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ANALYSIS ON COMPACT LIE GROUPS OF LARGE
DIMENSION AND ON CONNECTED COMPACT GROUPS

BY

L. SALOFF-COSTE (Ithaca, NY)

Abstract. The study of Gaussian convolution semigroups is a subject at the cross-
road between abstract and concrete problems in harmonic analysis. This article suggests
selected open problems that are in large part motivated by joint work with Alexander
Bendikov.

This paper is dedicated to the memory of Andrzej Hulanicki. My first
scientific encounter with Andrzej was through his students, which is fit-
ting given the importance they had to him throughout his career. Dur-
ing my Ph.D., I came across the work of Pawe l G lowacki (he told me
later that he was the referee of my first research paper, published by Stu-
dia Mathematica and based on my Ph.D. thesis). Later, I met Waldemar
Hebisch, in Boston, in the late nineteen eighties. In 1991, Andrzej invited
me (together with my wife, Cathy) to Wroc law for a month. We met for
the first time at the Wroc law train station where he picked us up, car-
rying a mathematical book so that we could recognize him. This turned
out to be a beginning of a very enjoyable personal and scientific relation
with Andrzej, his many students and collaborators, and with the Mathe-
matical Institute in Wroc law. As many others, I benefited from attending
the conferences and schools organized by Andrzej’s group in Tuczno and,
later, in Zakopane. My first Ph.D. student, Andrzej Żuk, wrote a Master
thesis under Andrzej’s supervision in Wroc law before following Andrzej’s
suggestion to work with me in Toulouse (in fact, Żuk prepared his the-
sis under the joint supervision of Andrzej and myself, spending half his
time in Toulouse and the other half in Wroc law, as required by his doc-
toral fellowship). Throughout his career, Andrzej, in addition to pursu-
ing his own research in mathematics, put a tremendous energy into or-
ganizing and supporting mathematics in Poland and in Wroc law. He main-
tained many long term scientific international relations, including during
periods when it was not necessarily an easy thing to do. He, relentlessly,
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brought visitors to Wroc law and offered high quality scientific opportuni-
ties to the Mathematical Institute students, many of whom went abroad
for their Ph.D. or to take postdoctoral positions. For many mathemati-
cians, including myself, Andrzej’s activities created fruitful scientific op-
portunities through collaborations and other contacts. I feel very fortu-
nate to have shared some good moments and some interests with Andrzej
Hulanicki.

1. Introduction. At the beginning of the second half of the twen-
tieth century, it was realized that many classical objects and problems
in the related areas of harmonic analysis, stochastic processes with inde-
pendent stationary increments (Lévy processes) and potential theory could
be considered in very general settings. These somewhat abstract de-
velopments attracted interest for a while but that interest waned in
favor of a return to more concrete problems. It is worth pointing out that the
structure underlying the areas of harmonic analysis and Lévy processes—
the group structure—is, by itself, a wonderful source of conflicts between
abstraction and concrete examples. The definition of a group is cer-
tainly one of the highlights of abstract mathematics (my impression
is that groups and abstraction play quite an important role in Polish
mathematics). On the one hand, it covers examples of central importance,
including some relevant to undergraduate mathematics. On the other
hand, groups with rather unexpected properties (e.g., groups of interme-
diate growth) are still being discovered, indicating how incomplete our un-
derstanding of this basic structure is. I find it interesting that the theory
of algebraic groups (over local fields), of great importance to several areas
of mathematics, is not readily accessible to (and is mostly ignored by) the
vast majority of mathematicians. It is central to some and very exotic to
many.

This article focuses on a particular set of problems where the dialectic
between abstraction and concrete classical examples is rich and interest-
ing. The starting point is Brownian motion and the associated convolution
semigroup of probability measures having density (4πt)−1/2e−|x|

2/4t with re-
spect to Lebesgue measure on the real line. This leads us to various levels
of generalization, from Brownian motions on the special orthogonal groups
and other Lie groups to Gaussian measures on Hilbert spaces to Gaussian
convolution semigroups on general groups. We will mostly discuss Gaussian
convolution semigroups on locally compact groups and consider the relations
between natural but rather abstract problems concerning these semigroups
and concrete problems phrased in terms of the heat kernel on compact Lie
groups such as the special orthogonal groups.
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2. Problems concerning Gaussian semigroups

2.1. Gaussian semigroups. Let G be a locally compact group with
identity element e and Haar measure λ. Let Cc(G) be the space of continuous
functions with compact support. Given two measures µ, ν, we can write
(uniquely) µ = Aν(µ)+Sν(µ) whereAν(µ) is the part of µ which is absolutely
continuous with respect to ν and Sν(µ) is the singular part. We write also
AHaar(µ) = Aλ(µ), SHaar(µ) = Sλ(µ).

Convolution operators are fundamental objects in harmonic analysis.
Semigroups of convolution operators bring a rich additional structure. In
this article, we focus on a particular class of convolution semigroups, those
associated with a family (µt){t>0} of probability measures such that:

• ∀t, s > 0, µt ∗ µs = µt+s (semigroup property).
• ∀φ ∈ Cc(G), limt→0 µt(φ) = φ(e) (continuity).
• µt(A) = µt(A−1) (symmetry).
• limt→0 t

−1µt(V ) = 0 for any compact set V with e 6∈ V .

The last property defines Gaussian semigroups (i.e., convolution semigroups
of probability measures whose Lévy measure is trivial, equal to 0). It implies
that the semigroup µt lives on the connected component of the identity.
For simplicity, we refer to a semigroup (µt){t>0} with these properties as a
Gaussian semigroup. Note that, for the purpose of this article, this includes
the symmetry condition.

Let me mention here that K. Urbanik made important contributions to
the definition and the study of Gaussian measures and Gaussian semigroups
on groups. See, e.g., [20].

Any Gaussian semigroup on a compact connected group G induces a
semigroup of self-adjoint operators defined on L2(G) by Htf = f ∗ µt.
We will denote by ∆ its infinitesimal generator. The domain of ∆ con-
tains the set B(G) of Bruhat test functions as a core. These are func-
tions that are lifted to G from smooth functions on a Lie quotient, and
∆ can be computed on such functions as a second order differential opera-
tor. We will also need to consider the set B′(G) of Bruhat distributions (the
dual of B(G) equipped with the strong dual topology). Here and through-
out this article, we avoid entering into technical details. Details and fur-
ther references can be found in [2, 13], in the surveys [4, 11, 9] and in
[3, 5, 6, 10].

Example 2.1. The compact group T∞ = R∞/Z∞ can be viewed as a
countable product of circle groups. Its Haar measure is the product of the
normalized Haar measures on the factors. Its dual group is Z(∞), the space
of doubly infinite sequences of integers with finitely many non-zero entries.



186 L. SALOFF-COSTE

A measure µ is (symmetric) Gaussian if its Fourier transform

µ̂(θ) =
�

T∞
e−2iπ〈θ,x〉 dx, θ ∈ Z(∞),

is of the form µ̂(θ) = e−〈Aθ,θ〉 where A = (ai,j) is symmetric and satisfies

〈Aθ, θ〉 =
∑
i,j

ai,jθjθi ≥ 0, θ = (θi) ∈ Z(∞).

Any Gaussian convolution semigroup (µt){t>0} has Fourier transform

µ̂t(θ) = e−t〈Aθ,θ〉, θ ∈ Z(∞),

for some A as above. On the space D∞(T∞) of smooth functions depending
only on finitely many coordinates, the associated infinitesimal generator is
given by ∆f =

∑
i,j ai,j∂i∂jf.

2.2. Warm-up. As a warm-up for the discussion of a series of difficult
open problems, we consider the following problem which is implicit in [10].
For any signed Radon measure ν on G, set ‖ν‖TV = ν+(G) + ν−(G) where
ν = ν+−ν− is the Hahn decomposition of ν. In particular, ‖ν‖TV =

	
|f | dλ =

λ(|f |) if dν = f dλ, f ∈ L1(G).

Problem 1. Let G be a compact group and (µt){t>0} be a Gaussian
semigroup on G. Assume that, for all f ∈ C(G), limt→∞ µt(f) = λ(f). Find
a necessary and sufficient condition for limt→∞ ‖µt − λ‖TV = 0.

This came up in [10] in the study of the “global hypoellipticity” of the
infinitesimal generator ∆ of (µt){t>0}. Any such infinitesimal generator has
an extension to the space B′(G) of Bruhat distributions and one can ask
when any Bruhat distribution U solving ∆U = F with F ∈ C(G) must, itself,
be in C(G). It is easy to see that this is equivalent to limt→∞ ‖µt−λ‖TV = 0
because, formally, U =

	∞
0 F ∗ (µt − λ) dt and

‖µt − λ‖TV = sup{‖φ ∗ (µt − λ)‖∞ : φ ∈ C(G), ‖φ‖∞ ≤ 1}.
This shows that t 7→ ‖µt − λ‖TV is submultiplicative and thus converges
exponentially fast if it converges to 0. See, e.g., [10, Section 5]. The follow-
ing result solves Problem 1. It follows immediately from [1, Theorem 4.1]
which is a general result about general convolution powers, not Gaussian
semigroups.

Theorem 2.1. Let G be a compact group and (µt){t>0} be a Gaussian
semigroup on G. Assume that, for all f ∈ C(G), limt→∞ µt(f) = λ(f). The
following properties are equivalent:

• There exists t > 0 such that AHaar(µt) 6= 0.
• limt→∞ ‖µt − λ‖TV = 0.
• Any U ∈ B′(G) such that ∆U = F with F ∈ C(G) can be represented

by a continuous function.
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2.3. Some open problems. Gaussian measures can be defined without
reference to Gaussian semigroups but we will not insist on that here. A
Gaussian measure is a probability measure µ such µ = µ1 for some Gaussian
semigroup (µt){t>0}. A fundamental open problem is the following.

Problem 2. Prove that any two Gaussian measures µ, ν must be either
absolutely continuous or singular with respect to each other, or provide an
example where Aν(µ) 6≡ 0 and Sν(µ) 6≡ 0.

This type of problem already appears in [19]. A well-known theorem
(the Hájek–Feldman dichotomy) asserts that two Gaussian measures on a
Hilbert space are either absolutely continuous or singular with respect to
each other (this is the solution of the linear version of the problem) but the
(infinite-dimensional) group version is open even for abelian compact groups
(e.g., T∞). In what follows, we will focus on related problems concerning
Gaussian semigroups. Let (µt){t>0} be such a semigroup on a locally compact
unimodular group G.

Problem 3. Prove that, for any s, t ∈ (0,∞), µt and µs are either
absolutely continuous or singular with respect to each other, or provide an
example where Aµs(µt) 6≡ 0 and Sµs(µt) 6≡ 0 for some s, t ∈ (0,∞).

Problem 4. Prove that, for any t ∈ (0,∞), µt is either absolutely con-
tinuous or singular with respect to Haar measure, or provide an example
where AHaar(µt) 6≡ 0 and SHaar(µt) 6≡ 0, for some t ∈ (0,∞).

Problem 4 can be formulated in different terms. Observe that if µt =
AHaar(µt) for some t then this property is satisfied for all later times. Set

tA = inf{t > 0 : µt = AHarr(µt)}.

Problem 5 (equivalent to Problem 4). Prove that, for any t ∈ (0, tA),
µt = SHaar(µt) and either AHaar(µtA) or SHaar(µtA) vanishes, or provide an
example where AHaar(µt) 6≡ 0 and SHaar(µt) 6≡ µt), for some t ∈ (0, tA].

The following problem introduces a new twist which concerns what hap-
pens for t > tA. For such t, let ft ∈ L1(G) be the density of the measure µt
with respect to Haar measure on G.

Problem 6. Prove or disprove that, for any t ∈ (tA,∞), ft ∈ L2(G).

The optimistic conjecture is that ft ∈ Lp(G) for all p ∈ [1,∞) when
t > tA. Note that it is not hard to check that ft ∈ L2(G) is equivalent to
f2t ∈ C(G), which makes this problem quite attractive. This leads to our
next open problem.

Problem 7. Prove or disprove that if µt = AHaar(µt) for all t > 0 then
ft ∈ C(G) for all t > 0.
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2.4. Discussion of Problems 4–7. An early reference and, indeed, one
of the sources of the problems mentioned above is [19]. The first important
result directly related to Problems 4–7 above is the fact that

AHaar(µ) = 0

for any Gaussian measure µ on a locally compact connected group G unless
G is locally connected and admits a countable basis for its topology (for
this result due to Heyer and Siebert, see [7, 13] and the references therein).
The next remarkable fact is that on any locally compact connected locally
connected metrizable group G there exists a Gaussian semigroup such that
µt = AHaar(µt) and ft ∈ L∞(G)∩ C(G) for all t > 0. See, again, [7, 13]. Hence
we will focus on locally compact connected locally connected metrizable
groups. For simplicity, we assume that G is compact since this case already
contains the main difficulties.

The problems listed above appear to be rather difficult. In a number of
special cases (some of which will be discussed below), it is possible to get a
grasp on the relevant properties of Gaussian semigroups. These cases are in
support of positive answers to Problems 4–7. But, at the same time, we have
no clues how to attack these problems for general Gaussian semigroups. A
deep and well-known fact concerning compact connected metrizable groups
is that any such group is the projective limit of a sequence of compact Lie
groups. See, e.g., [14]. Using this structure, it is easy to classify Gaussian
semigroups into the following categories: (a) degenerate, (b) subelliptic, (c)
elliptic. Namely, a Gaussian semigroup (µt){t>0} is degenerate if there is a
Lie quotient of G on which the pushforward of µt does not have a positive
smooth density with respect to Haar measure. In this case, µt = SHaar(µt)
for all t > 0. The Gaussian semigroup (µt){t>0} is subelliptic if the push-
forward of µt on each Lie quotient of G has a positive smooth density. In
terms of the infinitesimal generator ∆, the dichotomy between (a) and (b)
can be expressed as follows: In case (a), there is a Lie quotient on which the
projection of ∆ is not subelliptic (i.e., does not satisfy the Hörmander condi-
tion when written as a sum of squares of left-invariant vector fields). In case
(b), the projection of ∆ on each Lie quotient is subelliptic (i.e., does satisfy
the Hörmander condition when written as a sum of squares of left-invariant
vector fields). Finally, the Gaussian semigroup (µt){t>0} is elliptic if the pro-
jection of the infinitesimal generator is elliptic on each Lie quotient. Since
case (a) is trivial, one is led to the study of subelliptic Gaussian semigroups
on Lie groups of dimension growing to infinity. Even in the elliptic case, very
little is known about this problem in terms of trying to keep track of the
influence of dimension.

Example 2.2 (Products). Assume that G =
∏∞
i=1 Gi where each Gi is

a compact connected Lie group and that µt =
⊗∞

i=1 µ
i
t where, for each i,
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(µit){t>0} is a subelliptic Gaussian semigroup on Gi. In this (very special)
case, Problems 3–5 are solved by a theorem of Kakutani concerning infinite
products of measures. Kakutani’s theorem asserts in particular that µt can
only be either singular or absolutely continuous with respect to the Haar
measure on G. It also gives a criterion for this dichotomy which can be
applied in specific cases to compute the time tA. See [2, 3, 9, 11] and the
references therein. Note, however, that Problems 6–7 are open in the gen-
erality of this special case. A positive solution to 6–7 is known when each
Gi is a circle group. See [2, 5, 9, 11]. It is an interesting question to solve
Problem 6–7 when each Gi is abelian.

Problem 8 (Special case of Problems 6–7). Assume that G =
∏∞
i=1 Gi

where each Gi is a finite-dimensional torus (whose dimension might depend
on i) and that µt =

⊗∞
i=1 µ

i
t where, for each i, (µit){t>0} is an elliptic Gaus-

sian semigroup on Gi.

• Prove or disprove that ft ∈ C(G) whenever t > 2tA.
• Prove or disprove that “µt = AHaar(µt) for all t > 0” implies “ft ∈ C(G)

for all t > 0”.

Example 2.3 (Central semigroups on semisimple groups). A compact
connected group is called semisimple if G = [G,G]. A Gaussian semigroup
(µt){t>0} is central if µt(gAg−1) = µt(A) for all t > 0, g ∈ G and Borel
subsets A of G. Structure theory asserts that connected compact metrizable
semisimple groups are of the form G = [

∏
i∈I Σi]/H where the index set

I is finite or countable, the Σi’s are simple connected compact Lie groups
and H is a closed central subgroup of

∏
i∈I Σi (hence, H is a subgroup of

a product of finite groups). On
∏
i∈I Σi, any central Gaussian semigroup

must be of product form and on each Σi there is only one (non-degenerate)
central Gaussian semigroup, up to a positive constant time change. These
facts and assorted analytic results concerning central Gaussian semigroups
on simple compact Lie groups yield partial positive answers to Problems 4–6
and solve Problem 7 in this case.

Theorem 2.2 ([8]). For any central Gaussian semigroup on a compact
connected semisimple group the following properties hold.

• Either AHaar(µt) = 0 for all t > 0 or there exists a t > 0 such that
µt = AHaar(µt).
• There exists a time t0 ∈ [0,∞] such that AHaar(µt) = 0 for all t < t0/4,
µt = AHaar(µt) for all t > 2t0 and ft ∈ C(G) for all t > 4t0.
• If µt = AHaar(µt) for all t > 0 then ft ∈ C(G) for all t > 0.

This leaves the following version of Problem 6 open.
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Problem 9 (Special case of Problem 6). Let G be a connected semi-
simple group and (µt){t>0} be a central Gaussian semigroup on G. Prove or
disprove that, for any t ∈ (tA,∞), ft ∈ L2(G).

3. Analysis on compact Lie groups. In this section, we let G be a
compact connected Lie group of dimension n. By the Malcev decomposition
G is isomorphic to [Z × G′]/H where Z is the connected component of the
center (a finite-dimensional torus) of G, G′ = [G,G], and H = Z ∩ G′. We
will not use this here but it shows that, to some extent, one can hope to
obtain results for general compact Lie groups from the study of both the
abelian and the semisimple cases (see, e.g., [6]).

Given a (non-degenerate) Gaussian semigroup (µt){t>0} on G with den-
sity ft with respect to the Haar measure λ, we consider the following pa-
rameters.

• The spectral gap:

λ1 = inf{〈f,∆f〉/‖f‖22 : f ∈ C(G), f ⊥ 1}.

• The logarithmic Sobolev constant :

α = inf{〈f,∆f〉/L(f) f ∈ C(G)}

where L(f) =
	
|f |2 log(|f |2/‖f‖22) dλ.

• The L1-mixing time:

T = inf{t > 0 : ‖µt − λ‖TV ≤ 1/4}.

• The L2-mixing time:

θ = inf{t > 0 : ‖ft − 1‖2 ≤ 1/4}.

We observe that, always, 1/λ1 ≤ T ≤ θ and α ≤ λ1/2.

3.1. A basic example: square tori. Let Rn be equipped with its
canonical Euclidean structure and let

Tn(r) = Rn/2πrZn

be the product of n circles of length r equipped with the heat semigroup

µt =
n⊗
i=1

µit, t > 0,

with infinitesimal generator ∆ =
∑n

i=1(∂/∂θi)2. Here, each µit is a copy of
the Gauss measure νt(dθ) = φt(θ)dθ/2πr on the circle T(r) = R/2πrZ where

φt(θ) =
2πr√
4πt

∑
k∈Z

e−|θ+2πrk|2/4t.
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Further, we have the spectral formula (use Fourier transform)

φt(0) =
∑
k∈Z

e−tk
2/r2 = 1 + 2e−t/r

2
(

1 +
∞∑
k=2

e−t(k
2−1)/r2

)
.

As
∑∞

k=2 e
−t(k2−1)/r2 ' e−3t/r2(1 + r/

√
t), it follows that

1 + 2e−t/r
2

(
1 + c1

r√
t
e−3t/r2

)
≤ φt(0) ≤ 1 + 2e−t/r

2

(
1 + c2

r√
t
e−3t/r2

)
.

The spectral gap λ1 and log-Sobolev constant α for Tn(r) satisfy

λ1 = 2α =
1
r2

(this is very easy for λ1 but not so easy for α). Further, as n tends to
infinity, T ∼ θ ∼ (r2/2) log n = (1/2λ1) log n (see, e.g., [17]). The heat
kernel ft on Tn(r) (with respect to the normalized Haar measure) satisfies
(here, e = (0, . . . , 0))

ft(e) = φt(0)n =
(

1 + 2
∞∑
k=1

e−tk
2/r2
)n
.

Hence ft(e) is bounded above and below by expressions of the form(
1 + 2e−t/r

2

(
1 + c

r√
t
e−3t/r2

))n
.

When t/r2 ≤ 1, this gives(
1 +

c1r√
t

)n
≤ ft(e) ≤

(
1 +

c1r√
t

)n
.

When t = r2 log n+ s with s > 0, it yields

1 + c′1e
−s/r2 ≤ ft(e) ≤ 1 + c′2e

−s/r2 .

In the range r2 < t < r2 log n, the heat kernel goes from being of size
(1 + ε)n to size 1. These descriptions of the size of the heat kernel on Tn(r)
are uniform in the parameters r and n.

3.2. Another example: special orthogonal groups. As a prototype
of a simple compact Lie group, consider the special orthogonal group SO(n).
On SO(n), as on any other simple compact Lie group, there is (up to a con-
stant multiplicative factor) a unique differential operator of order 2 without
constant term that commutes with both left and right group multiplication.
This operator is the Laplacian associated with the unique bi-invariant Rie-
mannian metric on SO(n) (up to constant factors). This metric is associated
with an Euclidean structure g on the Lie algebra so(n) of SO(n) which can
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be obtained canonically as

g(X,Y ) = −Tr(adX adY )

where adX(Z) = [X,Z] (i.e., the metric g is minus the Killing form).
Abusing notation, we also denote by g the associated bi-invariant metric
on SO(n). We denote by ∆ the Laplacian on SO(n) associated with g. Note
that this fixes in a canonical way the multiplicative factors alluded to above.
Note also that the dimension of SO(n) is N = n(n − 1)/2. One faces the
following questions:

• What are the parameters λ1, α, T, θ for (SO(n), g)?
• Can we describe the size of the heat kernel at the identity, ft(e), uni-

formly in n?

We now describe what is known about these questions. First, the exact value
of the spectral gap is known, namely, λ1(SO(n)) = (n − 1)/2(n − 2) (this
follows from the extremely well developed representation theory of simple
compact Lie groups). Representation theory yields the formula

ft(e) =
∑
ρ

dim(ρ)2e−tλρ

where the sum is over all (equivalence classes of) irreducible representations,
together with formulas for dim(ρ) and λρ. However, these formulas are com-
plicated enough that extracting information concerning the size of the heat
kernel ft(e), uniformly in the dimension parameter n, is a difficult task.

Conjecture 1. There are constants ci ∈ (0,∞), i = 1, . . . , 4 such that,
for all n, the heat kernel on SO(n) satisfies(

1 + c1e
−λ1t

(
1 +

e−c2t√
t

))N
≤ ft(e) ≤

(
1 + c3e

−λ1t

(
1 +

e−c4t√
t

))N
.

Here λ1 = (n − 1)/2(n − 2) is the spectral gap and N = n(n − 1)/2 is the
dimension.

In fact, we propose this as a conjecture for SU(n), Sp(n) as well as SO(n)
and the associated Spin groups. In each case, λ1 is the (known) spectral gap
and N the dimension of the group. In all these cases, λ1 ∼ 1/2 as N →∞.
Another way to state this conjecture is to say that for this family of groups,
ft(e) behaves in roughly the same way as the similar quantity on TN (1/

√
λ1),

the square torus of the same dimension with the same spectral gap!
At any fixed dimension, the conjecture matches the well-known behavior

of ft(e), namely

ft(e)− 1 ' e−λ1t as t→∞, ft(e) ' t−N/2 as t→ 0.
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In particular, and more precisely, the conjecture states that (uniformly
in N) for t = λ−1

1 logN + s, s > 0,

1 + c1e
−λ1s ≤ ft(e) ≤ 1 + c3e

−λ1s

whereas for t ∈ (0, λ−1
1 ),(
1 +

c′1√
t

)N
≤ ft(e) ≤

(
1 +

c′3√
t

)N
.

A further (and somewhat more subtle) implication of the conjecture is that
for any fixed t0 ∈ (0,∞) there are constants ε1 = ε1(t0), ε2 = ε2(t0) ∈ (0,∞)
such that

(1 + ε1)N ≤ ft0(e) ≤ (1 + ε2)N .

The most subtle part of the conjecture is the description of ft(e) in the time
interval (ε, ε−1 logN), for any given ε ∈ (0, 1), uniformly over N .

Remark 3.1. The paper [12] proposes (and claims to prove) a remark-
able universal formula for the heat kernel value ft(e) on any compact semi-
simple simply connected Lie group. This formula is close in spirit (and much
more precise) than the conjecture made above. Unfortunately, the formula
of [12] is clearly wrong and it appears that the computations behind it can-
not be salvaged as far as estimates of ft(e) are concerned. Although some
specialists know that the results in [12] are erroneous, there appears to be
no record of this error in the literature.

Remark 3.2. The conjectural two-sided inequality in Conjecture 1 im-
plies that θ ∼ (1/2λ1) logN . As noted above, T ≤ θ and λ1 ∼ 1/2 as
N → ∞. Further, it is proved in [17, 18] that T is asymptotically bounded
below by logN as N → ∞. Hence, if valid, Conjecture 1 implies that
T ∼ θ ∼ logN as N → ∞. This remark applies to the groups covered
by the conjecture, that is, SO(n) and also SU(n), Sp(n).

Remark 3.3. Conjecture 1 cannot be valid as stated for the adjoint
groups of SO(2l) and SU(n) and Sp(n). Indeed, for those groups, λ1 ∼ 1 as
N →∞ and the conjectural two-sided inequality in question would yield the
conclusion that θ ∼ 1

2 logN for these groups. However, it is easy to see from
the second term in the spectral expansion of ft(e) that θ is asymptotically
bounded below by logN . See [18]. A reasonable conjecture for all compact
simple Lie groups is as follows.

Conjecture 2. In the family of compact simple Lie groups, as the
dimension N tends to infinity, we have T (G) ∼ θ(G) ∼ logN .

The next theorem states what is actually known concerning T and θ.

Theorem 3.4 ([17, 18]). For any ε ∈ (0, 1) there exists N(ε) such that,
for any simple compact Lie group G of dimension N > N(ε) equipped with
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its Killing metric, we have

(1− ε) logN ≤ T (G) ≤ θ(G) ≤ 2(1 + ε) logN.

To link this result with Remark 3.1, Ursula Porod observed years ago
that, if true, the erroneous formula of [12] would yield θ(G) ∼ 3

2 logN in the
simply connected case. It is rather amusing and somewhat intriguing that
the erroneous formula of [12] implies an asymptotic that falls squarely in
between the known upper and lower bounds!

Remark 3.5. Conjecture 2 cannot be extended as stated to the semi-
simple case. Indeed, let G = SU(n) with n ≥ 4. Let K be the associated
adjoint group K = G/Zn. Fix n ≥ 4 and consider the families of semi-
simple groups Gm and Km. Note that the dimension N(m) of Gm and Km

is (n−1)(n+1)m. One can show that θ(Gm) ∼ logm ∼ logN(m) as m→∞
whereas θ(Km) ∼ 1

2 logm ∼ 1
2 logN(m) as m→∞.

Remark 3.6. A weaker form of Conjecture 1 which covers compact semi-
simple groups is as follows.

Conjecture 3. There are constants ci ∈ (0,∞), i = 1, . . . , 6, such
that, on any compact semisimple Lie group of dimension N equipped with
its Killing metric, the heat kernel satisfies(

1 + c1e
−c2t

(
1 +

e−2c3t

√
t

))N
≤ ft(e) ≤

(
1 + c4e

−c5t
(

1 +
e−c6t√
t

))N
.

This is much less precise than Conjecture 1. It does contain the non-
trivial statement that, for any fixed t0, ft0(e) is exponentially large in N .

3.3. Easy results for products. To connect this section to the prob-
lems discussed earlier, consider an arbitrary sequence of compact connected
Lie groups Gi each equipped with a non-degenerate Gaussian semigroup
(µit){t>0}. Let ni, λi1, αi, Ti, θi be the corresponding parameters. Let µt =⊗∞

i=1 µ
i
t be the corresponding product Gaussian semigroup on G =

∏∞
i=1 Gi.

Proposition 3.7 ([3]). Referring to the setup described above, we have:

• AHaar(µt) = 0 for any t < t2 where

t2 = inf
{
t > 0 :

∑
i

e−2tλi1 <∞
}
.

• AHaar(µt) = 0 for any t < t0 = lim supi→∞ Ti.
• µt = AHaar(µt) and ft ∈ L2(G) for all t > t1 where

t1 = inf
{
t > 0 :

∑
i

e−2(t−θi)λi1 <∞
}
.

• ft ∈ C(G) for all t > 2t1.
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Example 3.1. Assume that all Gi = G0 and µit = µ0
ait, t > 0, for a se-

quence ai > 0. If lim infi→∞ ai <∞ then AHaar(µt) = 0 for all t > 0. Further,
if lim infi→∞ ai =∞, one easily checks that 1/λi1 ' 1/ai ' Ti ' θi. Hence,
t1 = t2 and we can conclude that AHaar(µt) = 0 for any t < t2, µt = AHaar(µt)
and ft ∈ L2(G) for all t > t2, and ft ∈ C(G) for all t > 2t2. In addition, we
also have αi ' ai. It follows from the resulting hypercontractivity property
that ft ∈ Lp(G), 1 ≤ p <∞, for every t > t2. See [3].

Problem 10. Assume that each Gi is a compact connected abelian Lie
group (a torus) and that limi→∞ λ

i
1 =∞.

• Prove or disprove that lim supi→∞ Ti = lim supi→∞ θi.
• Prove or disprove that λi1 ' αi.
Example 3.2. Assume that each Gi is of the form Gi = SO(ni) and each

µit is of the form µit = νiait where dνit = f it dλ
i is the Gaussian semigroup

associated with the Killing metric on SO(ni) and λi is normalized Haar
measure. Recall that tA is the smallest time so that SHaar(µt) = 0 for all
t > tA. In the present case, it is known that there are constant c1, c2 such
that c1t∗ ≤ tA ≤ c2t∗ where

t∗ = inf
{
t > 0 :

∑
i

n2
i e
−tai <∞

}
.

See [6, 8, 9, 11].
It is worth emphasizing the relevance of Conjecture 1 for the problem

considered in this section. It is not difficult to see that the product semigroup
µt =

⊗∞
i=1 ν

i
ait on G =

∏∞
i=1 SO(ni) admits a continuous density ft with

respect to the Haar measure λ =
⊗∞

i=1 λ
i if and only if the product ft(e) =∏∞

i=1 f
i
ait(e) converges.

It is obvious that, if true, conjecture 1 shows that this product con-
verges for a given t if and only if (recall that the spectral gap on SO(ni) is
(ni − 1)/2(ni − 2))

∞∑
i=1

n2
i e
−ni−1

ni−2
ait <∞,

and gives a two-sided bound on the size of ft(e). Let

t# = inf
{
t :
∞∑
i=1

n2
i e
−ni−1

ni−2
ait <∞

}
.

If true, Conjecture 1 would also imply that tA = 1
2 t# and would solve

Problems 6 and 7 positively in the special case discussed here.

3.4. Flat tori. Problem 10 in the previous section can be put in a
different way to emphasize the fact that it deals with finite-dimensional
tori.
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Problem 11. Do there exist constants c, C ∈ (0,∞) such that on any
compact connected abelian Lie group G (i.e., finite-dimensional torus) and
for any Gaussian semigroup on G, we have θ ≤ CT? or cλ1 ≤ α?

Remark 3.8. Fix an integer m. Assume that G =
∏k
i=1 Ti and µt =⊗

µit where each Ti is a torus of dimension at most m and (µit){t>0} is a
Gaussian semigroup on Ti. Then it is known that (m+ 1)−1λi1 ≤ αi ≤ λi1/2.
See [15]. Further, there exists C = C(m) such that Ti ≤ θi ≤ C(m)Ti.
Indeed, one can show that θi ' Ti ' 1/λi1 ' diam2

i where the implied
constants depend only on m and diami is the diameter of Ti in the invariant
metric canonically associated with the infinitesimal generator of (µit){t>0}
(whenever the semigroup is degenerate, we set diami =∞). See [16, 17].

It is worth emphasizing that Problem 11 deals with very classical objects.
A torus G equipped with an invariant (i.e., flat) Riemannian metric g can
be viewed in two equivalent ways.

(1) Equip Rn with its canonical Euclidean structure. Then there is a
(co-compact) lattice (i.e., discrete subgroup of maximal rank) Γ ⊂ Rn such
that (G, g) is isometric to Rn/Γ equipped with its canonical metric. Of
course, the choice of Γ is not unique (two lattices related by an orthonormal
transformation give isometric tori). Choosing a basis (u1, . . . , un) for Γ , the
parallelepiped

P (Γ ) =
{
s =

n∑
i=1

siui : si ∈ [0, 1), 1 ≤ i ≤ n
}
⊂ Rn =

{
x =

n∑
i=1

xiei

}
is a fundamental domain for the action of Γ . It follows that the mixing times
T, θ, the spectral gap λ1 and the log-Sobolev constant α for the Riemannian
torus (G, g) are exactly those for the Laplacian ∆ =

∑n
i=1(∂/∂xi)2 in P (Γ )

with periodic boundary condition. We can think of these parameters as func-
tions of the lattice Γ . Obviously, the different but related version of Problem
11 for the Laplacian in P (Γ ) with the Neumann boundary condition is of
great interest as well.

(2) Write G = Rn/Zn as a group (and as a manifold). As the metric g is
invariant, it is determined by its value (i.e., a symmetric positive definite ma-
trix (ai,j)) in the tangent space at the identity element (i.e., 0). In the invari-
ant frame given by writing G = Rn/Zn, the Laplacian is

∑n
i,j=1 ai,j

∂
∂xi

∂
∂xj

.
From this viewpoint, the parameters T, θ, λ1, α are functions of (ai,j) (con-
stants under conjugation by SLn(Z)).

The evidence for a positive solution of Problem 11 is that the desired
inequalities hold true when the Riemannian torus G is “rectangular”. Here,
in the language of (1) above, rectangular means that G = Rn/Γ with
Γ = {γ =

∑n
i=1 γiei} where (ei)ni=1 is the canonical basis of Rn. Tak-

ing the alternative viewpoint (2), rectangular means that (ai,j) is SLn(Z)-
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conjugate to a diagonal matrix. More generally, for any m, there are con-
stants c(m), C(m) such that the inequalities θ ≤ C(m)T , c(m)λ1 ≤ α hold
true whenever the Riemannian torus G is a product of Riemannian tori of
dimension bounded by m.

3.5. Analysis on compact irreducible homogeneous spaces. As
we have seen in Section 3, simple Lie groups form an interesting class of
manifolds each of which carries a canonical Gaussian semigroup (up to a
constant time scaling factor). In fact, the natural definition in that direction
is that of compact isotropy irreducible Riemannian manifold. A compact
Riemannian manifold (M, g) is said to be isotropy irreducible if for each
point p ∈M the isotropy group at p (i.e., the group of all isometries fixing p)
acts irreducibly on the tangent space at p via its isotropy representation. See
[21]. A direct consequence of this definition is that the metric g is unique (up
to multiplication by a constant) among all metrics with the same isometry
group and is an Einstein metric. As the group of isometries of M must
act transitively, M is a homogeneous space. In fact, this class of compact
manifolds is also the class of connected effective homogeneous spaces G/H
with G and H compact and AdH acting irreducibly on g/h (the quotient of
the associated Lie algebras).

Let (M, g) be a compact isotropy irreducible manifold. Let ∆ be the
Laplace–Beltrami operator on M . Since, in general, M is not a group we
need to alter our notation a bit. Namely, we let ft(x, y) be the kernel of the
heat semigroup et∆ with respect to the normalized volume measure λ on M .
As (M, g) is a Riemannian homogeneous space, the quantities

�

M

|ft(x, y)− 1| dλ(y) and
�

M

|ft(x, y)− 1|2 dλ(y)

are independent of x and we can define the parameters T = T (M, g) and
θ = θ(M, g) by

T = inf{t > 0 : ‖ft(x, ·)− 1‖1 ≤ 1/4},
θ = inf{t > 0 : ‖ft(x, ·)− 1‖2 ≤ 1/4}.

Of course, we can also define the parameters λ1 = λ1(M, g) (smallest positive
eigenvalue) and α = α(M, g) (log-Sobolev constant). We also let N = N(M)
be the topological dimension of M . Since g is Einstein, we also introduce its
Einstein constant ρ = ρ(M, g) ≥ 0 which is such that Ric = ρg where Ric
denotes the Ricci tensor of g.

As explained in [21], if ρ = 0 then M = G is an isotropy irreducible
torus. Otherwise, ρ > 0 and M = G/H with G compact semisimple (of
course, not all such homogeneous spaces are isotropy irreducible, see [21]).

As noted earlier, the following inequalities always hold: α ≤ λ1/2, T ≤ θ.
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Moreover, λ1 ≥ Nρ/(N − 1), α ≥ Nρ/[2(N − 1)] and, in fact (see [15]),

α ≥ N(N − 1)
2(N + 1)2

ρ+
2N

(N + 1)2
λ1.

As discussed above, the metric g is well defined up to a positive constant
factor. Hence it is useful to recall that if g is changed to gκ = κg with κ > 0
(a positive real) then ρ, α and λ1 are changed to ρκ = κ−1ρ, ακ = κ−1α and
λκ1 = κ−1λ1 whereas T and θ are changed to T κ = κT , θκ = κθ.

In the case ρ > 0, one problem is to decide whether or not there is
a constant c such that λ1 ≤ cρ (uniformly over all isotropy irreducible
compact manifolds with ρ > 0, or perhaps over a smaller class). Because of
the extremely well developed theory of representations of compact simple Lie
groups and the fact that there exists a classification of all isotropy irreducible
manifolds (see the discussion in [21]), one can try to attack this question by
inspection. This however is a gigantic task and one would like to find some
kind of more global approach (see [18] for the case of compact simple Lie
groups). Good upper bounds on T, θ involving ρ and the dimension N are
given in [17]. A lower bound on T involving λ1 and N is given in [18].

In the case when ρ = 0, i.e., for isotropy irreducible tori, we know very
little (except for square tori). For instance, we do not know if Rothaus’
inequality α ≥ 2N

(N+1)2
λ1 (see [15]) can be improved to α ≥ cλ1 with c > 0

independent of the dimension.
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