Ls. Consider the 
heat semigroup e"tA, its convolution kernel ht, and the corresponding Markov 
Process (Brownian motion) with (continuous) trajectories Xt. There is a 
natural left invaraint distance function p associated with L (see [29], for 
instance). Set Rt = p(Xt). Then, the statements analogous to Theorems 9.1 
and 9.2 hold true in this setting. The proofs also are analogous. They rest on 
Gaussian estimates satisfied by the kernel ht. The relevant Gaussian upper 
bound is proved in [29]. The corresponding gradient estimate and lower bound 
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are proved in [22]. In this continuous time setting the Gaussian upper bound is 
more precise and, in the statement corresponding to Theorem 9.1, we obtain 

Rt 
lim sup ( t log log(t))) ?2. 

Moreover, when G is a nilpotent Lie group, the lower Gaussian estimate 
obtained by Varopoulos in [30] can be used to show that 

R \ 
lim sup ( t log log(t))12 ) 2. 

10. Markov chains on homogeneous spaces. The aim of this last 
section is to generalize some of the preceding results in the context of Markov 
chains on homogeneous spaces of groups having polynomial volume growth. A 
nice account of what is known on this subject is given in [24]. A simple example 
is presented in [16] where a description of all recurrent homogeneous spaces is 
given in the context of nilpotent finitely generated groups. The work [11] 
contains a similar description in the case of some Lie groups having polyno- 
mial volume growth. Hence, the question of recurrence or transience is well 
understood in a number of important cases where it has been shown that the 
answer can be read in the volume growth of the homogeneous space; see [24, 
16, 11]. Note however, that the proofs of these results given in [24, 16, 11] are 
quite intricate. Moreover, none of the above works contains an estimate of the 
iterated kernels of the Markov chain on the homogeneous space in terms of the 
volume growth. Using the full strength of our two-sided Gaussian estimate for 
convolution powers on groups, we are able to establish similar estimates for 
the iterated kernel of the induced Markov chains on homogeneous spaces. 
These estimates easily imply the known results on recurrence. They also prove 
a conjecture made in [24], page 571. Namely, it follows from the estimates 
obtained below that if G is a connected Lie group having polynomial growth 
(i.e., of rigid type), and H is a closed subgroup of G, then the homogeneous 
space H \ G is recurrent if and only if it has polynomial volume growth of 
degree less or equal to 2; see [24, 11]. 

We now introduce some notation and our basic hypotheses. Given a group G 
and a subgroup H of G, denote by M = H \ G = {g = Hg, g E G} the set of 
the right cosets of H in G. In what follows, we assume that G is, locally 
compact, compactly generated, and has polynomial volume growth (hence, G is 
unimodular). Also, we assume that H is a closed subgroup of G. Note that H 
is unimodular. Indeed, H is a sum of its open compactly generated subgroups, 
each of which is of polynomial growth, hence unimodular. This easily implies 
that H is unimodular. Consequently (see [19] for instance), M = H \ G 
admits an invariant measure. Under these hypotheses, the Haar measures on 
G and H and the invariant measure on M = H \ G can be chosen so that 

(25) f(g) dg (hg) dh ) 

for any continuous function f with compact support: see [19]. 
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Now, let p be a bounded probability density on G with associated Markov 
operator Pf(x) = fp(y -x) f(y) dy = fp(y) f(x -'y) dy. Using (25), we see that 
p induces a Markov operator and a Markov kernel k on M defined by 

Kf(x) = k(iy) f(y) dy =fp(y x) f(Y) dy, 

where 

k(xy) =p(x 'Hy) = fp(x 'hy)dh. 
H 

In another language, the projection of the random walk on G associated with 
p is the Markov chain on M associated with k. If p is symmetric, then k is 
symmetric- as well. In what follows, we assume that p is a bounded symmetric 
probability density on G which satisfies the hypotheses (12) and (6) introduced 
in Section 5. Namely, we assume that there is ro > 0 such that p is supported 
in B(e, ro), and that there exists a generating open neighborhood U of e such 
that infu{P} > 0. 

Recall that G is compactly generated and let p be the distance function on 
G introduced in Section 3 and associated with a fixed open symmetric rela- 
tively compact neighbourhood fl of e E G which generates G. The induced 
distance on M is also denoted by p and is given by 

p (G,y) = inf(p(x 1hy), h e H). 
For f E M, define the distance ball B((, r) c M by 

B({,r) - {( E M, p(f, ) < r}, 
and set V,(r) = IB({, r)j. It follows from Lemma I.1 in [14] that the volume 
function satisfies the doubling property 

V,(2r) < CV,(r) 
for all f E M and r > 1. Given a bounded function f on M, define the 
gradient Vf by 

Vf(0) = sup{If( ) - f( )I, p(:, ) < 1). 
When taking the gradient of a function of two variables , ;, we use the 
notation Vf and V;. 

In general, it is difficult to transfer information from p to k. However there 
are certain properties that pass easily to the quotient. Here is a powerful 
example. 

THEOREM 10.1. Let G, H, M and p, k be as above. There exists an integer a 
and a constant C > 0 such that, for any f E M, any integer j and for any 
sequence of nonnegative functions u i, k = 1, 2.... on M satisfying u i+1 = Ku i 
we have 

sup {uj} < C inf {Uaj} 
B(Q, VJ) B(Q, VJ) 
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and 

sup {VUJ} < Cj-1'2 inf {Uaj}. 
B (6, 4)B(Q, 

PROOF. Given ui as in the theorem, set ui (x) = u (i). Then, uii is a 
sequence of nonnegative functions on G and, using (25), we check that 
ui+1 = Pi . Hence, the above theorem follows from Theorem 6.3 and the 
(easy) fact that the canonical projection of the ball B(x, r) c G is equal to the 
ball B 0E, r) c M. As a corollary to Theorem 10.1, we obtain: 

THEOREM 10.2. There exist an integer a and two positive constants C, C' 
such that for any i,; E= M and any integer n the iterated kernel kn satisfies: 

(i) SUpE(6;f ){kf k n C X)} < C infE( , n){ k a n(X)} 
where E({, ', n) = B({, Fn ) x B(V, V). 

(ii) k n( ) < C min{(V,(n)-, V;(v4)-'}. 

(iii) maxfk n(4; 4;) k n() 0)} < Ckan(X; ;)exp(Cp(f, &)/n ), 
for p(f, ;) < n/C'. 

(iv) V~kn(X; ) 0< Cn -1/2 kan({, 0;) 

PROOF. The assertions (i) and (iv) follow easily from Theorem 10.1 applied 
to u i() = ki (, ;), together with the symmetry of ki. The assertion (ii) follows 
from (i) and the fact that fMki(f, A) d; = 1. Assertion (iii) also follows from (i) 
and a well-known chaining argument. Note that (ii) implies in particular that 

k( ) ? CV _(V)1, 
1 

; e M, n = 1,2,... 

In order to obtain a converse inequality, we first claim that there exists a 
constant A > 0 such that 

(26) kn(f A) d < 1/2 

for all E E M and all integers n. Indeed, setting f = x, ; = j, we have 
k n(A)-I p(n)(x - hy) dh and 

J)in )d M JHP(XY)>S p(n)(X 1hy) dhdy 

|MI {PX - lhy) >An/Gjp (n ) (X 1hy ) A dy 

_-A p(n)(xx y) dy. 
H(XtY)> ilars 

Hence, the claim follows from the similar statement on G which has been 
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proved in Section 5. From (26), it follows that 

|~~ kn((7 ;) d; 2 1/2, J(, o < X 

which together with Theorem 10.2 and the doubling property of the volume, 
implies 

(27) (CV,(vr)) _'< kj((7, 

for some constant C > 0. n 

We now state the main result of this section, which generalizes Theo- 
rem 5.1. 

THEOREM 10.3. Let G, H, M and p, k be as above. Then, there exist three 
positive constants C, C', C" such that, for any 6, E4 M and any integer n, we 
have 

(28) kn(, 0) < CV,( )1 expp(6, ;)2/C'n), 

(29) V?kn(,; 0 - (F)exp(- (6 ) IC'n 

(30) k (64; ) ? C - V(Fn exp( - Up ()2/n) if p(6,4) < n/C". 

In the above estimates, V,(V) can be replaced by V;(F) or by 
(V(V(n )V;(V4n))1/2. 

PROOF. First, we note that (30) follows from Theorem 10.2 and (27). Also, 
(29) follows from (28) and Theorem 10.2. Hence, we are left with the task of 
proving (28). Note that the method of Section 2 does not apply directly here. 
This is because the behavior of the function n -* V,(n) is not uniform in 
f E M. However, there are at least two ways of proving (28). We choose to 
present in some detail an approach which combines a technique introduced by 
Carne in [6] with assertion (i) of Theorem 10.2 (i.e., a Harnack inequality). 
Carne's idea is to obtain a "Hadamard's transmutation formula" for Markov 
chains. Namely, let Xn be the symmetric random walk on Z which starts from 
XO = 0 [i.e., q(Xxn~ - Xn = + 1) - 1/2]. Also, let 

-9 ( ) = (Z + (Z2 - 1)1/2)n + (Z - (Z2- 1)1/2) ) 

be the Chebyshev polynomials with n = 0,1,.... Then, we have Kn = 
E'%,11(jXnj = i)Q_(K); see [6], Theorem 2, page 400. Fix (, e M, two inte- 
gers n, v, and set r = p({, ;). Also, set B = B({, v), B' = B(;, v). Remark that 
the function KlB1 is supported in B(;, irO + v), which implies that Q9j(K)lB, 
is also supported in B(;, iro + v). Hence, with this notation and for 2v < r, we 



706 W. HEBISCH AND L. SALOFF-COSTE 

can write 
00 

<KK lB, iB> = E (IX I = i)KQ2(K)1Bf, 1B> 
i=O 

< (V'(v)V'(v))12 E (IX I = i)0 
i 2 (r-2v)/rO 

By a classical estimate (see [6]), we have "(X_ ? s) = = i) ? 
es2/2n. Hence, we obtain 

(31) KKnlB,, iB) ? 2(V(v)V;(v))1/2 exp(-(r - 2v)2/2r2n). 

Assume now that r ? 4VT [otherwise (28) follows directly from Theorem 
10.2]. Choose v = Fn and apply the above with n replaced by an where a is as 
in Theorem 10.2. Using assertion (i) of Theorem 10.2 to estimate the left-hand 
side of (31) from below, we obtain 

kJ61 ) < CV )V() ex(-r /Cn), 

where C' = 2roa. This ends the proof of Theorem 10.3. D 

An alternative proof of (28) can be outlined as follows: Use Lemma 2.4 to 
estimate (KKnl, 1), where Ksn is as in Section 2 and B, B' as above. Then, 
use assertion (i) of Theorem 10.2 to obtain a pointwise estimate, and choose s 
as at the end of Section 2. 

Recall that the (modified) Green kernel 0 is defined by 0(6, ;) = 

THEOREM 10.4. Let G, H, M and p, k be as above. There exists a positive 
constant C such that Green kernel 0 satisfies 

C-1 ) < 0(E ) < C E V(J) 
i 2P((, ;)2 i p(q, ;)2 

V6(3(e) < C E i-1/2V6(V)1. 
i>p(q, ;)2 

Moreover, V(VT) can be replaced by V7(VT) or by (( V;(7))1/2. 

PROOF. The lower bound follows immediately from the lower bound in 
Theorem 10.3. The upper estimate of 0 follows from (28) and the claim that 

E ki((,) < C E V()1 
1<i<r2 i~r2 
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when r = p(e, ;). To prove this claim, note that a repeated use of the doubling 
property of the volume yields 

V(J1/2)-l ? CV6((r2 +J)1/2) exp( r+J 

(in fact exp( (r2 +j) /j) can even be replaced by a power of V(r2 +j) /j). 
Hence, by Theorem 10.3, we have 

E ki((,) <?C sup 2 (exp(- - cf. V 

<C E V(T) 
i~r2 

The bound on the gradient is obtained similarly. This ends the proof of 
Theorem 10.4. M 

REMARK 1. Assume that k is a left H-invariant kernel on G, that is 
k(hx, hy) = k(x, y) for all h E H, and that k satisfies assumptions of Theorem 
5.3. Then, consider the kernel k(Hx, Hy) = JHk(x, hy) dh. By Theorem 5.3 
and Theorem 5.1, we can find a convolution kernel p on G satisfying the 
hypotheses of Theorem 5.1 and such that k,(x, hy) < Cpan(x-lhy) on G for 
some constants a, C. Integrating this inequality over H, we deduce from 
Theorem 10.3 a Gaussian upper bound for the kernel k on M. 

REMARK 2. The study of harmonic functions on M follows easily from the 
results on G. The same is true for the study of Riesz transforms. Theorem 
10.3 and the technique of Section 7 yield some Sobolev and isoperimetric 
inequalities if we assume that V(n) 2 cnD for some positive constants c and 
D. Also, Theorem 10.3 can be used to prove the statement analogous to the 
upper bound in Theorem 9.1 (law of the iterated logarithm). However, it is not 
clear what the statement analogous to Theorem 9.2 should be in the present 
setting. 

REMARK 3. There are various interesting questions concerning Markov 
chains on homogeneous spaces which are still open. For instance, let F be a 
finitely generated solvable group (even polycyclic) which is not almost nilpo- 
tent. What can be said about the Markov chains on the homogeneous spaces of 
F? The above is no help since F has exponential volume growth. Even the 
basic question of the recurrence or transience of such a homogeneous space 
has yet to be understood. 

REMARK 4. Some of the techniques used above are similar to the one used 
by Maheux in [17] where he studies subelliptic heat kernels on nilmanifolds. 
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