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Abstract. We establish the lower bound p2t(e, e) � exp(−t1/3), for the large times asymp-
totic behaviours of the probabilities p2t(e, e) of return to the origin at even times 2t, for
random walks associated with finite symmetric generating sets of solvable groups of finite
Prüfer rank. (A group has finite Prüfer rank if there is an integer r , such that any of its finitely
generated subgroup admits a generating set of cardinality less or equal to r .)
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1. Introduction

1.1. Notation and definitions

Let � be a finitely generated group. Let

p : � × � → [0, 1]
be a symmetric Markov kernel which is left-invariant, irreducible and whose sup-
port lies within bounded distance (with respect to a word metric on �) from the
diagonal. We also denote by p the operator on the Hilbert space l2(�) defined on
f ∈ l2(�) by the formula

p f(x) =
∑

y

p(x, y) f(y)

and we denote by pn the composition of p with itself n times. Let δx ∈ l2(�) be
the characteristic function of the point x. The scalar product

pt(x, y) = 〈
ptδy, δx

〉

can be interpreted as the probability for the random walk on � defined by p to go
from x to y in time t. In particular

∥∥ptδe
∥∥2

2 = 〈
ptδe, ptδe

〉 = 〈
p2tδe, δe

〉 = p2t(e, e)

corresponds to the probability of return to the origin e after 2t steps.
If f, g are two non-negative functions defined on positive numbers, we use the

notation f � g if there exist constants a, b > 0, such that for x large enough,
f(x) ≤ ag(bx). If the symmetric relation also holds, we write f ∼ g. When
a function is defined only on the integers, we extend it to the positive real axis by
linear interpolation. We will use the same name for the original function and its
extension. When using this convention for the function t �→ p2t(e, e), the value of
pt(e, e) at an odd integer t must be interpreted as 1

2 (pt−1(e, e) + pt+1(e, e)).

1.2. Stability

1. If � and H are two quasi-isometric (see [7, IVB] and [12, 02C]) finitely
generated groups then p�

2t(e, e) ∼ pH
2t (e, e). (We consider even times 2t to

avoid usual periodicity problems.) In particular, two Markov kernels, with the
properties explained above, on the same group � have equivalent asymptotic
behaviours in the sense of the relation ∼ and we call the equivalence class of
p�

2t(e, e) the heat decay of the group �. Finite index subgroups and quotients by
finite normal subgroups are quasi-isometric to the original group [7, IVB24].
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2. If H is a finitely generated subgroup in a finitely generated group � then
p�

2t(e, e) � pH
2t (e, e).

3. If Q is a quotient of � then p�
2t(e, e) � pQ

2t(e, e).
4. Let M be a closed Riemannian manifold and let M̃ be its universal cover (with

the induced locally isometric Riemannian metric). Let x0 ∈ M̃ be a base point.
Let p̃t(x, y) be the heat kernel of the Riemannian Laplacian on M̃. Then

p̃t(x0, x0) ∼ pπ1(M)
2t (e, e). (1.1)

5. Let G and H be two connected Lie groups with quasi-isometric left-invariant
Riemannian metrics. Then the heat kernels associated with the Riemannian
Laplacians satisfy pG

t (e, e) ∼ pH
t (e, e).

See [20] for the proofs of these stability properties.

1.3. Lie groups

On a connected Lie group G, two left-invariant Riemannian metrics are bi-
Lipschitz. They are three essentially different heat decays on Lie groups.

1. pt(e, e) ∼ exp(−t) if and only if G is non-amenable or non-unimodular.
2. pt(e, e) ∼ t−d/2 if and only if the growth of G is polynomial of degree d.
3. pt(e, e) ∼ exp(−t1/3) if and only if G is amenable unimodular and of expo-

nential growth.

See [17]. Notice that we do not exclude non-unimodular Lie groups. Whether the
group is unimodular or not, we consider a left-invariant Riemannian metric on it,
the corresponding left-invariant volume form and the corresponding left-invariant
Riemannian Laplacian. In the case of non-unimodular Lie groups it is natural to
introduce the modular function in order to get refined asymptotics (see [31]) but
this is not our aim in this paper.

1.4. Finitely generated groups

A finitely generated group is non-amenable if and only if its heat decay is expo-
nential [13].

Among solvable groups, there appears a great diversity of possible heat decays.
For example, the wreath product Z � Z of Z with itself (associated with the left-
regular representation) satisfies

p2t(e, e) ∼ exp(−t1/3(log t)2/3),

and if the heat decay of a finitely generated group � is equivalent to

exp(−tα(log t)β)
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with α ∈ (0, 1), then the heat decay on G = � � Z is equivalent to

exp
( − t(1+α)/(3−α)(log t)2β/(3−α)

)
.

Let us give examples from among the subgroups of GL(2,R). Let λ1, . . . , λd > 1
be real numbers which are algebraically independent over Q. The subgroup of the
affine transformations of the real line generated by the homotheties x �→ λi x where
1 ≤ i ≤ d and by the the translation x �→ x +1 is isomorphic to the wreath product
Z � Zd . Its heat decay satisfies

p2t(e, e) ∼ exp
( − td/(d+2)(log t)2/(d+2)

)
.

See [21] for the lower bound. For the upper bound, see [10] and apply the Nash
inequality which involves the isoperimetric function as explained in [19] or apply
[6, Prop. 4.1].

1.5. Relations with volume growth

Gromov’s theorem on polynomial growth and some work by Varopoulos together
imply that a finitely generated group is virtually nilpotent if and only if its heat
decay satisfies

p2t(e, e) ∼ t−d/2 (1.2)

where d is the growth degree of the group. See [32].
Let � be a finitely generated group with a word metric and let |Be(r)| be the

cardinality of the ball of radius r. Let 0 < α, β ≤ 1. If

exp(rα) � |Be(r)| � exp(rβ)

then

exp
( − t

β
2−β

)
� p2t(e, e) � exp

( − t
α

2+α
)
. (1.3)

(The implication between the inequalities involving α (resp. β) is true independently
of β (resp. α).) See [6, Corollary 7.4], see also [30] for the upper bounds on the
heat decay. The case when α = 1 states that a group of exponential growth
has a heat decay at least as fast as exp(−t1/3). Whether there exists a finitely
generated group with a heat decay strictly slower than exp(−t1/3) but faster than
t−d/2 (i.e. not virtually nilpotent) is an open question. This would follow, by the
above implication involving β, from the existence of a non-virtually nilpotent
finitely generated group with subradical growth in a strong sense, that is with
|Be(r)| � exp(rβ) where 0 < β < 1/2. See [7] for the notion of subradical growth.
According to [14, Theorem D] a residually nilpotent group of subradical growth
is virtually nilpotent. In fact, it is not known if there is a finitely generated group
with subexponential growth, not virtually nilpotent, with p2t(e, e) � exp(−t1/3).
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1.6. Statement of the results

The first example of a finitely generated group with a heat decay equivalent to
exp(−t1/3) was given by Varopoulos. He showed that the heat decay on the wreath
product (Z/2Z) �Z is equivalent to the expectation E[2−Rt ] where Rt is the random
variable which counts the number of visited sites during time t for a random walk
on Z. See [29, Appendix II] and the correction in [28]. The heat decay of the
standard wreath product K � Q of two finitely generated groups K and Q with Q
infinite (otherwise, the Cartesian product of |Q| copies of K is a subgroup of index
|Q| in K � Q) behaves like exp(−t1/3) if and only if K is a finite non-trivial group
and Q is a finite extension of Z. This follows from technics developed in [21].

Alexopoulos established the lower bound p2t(e, e) � exp(−t1/3) for polycyclic
groups [1]. The main result of this paper is the generalization of this lower bound
to the class of finitely generated solvable groups of finite Prüfer rank. Recall that
a finitely generated group has finite Prüfer rank if there is an integer r, such that
any of its finitely generated subgroup admits a generating set of cardinality less or
equal to r.

Theorem 1.1 Let � be a finitely generated virtually solvable group of finite Prüfer
rank. Then the heat decay in � satisfies

p2t(e, e) � exp(−t1/3).

Corollary 1.2 Let � be a finitely generated virtually solvable group of finite Prüfer
rank. The heat decay of � satisfies p2t(e, e) ∼ exp(−t1/3) if and only if � is not
virtually nilpotent.

To deduce the corollary from the theorem, recall that a finitely generated solvable
group of subexponential growth is virtually nilpotent [16], [33], [11]. If the growth
is exponential, we apply (1.3) with α = 1.

According to the main theorem of [15] (see also [9, 6.13]), a group is finitely
generated virtually solvable of finite Prüfer rank if and only if it is finitely generated
residually finite and has polynomial subgroup growth. It is reasonable to expect
a lower bound on the heat decay from a bound on the number of subgroups, but the
proof we have does not follow this line. It would be interesting to establish such
a direct relation for faster subgroup growth. Ascending HNN-groups over a poly-
cyclic base are finitely generated solvable of finite Prüfer rank [3]. In particular,
polycyclic groups are finitely generated solvable of finite Prüfer rank. The group
of upper triangular n ×n matrices with coefficients in the ring Z[1/d] where d ∈ N
and with units on the diagonal is finitely generated solvable of finite Prüfer rank.
See also [6] and [18] for examples and special cases of the theorem.

1.7. Main ideas from the proof

A Følner couple in a finitely generated group � is a finite set � ⊂ � together
with a subset �′ ⊂ �, such that a positive fraction of the “mass” of � (that is, its
cardinality) is contained in the subset �′ and such that �′ “sits deep inside” � in
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the sense that the word distance d(�′, � \ �) is not small relative to the size of �.
These two properties together imply that the time needed for the mass of �′ to
diffuse out of � is rather long. This geometric approach to on-diagonal heat kernel
lower bounds has been formulated and formalized in [6].

A finitely generated virtually solvable group of finite Prüfer rank is quasi-
isometric to an extension of a torsion-free countable nilpotent group M of finite
Prüfer rank by a free abelian group of finite rank. We choose a finitely generated
subgroup M0 ⊂ M whose normal closure in � is the group M. The main idea of
the proof is, roughly speaking, to proceed “as if we could replace the group M
with its finitely generated sugroup M0 and construct Følner couples as explained in
[6, Appendix 7.5] in the case of polycyclic groups”. This strategy works because
the rational structure associated with M in Theorem 4.8 below allows us to identify
M0 with a group of integral points. We can then exhaust M0 with balls (with
respect to a word metric) and we can add points of M \ M0 in a controlled manner
depending on the radius of the balls, by allowing points with progressively larger
denominators. A crucial point is that an automorphism of a torsion-free countable
nilpotent group M of finite Prüfer rank can be identified with a restriction of an
automorphism of the rational Lie algebra associated with M (see the third point in
Proposition 4.11 below).

1.8. Overview of the paper

The whole paper is devoted to the proof of Theorem 1.1. As explained above, the
strategy consists in constructing a sequence of Følner couples and in translating
the geometric information so obtained into an analytic one with the help of a result
of [6] which is presented in Sect. 6. Følner exhaustions that serve to construct
sequences of Følner couples are introduced in Subsect. 7.3.

Sections 2, 3, 5, 6 are independent. Section 4 depends on Sect. 3. Section 7
depends on the preceding ones.

In Sect. 2, we collect elementary facts about unipotent groups with coefficients
in various subrings of Q and about regular maps between affine spaces over Q.
In Sect. 3, we recall the definitions and basic properties of groups of finite Prüfer
rank. In Sect. 4, which is based on Mal’cev’s theory, we characterize the countable
torsion-free nilpotent groups of finite Prüfer rank in terms of nilpotent Lie algebras
over Q. In Sect. 5, we recall well-known facts from geometric group theory. In
Sect. 6, we present in Theorem 6.2 a result from [6] and state in a corollary the
special case we need. Section 7 consists in the proof of Theorem 1.1.

2. Unipotent groups with various coefficients

Let p be a prime number. Recall that the corresponding valuation on Q is defined
as

vp : Q→ Z ∪ {∞}
vp(0) = ∞, vp(pna/b) = n
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where a, b ∈ Z have no factor equal to p. Recall also that

vp(x + y) ≥ min{vp(x), vp(y)},
vp(xy) = vp(x) + vp(y).

We denote by U(n,Q), or simply by U(Q), the group of upper triangular
unipotent n × n matrices with rational coefficients. Let d ∈ N. Let Z[1/d] be the
smallest subring of Q which contains 1/d. For each m ∈ N ∪ {0}, there is an
inclusion 1

dmZ ⊂ 1
dm+1Z between cyclic subgroups. The group Z[1/d] is the direct

limit

Z[1/d] =
⋃

m∈N∪{0}

1

dm
Z.

We agree that 1
d∞Z = Z[1/d]. The matrices of U(Q) with coefficients in Z[1/d]

form a subgroup U(Z[1/d]) ⊂ U(Q). Let vp(d) = dp ∈ N ∪ {0} be the power of
p in the prime decomposition of d. That is:

d =
∏

p

pdp .

If d = 1, then dp = 0 for every p. In order to filter the elements of U(Z[1/d]) with
a sequence of finitely generated subgroups, we introduce the following definition.

Definition 2.1 For each m ∈ N∪{0}∪{∞}, let Um(Z[1/d]) be the set of elements
u ∈ U(Q), such that, for every prime p the coefficient ui j of u satisfies:

vp(ui j ) ≥ (i − j)mdp.

In the case m = ∞ and dp = 0, we agree that ∞ × 0 = 0.

Lemma 2.2 Let d = ∏
p pdp. Let x, y ∈ Q and r, s ∈ N ∪ {0} such that vp(x) ≥

−rdp and vp(y) ≥ −sdp. If x �= y then |x − y| ≥ 1/dr+s.

Proof. Let x = a/b where a, b ∈ Z are relatively prime.

vp(a) − vp(b) = vp(x) ≥ −rdp.

Hence,

vp(b) ≤ vp(a) + rdp.

As a and b are relatively prime, we deduce that vp(b) ≤ rdp. Applying this last
inequality to each prime p in the decomposition of d, we deduce that b ≤ dr .
Proceeding in the same way for the denominator b′ of y, we obtain b′ ≤ ds. Hence

|x − y| =
∣∣∣∣
a

b
− a′

b′

∣∣∣∣ =
∣∣∣∣
b′a − a′b

b′b

∣∣∣∣ ≥
∣∣∣∣

1

b′b

∣∣∣∣ ≥ 1/dr+s.

��
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Lemma 2.3 Given a Euclidean structure on the space M(n,R) of n × n matrices
with real coefficients and given a ball B(r) ⊂ M(n,R) of radius r, there exists
λ > 1, depending on d, such that for all m ∈ N ∪ {0},

|B(r) ∩ Um(Z[1/d])| < λm .

Proof. One easily deduces the lemma from the following uniform lower bound for
the Euclidean distance between distinct elements u, v of Um(Z[1/d]).

inf
u,v

d(u, v) = inf
u,v

d(0, u − v) ≥ inf
ui j −vi j �=0

|ui j − vi j | ≥ 1/d2(1−n)m,

where the last inequality is deduced from Lemma 2.2. ��

Lemma 2.4 Let a, b ∈ M(n,Q) and let c = ab. Let r ∈ N ∪ {0}. If vp(ai j ) ≥
(i − j)r and vp(bi j ) ≥ (i − j)r. Then vp(ci j ) ≥ (i − j)r.

Proof. We have ci j = ∑
aikbk j and

vp(ci j ) ≥ min
k

(vp(aik) + vp(bk j )) ≥ min
k

((i − k)r + (k − j)r) = (i − j)r.
��

Proposition 2.5 There is a sequence of inclusions

U0(Z[1/d]) ⊂ · · · ⊂ Um(Z[1/d]) ⊂ Um+1(Z[1/d]) ⊂ · · · ⊂ U∞(Z[1/d])

beginning with U(Z) = U0(Z[1/d]) and ending with U(Z[1/d]) = U∞(Z[1/d]).
Each Um(Z[1/d]) is a group and if m < ∞ it is finitely generated.

Proof. Inclusions and equalities follow directly from the definitions. (The equality
U(Z[1/d]) = U∞(Z[1/d]) is true because of the convention we decided on ∞× 0
= 0.) Lemma 2.4 shows that if a, b ∈ Um(Z[1/d]) then ab ∈ Um(Z[1/d]). Let us
show that a ∈ Um(Z[1/d]) implies a−1 ∈ Um(Z[1/d]). Let x = 1 − a. Hence x is
nilpotent, strictly upper triangular (that is xi j = 0 if i ≥ j), in particular, xn = 0.
Recall the identity

(1 − x)(1 + x + · · · + xn−1) = 1 − xn .

We deduce that a−1 = 1 + x + · · · + xn−1. Hence

vp((a
−1)i j ) ≥ min{vp(1i j ), vp(xi j ), . . . , vp((xn−1)i j )}.

By hypothesis vp(xi j ) ≥ (i − j)mdp. Lemma 2.4 implies that vp((xk)i j ) ≥
(i − j)mdp holds for all k ∈ N. We deduce that a−1 ∈ Um(Z[1/d]). If m is
finite, it follows from Lemma 2.3 that the group Um(Z[1/d]) is a discrete subgroup
of U(n,R). In particular, it is finitely generated [22, Theorem 2.10]. ��
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Let AN be the N-dimensional affine space over Q. That is

A
N = {(x1, . . . , xN ) : xi ∈ Q}.

We denote by AN
( 1

dm Z
)

the Z-submodule of AN defined as

A
N

(
1

dm
Z

)
=

{
(x1, . . . , xN ) : xi ∈ 1

dm
Z

}
.

Let Q[X1, . . . , X N ] be the ring of polynomials in N variables with coefficients
in Q.

Definition 2.6 [26, I.2.2, I.2.3] A map f : AN → A
M is called regular if, for each

coordinate function fi , 1 ≤ i ≤ M, there exists Pi ∈ Q[X1, . . . , X N ] such that,
for all x ∈ AN , fi(x) = Pi(x).

Remark 2.7 We will only consider regular maps between affine spaces over Q,
hence f determines the Pi .

Definition 2.8 The degree of f is defined as

deg( f ) = max
i

deg(Pi).

Lemma 2.9 Let f : AN → Q be regular. There exists a function with finite support
µ : P → Q on the set P of prime numbers, with the following property. Suppose
r ∈ N ∪ {0}, x ∈ AN and a prime p are such that for 1 ≤ i ≤ N, vp(xi) ≥ −r.
Then for 1 ≤ i ≤ N, vp( f(x)) ≥ µ(p) − r deg( f ).

Proof. Let P ∈ Q[X1, . . . , X N ], such that for all x ∈ AN , f(x) = P(x). We write
P as

P(X1, . . . , X N ) =
∑

i1,... ,iN

ai1,... ,iN Xi1
1 · · · XiN

N

with ai1,... ,iN ∈ Q. We define

µ(p) = min
i1,... ,iN

vp(ai1,... ,iN ).

Hence,

vp(P(x1, . . . , xN )) ≥ min
i1,... ,iN

vp
(
ai1,... ,iN xi1

1 · · · xiN
N

)

≥ min
i1,... ,iN

vp(ai1,... ,iN ) + min
i1,... ,iN

(i1vp(x1) + · · · + iNvp(xN ))

≥ µ(p) − r deg( f ). ��
Proposition 2.10 Let f : AN → A

M be a regular map. There exist a constant
C > 0 and an integer d ∈ N (both depending explicitly on f ), such that for all
m ∈ N ∪ {0} ∪ {∞},

f

(
A

N
(

1

dm
Z

))
⊂ AM

(
1

ddeg( f )m+C
Z

)
.
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Proof. Let Pj ∈ Q[X1, . . . , X N ] be the j-coordinate function of f . Let
µ j : P → Q be defined as in Lemma 2.9. We choose d, such that for any prime p,

vp(d) ≥ max
j

|µ j(p)|.

We choose

C = max
j

max
p: dp �=0

|µ j(p)|/dp.

The proof follows easily from Lemma 2.9 by first considering the case when p is
such that dp = 0 (and therefore µ j (p) = 0). ��
Corollary 2.11 Let fi : AN → A

Mi , 1 ≤ i ≤ k be a finite collection of regular
maps. Let D = maxi deg( fi). There exist a constant C > 0 and an integer d ∈ N
such that, for all m ∈ N ∪ {0} ∪ {∞},

fi

(
A

N
(

1

dm
Z

))
⊂ AMi

(
1

d Dm+C
Z

)
.

Proof. Let M = ∑
i Mi and let

f : AN → A
M

be the regular map defined by f = ( f1, . . . , fk). We apply Proposition 2.10
to f . ��

When we consider the property of being regular for maps with source and
target spaces equal to the group U(n,Q) or its Lie algebra u(n,Q), we choose
one identification (among the obvious n(n−1)

2 ! possible ones) with the affine space

A
n(n−1)

2 . Notice that for any of these identifications and for any d ∈ N and m ∈
N ∪ {0} ∪ {∞}

A
n(n−1)

2

(
1

dm
Z

)
⊂ Um(Z[1/d]). (2.4)

3. Prüfer rank, torsion-free rank and Hirsch length

Definition 3.1 [24, Exercises 14.1, 3] A group G has finite Prüfer rank r if every
finitely generated subgroup of G contains a generating set of cardinality smaller
or equal to r and r is the least such integer.

In this paper, the rank of a group G, denoted by rank(G), with no further
specification, refers to the Prüfer rank of the group. The class of finite rank group
is obviously closed with respect to forming subgroups, images and extensions.

For example, the additive group of the field of rational numbers, or the additive
group Z[1/d] of rational numbers with denominators a power of d ∈ N, have finite
rank equal to one. The group U(n,Q) has finite rank. A classical subsequence
extraction procedure shows that the additive group of the ringZp of p-adic integers,
although not countable, is of rank one.
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Definition 3.2 [24, Exercises 14.1, 1] A group G has finite torsion-free rank if it
has a series of finite length whose factors are either torsion or infinite cyclic.

Induction on the number of infinite cyclic factors shows that this number does
not depend on the choice of the series. This number, denoted by h(G) in this paper,
is called the torsion-free rank or the Hirsch length of G.

The Prüfer rank of a non-trivial finite group is greater or equal to one, while its
torsion-free rank is zero. The Prüfer rank and the torsion-free rank of Q or Z[1/d]
are both equal to one.

Proposition 3.3 The Prüfer rank of a strongly polycyclic group is bounded above
by its torsion-free rank.

Proof. If H is a subgroup of a strongly polycyclic group G and if Gi is a series for G
with Gi/Gi+1 � Z, then Hi = H ∩ Gi is a series for H and Hi/Hi+1 ⊂ Gi/Gi+1.
Hence H is generated by h(G) elements. ��

It seems that both ranks coincide within the class of strongly polycyclic groups.

Remark 3.4 When we refer to [22], note that in this reference the torsion-free rank
of solvable groups is simply called the rank. See [22, 2.8, 2.9, 4.3] and recall, in
order to check that the rank of a finitely generated nilpotent group as defined in [22,
2.8, 2.9] is equal to its torsion-free rank or Hirsch length, that a finitely generated
nilpotent group has a finite (central) series whose factors are cyclic groups (with
prime or infinite orders) [24, 5.2.18].

Proposition 3.5 The Hirsch length does not increase when taking quotients.

Proof. Let f : G → Q be an epimorphism between two groups. Suppose that G
admits a series Gi of finite length with Gi/Gi+1 cyclic or torsion. Then Qi = f(Gi)

is a series of finite length for Q and f induces surjections Gi/Gi+1 → Qi/Qi+1.
Hence, if Gi/Gi+1 is cyclic or torsion, so is Qi/Qi+1. ��

4. Nilpotent groups

The main result of this section is Theorem 4.8. It essentially follows from Mal’cev’s
theory. A celebrated theorem of Mal’cev states that a group is isomorphic to a lattice
in a simply-connected nilpotent Lie group if and only if it is finitely generated
torsion-free and nilpotent. Theorem 4.8 can be viewed as a generalization of this
result to countable finite-rank torsion-free nilpotent groups.

4.1. Background and preliminaries

Proposition 4.1 Let M be a nilpotent group. Then elements of finite order in M
form a fully-invariant subgroup T, such that M/T is torsion-free and T is the
internal direct product DrpTp where Tp is the unique maximal p-subgroup of M.
In particular, if M is of finite rank, then T is finite.
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Proof. See [24, 5.2.7]. The fact that T is finite if M has finite rank follows from [24,
5.2.6, 4.2.1] because subgroups and quotient groups of finite rank groups have finite
rank too. ��
Lemma 4.2 Let M be a group. Suppose we are given a sequence of subgroups Mi
of M, i ∈ N, such that Mi ⊂ Mi+1 . Suppose that M = ⋃

i Mi . Let G be a group
and let

fi : Mi → G

be a sequence of homomorphisms such that, for i ≤ j , the restriction of f j to Mi

equals fi . Then, the following holds.

1. There exists a unique homomorphism

f : M → G

such that the restriction of f to Mi equals fi .
2. Im( f ) = ⋃

i Im( fi ).
3. If each fi is injective then f is injective.

Proof. Let x ∈ M. We choose i ∈ N large enough such that x ∈ Mi . We define
f(x) = fi(x). This definition is independent of the choice of i because if x ∈
M j ∩ Mk then f j (x) = fk(x). The Lemma follows obviously. (A more formal
way of handling the situation described in this lemma would be to identify M as
the direct limit associated with the system of subgroup Mi , see for example [24,
1.4.9].) ��
Proposition 4.3 1. A simply-connected nilpotent Lie group is torsion-free.
2. A closed connected subgroup of a simply-connected nilpotent Lie group is

simply-connected.

Proof. The exponential mapping of a simply-connected nilpotent Lie group is
a global diffeomorphism [27, Theorem 3.6.2]. The proposition follows. ��
Definition 4.4 A rational structure on a real Lie algebra n is a Lie algebra m
over Q such that m⊗Q R � n

If n has a rational structure m, we identify n with m ⊗Q R and m with the
subalgebram⊗Q 1.

Proposition 4.5 Let N be a simply-connected nilpotent Lie group and let n be its
Lie algebra.

1. Let � be a discrete cocompact subgroup of N. The Z-span of exp−1(�) is
a lattice of maximal rank in the vector space underlying n. Let m� be the Q-
span of exp−1(�). The rational subspacem� has the structure of a Lie algebra
over Q and m� ⊗Q R � n. More precisely, the structural constants of the Lie
algebra n associated with any basis contained in the Z-span of exp−1(�) are
rational.
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2. Let A ⊂ B be two discrete subgroups of N. If A is cocompact in N then
mA = mB.

Proof. For the first part, we refer to [22, 2.12]. For the second part, as B is obviously
also cocompact, we deduce from the first part that the Z-spans Z − exp−1(A) ⊂
Z− exp−1(B) are two lattices of maximal rank in n. HencemA = mB. ��
Proposition 4.6 Let B ⊂ U(n,Q) be a discrete subgroup (for the topology induced
by the natural embedding U(n,Q) ⊂ U(n,R)). There exists a diagonal matrix
g ∈ GL(n,Q) such that gBg−1 ⊂ U(n,Z).

Proof. Let us explain how this statement follows from the proof of [22, Theo-
rem 2.12]. Let N be the unique minimal closed connected subgroup of U(n,R)

containing B as a uniform lattice [22, Propostion 2.5]. It follows from 2) in Proposi-
tion 4.3 that N is simply-connected. Let n be its Lie algebra. We denote by u(n,R)

and u(n,Q) the Lie algebras of U(n,R) and U(n,Q). The exponential

exp : u(n,Q) → U(n,Q)

and its inverse are regular maps. Hence, the first point in Proposition 4.5 implies
that Z − exp−1(B) is a lattice of maximal rank in the vector space u(n,Q) ∩ n.
Therefore, there exists λ ∈ Z, such thatZ−exp−1(B) ⊂ λ−1 M(n,Z)∩u(n,R). Let
g ∈ GL(n,Q) be the diagonal matrix defined by gii = (n! λ)n−i . An elementary
argument (see [22, 2.12, p. 35]) shows that g exp(λ−1 M(n,Z) ∩ u(n,R))g−1 is
included in U(n,Z). ��
Lemma 4.7 Let N and N ′ be simply-connected nilpotent Lie groups.

1. Let M be a subgroup of N. Suppose M contains an increasing sequence of
subgroups Mi ⊂ Mi+1 , i ∈ N, such that M = ⋃

i Mi and such that each Mi

is discrete and cocompact in N. Let h : M → N ′ be a homomorphism. Then
there is a unique differentiable homomorphism h̃ : N → N ′ which extends h.

2. Let A ⊂ N and A′ ⊂ N ′ be discrete cocompact subgroups. Let h : A → A′ be
a homomorphism. Then Teh̃(mA) ⊂ mA′ .

Proof. We denote by hi the restriction of h to Mi . As Mi is discrete, hi is obviously
continuous. Let h̃i : N → N ′ be the unique continuous extension of hi [22,
Theorem 2.11]. Recall that a continuous homomorphism between Lie groups is
differentiable (see for example [5, I.3.12]). For i, j ∈ N, the restrictions of h̃i and
h̃ j to M1 coincide, we deduce that h̃i = h̃ j . For the second part, by definition of
the exponential map, the diagram

N
h̃−→ N ′

exp↑ ↑ exp

n
Teh̃−→ n′

is commutative [5, I.3.2] or [27, 2.10.3]. Hence

Teh̃ exp−1(A) = exp−1 h̃(A) ⊂ exp−1(A′).

We conclude that Teh̃(mA) ⊂ mA′ . ��
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4.2. The rational structure of a countable nilpotent group of finite rank

Theorem 4.8 Let M be a group. The following two conditions are equivalent.

1. M is countable, of finite rank, torsion-free, nilpotent.
2. There exists a triple (N,m, f ) where N is a simply-connected nilpotent Lie

group,m is a rational structure on the Lie algebra n of N and

f : M → N

is an injective homomorphism such that
(a) the image of f is included in exp(m),
(b) the image of any finitely generated subgroup of M is discrete in N,
(c) there exists a finitely generated subgroup of M whose image under f is

cocompact.

If (N ′,m′, f ′) is another triple as above, then there exists an isomorphism

φ : N → N ′

such that φ f = f ′. In particular the derivative Teφ of φ at the identity induces an
isomorphism between the rational Lie algebras m and m′.

Proof. Suppose there exists a triple (N,m, f ) for the group M. As M is isomorphic
to a subgroup of the simply-connected nilpotent group N, we deduce that M is
nilpotent. According to 1) in Proposition 4.3, it is torsion-free. As the group
exp(m) is countable, hypothesis (a) implies that M is countable. Let H be a finitely
generated subgroup of M. Hypothesis (b) implies that its image f(H ) is discrete
in N. Let us denote this image also by H . Let H̃ be the unique minimal connected
closed subgroup of N containing H as a uniform lattice [22, Proposition 2.5].
The dimension of H̃ is equal to the Hirsch length of H [22, Theorem 2.10 and
Remark 2.6] (about the terminology, see also Remark 3.4 above). As H is strongly
polycyclic [22, 3.10], we apply Proposition 3.3 and obtain

rank(H ) ≤ h(H ) = dim(H̃ ) ≤ dim(N).

This proves that rank(M) ≤ dim(N).
Now we assume that M has the properties described in 1) and we construct

a triple (N,m, f ). Let r be the rank of M and let c be the nilpotent class of M.
Let F be the free nilpotent group on r generators and of class c. We enumerate
the elements of M as x1, . . . , xi , . . . and we define Mi as the subgroup generated
by x1, . . . , xi . As Mi ⊂ M, the nilpotent class of Mi is less or equal to c and at
most r elements are needed in order to generate Mi . Hence, for each i, there exists
an epimorphism hi from F onto Mi . According to Proposition 3.5, the Hirsch
lengths satisfy h(Mi ) ≤ h(F). According to Mal’cev, there exists a (unique)
simply-connected nilpotent Lie group Ni containing Mi as a uniform lattice [22,
Theorem 2.18, Theorem 2.1, 2–3]. Let us explain how the choice of an embedding
of Mi+1 as a lattice in Ni+1 enables us to define an embedding of Ni as a closed
subgroup of Ni+1. In other words, we have

Mi ⊂ Mi+1 ⊂ Ni+1,



Random walks on finite rank solvable groups 327

with Mi+1 discrete in Ni+1 and we want to deduce from this data an embedding
Ni ⊂ Ni+1. We denote by M̃i the unique minimal connected closed subgroup of
Ni+1 containing Mi as a uniform lattice, see [22, Propostion 2.5]. It follows from 2)
in Proposition 4.3 that M̃i is simply-connected. Hence, both Lie groups Ni and M̃i

are simply-connected nilpotent and contain an isomorphic copy of the group Mi as
a uniform lattice. It follows that Ni and M̃i are isomorphic (see [22, Theorem 2.11
Corollary 2] or apply 1) of Lemma 4.7). Choosing an isomorphism, we obtain the
wanted embedding Ni ⊂ Ni+1. The dimension of Ni is equal to the Hirsch length
of Mi [22, Theorem 2.10] which is bounded by h(F). This implies that the chain
of inclusions Ni ⊂ Ni+1 stabilizes. Let n be such that Nn = Nn+1. We define the
Lie group N as N = Nn . In order to distinguish explicitly the subgroup Mn ⊂ M
from its discrete cocompact isomorphic copy in N, we denote by

fn : Mn → N

the chosen discrete cocompact embedding. As mentioned in 1) of Proposition 4.5,
the lattice fn(Mn) ⊂ N defines a rational structure m fn(Mn) on the Lie algebra n
of N. We define

m = m fn(Mn).

Recall that

M =
⋃

i≥n

Mi

and that for i ≤ j , Mi ⊂ M j . We will apply Lemma 4.2 to obtain an embedding

f : M → N.

For n ≤ i ≤ j , we denote

α
j
i : Mi → M j

the inclusion. As a first step, we have by construction an embedding fn : Mn → N.
Given a discrete embedding fi : Mi → N with i ≥ n, we will define a discrete
embedding fi+1 : Mi+1 → N, such that

fi+1α
i+1
i = fi .

Let gi+1 : Mi+1 → N be an embedding of Mi+1 as a uniform lattice in N. As

gi+1α
i+1
i (Mi ) � fi(Mi )

are isomorphic uniform subgroups in N, there is an isomorphism hi : N → N so
that the following diagram commutes:

Mi
fi−→ N

αi+1
i ↓ ↑ hi

Mi+1
gi+1−→ N.
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See [22, Theorem 2.11 Corollary 2] or apply 1) of Lemma 4.7. We define fi+1 as

fi+1 = hi gi+1.

Applying Lemma 4.2, we obtain an injective homomorphism

f : M → N

such that, for i ≥ n, the restriction of f to Mi equals fi . If B ⊂ M is a finitely
generated subgroup, there exists i, such that B ⊂ Mi . Hence f(B) ⊂ f(Mi ) =
fi(Mi) is discrete. This proves (b). Point (c) is true because f(Mn) = fn(Mn) is
cocompact in N.

According to 2) of Lemma 4.2, in order to show that f(M) ⊂ exp(m), it is
enough to show that for i ≥ n, the inclusion fi(Mi ) ⊂ exp(m) holds true. For
i ≥ n, the discrete subgroups fn(Mn) ⊂ fi(Mi) ⊂ N are cocompact. Applying 2)
of Proposition 4.5, we deduce that

m fn(Mn) = m fi (Mi ).

We conclude that fi(Mi) ⊂ exp(m).
Now we prove that the triple (N,m, f ) associated with M is essentially unique.

Let (N ′,m′, f ′) be another such triple. We choose finitely generated subgroups H
and H ′ in M, such that f(H ) is cocompact in N and such that f ′(H ′) is cocompact
in N ′. Let B be the subgroup of M generated by H and H ′. It is finitely generated.
The images f(B) and f ′(B) are both discrete and cocompact in the respective Lie
groups N and N ′. We deduce from Lemma 4.7 the existence of an isomorphism

φ : N → N ′,

such that

∀x ∈ B, φ f(x) = f ′(x)

and such that

Teφ(m) = m′.

This completes the proof of the theorem. ��
Remark 4.9 Let M be as in Theorem 4.8. Let us choose a triple (N,m, f ) associated
with M. Let ( f(M))◦ be the connected component of the identity of the closure
of f(M). This is a closed connected Lie subgroup of N. We define the “dense”
part D(M) of M as f −1( f(M) ∩ ( f(M))◦). Uniqueness properties of the triple
(N,m, f ) imply that the definition of D(M) does not depend on the choice of
f and N. Let us show that D(M) is a fully-invariant subgroup of M. Let h be
an endomorphism of M. According to Lemma 4.7 there is a unique continuous
endomorphism h̃ : N → N, such that h̃ f = fh. Hence,

h̃(( f(M))◦) ⊂ ( f(h(M)))◦ ⊂ ( f(M))◦.

We deduce that h(D(M)) ⊂ D(M).
We guess that there is a purely algebraic definition of the fully-invariant sub-

group D(M) in terms of divisibility.
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Definition 4.10 Let M be a countable group of finite rank which is torsion-free
and nilpotent. A subset K of M is called relatively compact according to a triple
(N,m, f ) for M if f(K ) is relatively compact in N.

Uniqueness properties of the triples associated with M imply that this definition
does not depend on the choice of the triple.

Proposition 4.11 Let M be a countable group of finite rank which is torsion-free
and nilpotent. Let B ⊂ M be a finitely generated subgroup. There exist n ∈ N, (not
depending on B) and a faithful representation ρ of M in U(n,Q) with the following
properties.

1. ρ(B) ⊂ U(n,Z).
2. If K ⊂ M is relatively compact, then ρ(K ) is relatively compact in U(n,R).
3. If h : M → M is a homomorphism, there exists a linear map L : u(n,Q) →
u(n,Q), such that the regular map H uniquely defined by the commutative
diagram

U(n,Q)
H−→ U(n,Q)

exp↑ ↑ exp

u(n,Q)
L−→ u(n,Q)

extends h in the sense that Hρ = ρh.

Proof. Let (N,m, f ) be a triple associated with M, as in Theorem 4.8. The Theo-
rems of Ado and Engel together establish the existence of an injective morphism
of Lie algebras

ρ0 : m→ u(Q)

[27, 3.17.7], [25, I.V.3.2]. Here and below, we write u(Q) instead of u(n,Q). The
integer n is fixed. We also write U(Q) instead of U(n,Q) and GL(Q) instead
of GL(n,Q) etc.. As the exponential map of a simply-connected Lie group is
bijective, there is a unique homomorphism ρ1 which makes the diagram

exp(m)
ρ1−→ U(Q)

exp↑ ↑ exp

m
ρ0−→ u(Q)

commute. We define ρ = ρ1 f . Notice that if E ⊂ exp(m) is a discrete subset, then
ρ1(E) ⊂ U(Q) is also discrete. If B ⊂ M is finitely generated, Theorem 4.8 implies
that f(B) ⊂ exp(m) is discrete. Hence ρ(B) ⊂ U(Q) is discrete. Let g ∈ GL(Q) be
a diagonal matrix. The conjugation by g defines a automorphism of the Lie algebra
u(Q) as well as an automorphism of the group U(Q) and makes the diagram

U(Q)
cg−→ U(Q)

exp↑ ↑ exp

u(Q)
cg−→ u(Q)
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commute. Hence, applying Proposition 4.6 and replacing ρ0 with cgρ0 in the above
construction if needed, we obtain our faithful representation ρ with ρ(B) ⊂ U(Z).
In what follows we assume that ρ0 has been chosen so that ρ(B) ⊂ U(Z).

Let K be relatively compact in M. By definition, this means that f(K ) is
relatively compact in N. The continuous extension of ρ1 to N defines an embedding
into U(R). Hence ρ(K ) = ρ1 f(K ) is relatively compact in U(R).

Let h : M → M be a homomorphism. According to 1) of Lemma 4.7 there is
a unique continuous homomorphism h̃ : N → N, such that h̃ f = fh. Moreover,
according to 2) of Lemma 4.7, the derivative at the identity Teh̃ preserves m.
Let V = ρ0(m) and let W be a complement for V in u(Q). We denote by
πV : u(Q) → V and πW : u(Q) → W the projections onto V and W . The map
L : u(Q) → u(Q) defined by

L(x) = ρ0Teh̃ρ−1
0 πV (x) + πW(x)

is a morphism of vector spaces over Q. On U(Q) the exponential and its inverse
are regular maps, hence the unique map H which makes the diagram

U(Q)
H−→ U(Q)

exp↑ ↑ exp

u(Q)
L−→ u(Q)

commute is also regular. We have

Hρ = Hρ1 f = H exp ρ0 exp−1 f = exp Lρ0 exp−1 f =
= exp ρ0Teh̃ρ−1

0 ρ0 exp−1 f = exp ρ0Teh̃ exp−1 f =
= ρ1 exp Teh̃ exp−1 f = ρ1h̃ f = ρ1 fh = ρh. ��

5. Left-invariant metrics on groups

Let G be a finitely generated group and let S ⊂ G be a finite symmetric (i.e.
S = S−1) generating set of G. The norm |x|S of x ∈ G associated with S is by
definition the minimal number n ∈ N ∪ {0} for which there exist s1, . . . , sn ∈ S
with x = s1 · · · sn .

Definition 5.1 The word metric on G associated with S is the left-invariant dis-
tance function on G × G defined as dS(x, y) = |x−1 y|S.

Proposition 5.2 [7, IVB.23] Let (X, x0, d) be a pointed metric space which is
geodesic and proper. Let G be a group acting on X by isometries. Assume the
action is proper and the quotient G\X is compact. Then G is finitely generated
and for any generating set S as above, there exists a constant C, such that

∀g, h ∈ G, d(gx0, hx0)/C ≤ dS(g, h) ≤ Cd((gx0, hx0) + C.
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Proposition 5.3 Let G and H be connected Lie groups with left-invariant Rie-
mannian metrics. Let h : G → H be a continuous homomorphism. Then there is
a constant C such that

∀x, y ∈ G, d(h(x), h(y)) ≤ Cd(x, y).

Proof. We denote by lg the left-translation by g. The diagram

G
h−→ H

lg↑ ↑ lh(g)

G
h−→ H

commutes. Taking derivatives at the identity, we obtain the corresponding commu-
tative diagram between tangent spaces

TeG
Tgh−→ Th(g)H

Telg↑ ↑ Telh(g)

TeG
Teh−→ Te H.

As the Riemannian metrics are left-invariant, the vertical arrows denote isometries.
We conclude that h is Lipschitz with constant

C(h) = sup
|v|e=1

|Teh(v)|e = sup
|v|g=1

|Tgh(v)|h(g).

��
Corollary 5.4 Let F be the free group on the letters a1, . . . , an. We denote by
|w| the length of a reduced word w ∈ F. Let G be connected Lie group with
a left-invariant Riemannian metric. Let ρ : F → Aut(G) be a homomorphism. Let
C = maxi{C(ρ(ai)), C(ρ(a−1

i ))}. Then

∀x ∈ G, d(e, ρ(w)(x)) ≤ C|w|d(e, x).

6. Følner couples and lower bounds for the heat decay

We recall from [6] the minimal machinery needed for our purpose.
Let V be a positive continuous increasing function on [1,+∞) whose inverse

V−1 is defined on [V(1),+∞).

Definition 6.1 [6, Definition 4.7] We say that a finitely generated group � with
word metric dS admits a sequence of Følner couples adapted to V if there exist two
constants C > 1 and c > 0 and a sequence {(�′

n,�n)}n∈N of pairs of non-empty
finite sets �′

n ⊂ �n in � with the following properties.

1. The cardinals vn = |�n| satisfy limn→∞ vn = ∞.
2. cvn ≤ |�′

n|.
3. vn ≤ V(n).
4. V−1(vn+1) ≤ CV−1(vn).
5. dS(�

′
n, � \ �n) ≥ cn.
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Any individual pair
(
�n,�

′
n

)
from this sequence is called a Følner couple. The

function V is called a Følner volume function.

We denote by L f = f ′
f the logarithmic derivative. Hence L2 f = f ′′

f ′ − f ′
f .

Theorem 6.2 [6, Theorem 4.8] Assume that � admits a sequence of Følner couples
adapted to a function V . Assume also that V ∈ C2(1,+∞), V ′ > 0, and

−1

s
≤ L2V(s) ≤ C

s
,

for all large enough positive s. Let γ be the function defined by the equality

t =
∫ γ(t)

V(1)

[
V−1(v)

]2 dv

v
.

Then, there exist constants C > 1 and c > 0, such that for all large enough even
integers 2t,

p2t(e, e) ≥ c

γ(Ct)
.

Corollary 6.3 [6, Example 4.1] If a finitely generated group admits a sequence of
Følner couples adapted to the function V(s) = exp(Cs) for some constant C > 0,
then, up to multiplicative constants, its heat decay on the diagonal is bounded
below, for large enough even times, by exp(−t1/3).

Proof. For the function V(s) = exp(Cs), whose logarithmic derivative is C, the
integral in the theorem is easily computed because

∫
log(x)2

x
dx = 1

3
log(x)3.

��

7. Proof of the main theorem

7.1. Reduction steps

As the heat decay is stable when taking a finite index subgroup and when taking
the quotient by a finite normal subgroup (see Subsect. 1.2 above), the first step
in proving Theorem 1.1 is to apply these transformations in order to simplify the
structure of the group in consideration. Let � be a finitely generated solvable group
of finite rank. According to a theorem of Mal’cev, see [23, Theorem 3.5 p.79],
there is an exact sequence

1 → M → � → Q → 1

with M nilpotent and Q abelian-by-finite. As Q is finitely generated, we can choose
a finite index subgroup A in Q which is free abelian of finite rank. Let p : � → Q
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be the projection. We obtain an exact sequence

1 → M ∩ p−1(A) → p−1(A) → A → 1

with p−1(A) of finite index in �. According to Proposition 4.1, the torsion subgroup
T of M ∩ p−1(A) is fully-invariant and finite. We obtain the exact sequence

1 → (M ∩ p−1(A))/T → p−1(A)/T → A → 1.

We conclude that, up to taking a finite index subgroup and up to taking a quotient
by a finite subgroup, we can assume that our finitely generated solvable group of
finite rank � fits into an exact sequence

1 → M → � → A → 1

with M nilpotent torsion-free and A free abelian of rank d.

7.2. A direct limit of nilpotent lattices

The torsion-free nilpotent group M is a subgroup of a finitely generated group of
finite rank, hence it is also countable and of finite rank. Let (N,m, f ) be a triple
associated with M as in Theorem 4.8. We choose a1, . . . , ad ∈ �, such that
p(a1), . . . , p(ad) form a basis in A ∼= Zd . According to (c) in Theorem 4.8, we
can choose a finite symmetric set X1 in M, such that the the image under f of
the smallest subgroup containing X1 is cocompact in N. Let X2 be a symmetric
finite subset of M, such that the smallest subgroup of � which contains X2 and
a1, . . . , ad is the whole group �. Let

X3 = {[
aεi

i , a
ε j
j

]
, 1 ≤ i, j ≤ d, εi , ε j ∈ {1,−1}}.

Notice that X3 ⊂ M. We define M0 as the subgroup of M generated by X =
X1 ∪ X2 ∪ X3.

Let F be the free group on the letters A1, . . . , Ad . Let c : F → Aut(M) be the
unique homomorphism which extends the map Ai �→ cai where

∀x ∈ M, cai (x) = ai xa−1
i . (7.5)

If w ∈ F is a reduced word, we denote its image under c by cw. Let Mn be the
subgroup of M generated by the set

⋃

0≤|w|≤n

cw(M0).

As X2 ⊂ M0 we have

M =
⋃

n∈N∪{0}
Mn .
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Lemma 7.1 Let w ∈ F, n ∈ N ∪ {0}, 1 ≤ i ≤ d, ε ∈ {1; −1}. We have

1. cw(Mn) ⊂ Mn+|w| .
2. cw(aε

i )a
−ε
i ∈ M|w|.

Proof. Point 1) follows directly from the definition. For 2), we proceed by induction
on |w|. If |w| = 1 the statement is true because

[
aεi

i , a
ε j
j

] ∈ M0 ⊂ M1.

Suppose the statement is true for w. Let s ∈ F, such that |s| = 1. Let us write a
instead of aε

i . We have

cws(a)a−1 = cw(cs(a)a−1)cw(a)a−1.

As cs(a)a−1 ∈ M0, the first point in the lemma implies that cw(cs(a)a−1) ∈ M|w|.
The induction hypothesis implies that cw(a)a−1 ∈ M|w|. We conclude that

cws(a)a−1 ∈ M|w| ⊂ M|w|+1. ��
From now on, in order to simplify notation, we identify M with its image f(M)

in N. With this convention, M0 is a lattice in N. Let us choose a left-invariant
Riemannian metric on N. We denote by

Be(R) = {x ∈ N : d(e, x) ≤ R}
the Riemannian ball in N with center the identity element e and with radius R. As
the set X is finite, we can choose the Riemannian metric such that X ⊂ Be(1).

We arrive at a geometric version of the previous lemma.

Lemma 7.2 There exists λ ≥ 2, such that for w ∈ F, n ∈ N∪ {0}, 1 ≤ i ≤ d, ε ∈
{1; −1} the following hold.

1. cw(Be(λ
n)) ⊂ Be(λ

n+|w|), in particular if s ∈ X then cw(s) ∈ Be(λ
|w|).

2. cw(aε
i )a

−ε
i ∈ Be(λ

|w|).

Proof. Point 1) follows from Corollary 5.4. For 2), we proceed by induction on
|w|. If |w| = 1 the statement is true because

[
aεi

i , a
ε j
j

] ∈ X3 ⊂ Be(1).

Suppose the statement is true for w. Let s ∈ F such that |s| = 1. Again, we write
a instead of aε

i and we will use the identity

cws(a)a−1 = cw(cs(a)a−1)cw(a)a−1.

As cs(a)a−1 ∈ Be(1), the first point in the lemma implies that cw(cs(a)a−1) ∈
Be(λ

|w|). The induction hypothesis implies that cw(a)a−1 ∈ Be(λ
|w|). We conclude

that

cws(a)a−1 ∈ Be(2λ|w|) ⊂ Be(λ
|w|+1). ��
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We denote by |g| or dX(e, g) the word norm of the element g ∈ M0 with respect
to the generating set X. Let D ⊂ N be a bounded fundamental domain for M0
which contains the identity. Hence,

N =
⊔

g∈M0

gD.

We define for each radius R ≥ 0 the set

E(R) =
⋃

g∈M0, |g|≤R

gD.

Lemma 7.3 There exists a constant C0 > 1, such that the following inclusions
hold.

1. ∀R ≥ 1, Be(R) ⊂ E(C0 R).
2. ∀R ≥ 0, ∀R′ ≥ 1, E(R)Be(R′) ⊂ E(R + C0 R′).

Proof. Let δ = supx,y∈D d(x, y). We claim that

Be(R) ⊂
⋃

g∈M0, d(e,g)≤R+δ

gD.

Indeed, if x ∈ Be(R) let g be the unique element of M0, such that x ∈ gD. As
e ∈ D, d(g, x) ≤ δ hence d(e, g) ≤ R + δ. This proves the claim. As the action of
M0 on N is proper and cocompact by isometries, we can apply Proposition 5.2 to
deduce the existence of a constant C0 > 1, such that

∀R ≥ 1, ∀g ∈ M0, d(e, g) ≤ R + δ ⇒ |g| ≤ C0 R.

To prove 2), let x ∈ E(R) and x′ ∈ Be(R′) and let y = xx′. Let gx and gy be
the unique elements of M0, such that x ∈ gx D and y ∈ gy D. We have

d(gx, gy) ≤ d(gx, x) + d(x, y) + d(y, gy) ≤ 2δ + R′.

Hence, applying Proposition 5.2, we deduce the existence of a constant C0 > 1,
not depending on R′ ≥ 1, such that dX(gx, gy) ≤ C0 R′. This proves that y ∈
E(R + C0 R′) because

dX(e, gy) ≤ dX(e, gx) + dX(gx, gy) ≤ R + C0 R′. ��
For n ∈ N ∪ {0}, we define

Dn = D ∩ Mn .

Lemma 7.4 For any subset A ⊂ M0 and any n ∈ N ∪ {0},
⋃

g∈A

gDn = ( ⋃

g∈A

gD
) ∩ Mn .
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Proof. As Mn is a group and as g ∈ M0 ⊂ Mn , we obtain gMn = Mn . The lemma
follows from obvious set-theoretical equalities. ��
Lemma 7.5 There exists a constant µ > 1, such that

∀n ∈ N ∪ {0}, |Dn | ≤ µn.

Proof. Let ρ be a faithful representation of M into U(Q) as in Proposition 4.11
chosen such that ρ(M0) ⊂ U(Z). Let A∗ be the free semi-group on the set

S = {
A1, A−1

1 , . . . , Ad, A−1
d

}
.

Let End(u(Q)) be the algebra of linear maps from u(Q) into itself and let
End(U(Q)), be the algebra of rational maps from U(Q) into itself. (Here an
endomorphism f : U(Q) → U(Q) is a regular map from the affine space

U(Q) = U(n,Q) � Q n(n−1)
2 into itself. It is not a group homomorphism from

the unipotent group U(Q) into itself.) In particular, End(u(Q)) and End(U(Q))

are semi-groups for the composition of maps. For each w ∈ S, we apply Propo-
sition 4.11 in order to obtain Lw ∈ End(u(Q)) and the corresponding extension
Hw ∈ End(U(Q)) of the conjugation automorphism cw of M defined as in (7.5) (to
save notation, when we write cw, we make no explicit distinction between a word
w in the semi-group A∗ and its canonical image in F; hence, according to the
context, we regard w �→ cw as a morphism of semi-groups from A∗ to Aut(M) or
as a homomorphism from F to Aut(M)). Let

L : A∗ → End(u(Q))

and

H : A∗ → End(U(Q))

be the morphisms of semi-groups which extend the maps w �→ Lw and w �→ Hw,
with source equals to the generating set S. If w ∈ A∗ we denote by Lw its image
under L and Hw its image under H . We denote by |w| the number of letters of
a word w ∈ A∗. By definition, if w ∈ S, i.e. if |w| = 1, the diagrams

U(Q)
Hw−→ U(Q)

exp↑ ↑ exp

u(Q)
Lw−→ u(Q)

and

U(Q)
Hw−→ U(Q)

ρ↑ ↑ρ

u(Q)
cw−→ u(Q)

commute. As L, H and c are morphisms of semi-groups, induction on |w| shows
that the diagrams commute for all w ∈ A∗. If E is a subset of a group G we denote
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by 〈E〉 the smallest subgroup of G containing E. For n ∈ N ∪ {0} we have

ρ(Mn) = ρ
〈 ⋃

0≤|w|≤n

cw(M0)
〉 = 〈 ⋃

0≤|w|≤n

ρcw(M0)
〉 =

〈 ⋃

0≤|w|≤n

Hwρ(M0)
〉 ⊂ 〈 ⋃

0≤|w|≤n

Hw(U(Z))
〉
.

At this point, our aim is to apply Corollary 2.11 to the family F of regular
maps which consists in the linear maps Lw : u(Q) → u(Q) with w ∈ S as well
as in exp : u(Q) → U(Q) and its inverse exp−1. With the same notation as in
Corollary 2.11, let d ∈ N and C > 0, such that ∀m ∈ N∪{0} ∪ {∞}, if f ∈ F then

f

(
A

N
(

1

dm
Z

))
⊂ AN

(
1

d Dm+C
Z

)
.

(Here N = dim(U(Q)) = dim(u(Q)) and we keep n for the index in Mn ). As
already mentioned, for any w ∈ A∗, Hw = exp Lw exp−1. As Lw is linear, we
come to the obvious but crucial conclusion that

deg(Lw) ≤ 1.

Also, as the group is nilpotent, deg(exp) < ∞. It implies that if |w| ≤ n then

Hw(AN (Z)) ⊂ AN
(

1

dC deg(exp)n+C
Z

)
.

Remembering the identification we made between AN and U(Q) and (2.4), we
deduce that for |w| ≤ n,

Hw(U(Z)) ⊂ UC deg(exp)n+C(Z[1/d]).

According to Proposition 2.5, the set UC deg(exp)n+C(Z[1/d]) is a group. We deduce
that

ρ(Dn) = ρ(D ∩ Mn) ⊂ ρ(Mn) ⊂
UC deg(exp)n+C(Z[1/d]).

On the other hand, according to Definition 4.10, the subset M∩ D of M is relatively
compact because D is bounded in N (the embedding f does not appear here because
of our convention of identifying M with its image in N). Proposition 4.11 states
that ρ(M ∩ D) is relatively compact in U(R). Lemma 2.3 enables us to conclude
the proof. ��
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7.3. Construction of Følner exhaustions

Let β > 1, such that

β ≥ C0λ (7.6)

where C0 is the constant of Lemma 7.3 and λ is the constant of Lemma 7.2. Let
α > 1, such that for all n ∈ N,

αn ≥ 2nβn. (7.7)

Each element of � can be written in a unique way xa where x ∈ M and
a = ak1

1 · · · akd
d with k1, . . . , kd ∈ Z. We denote by |a| = ∑ |ki| the l1-norm of the

projection of a onto Zd . Let n ∈ N and m ∈ R, such that n > m ≥ 0. We are ready
for the definition of the Følner exhaustions (which will enable us to obtain Følner
couples). We define

�n,m = {xa : x ∈ E(αn − mβn) ∩ Mn, |a| ≤ n − m}.
We have the following estimates for the cardinality of �n,m .

Lemma 7.6 There exist r ∈ N ∪ {0} and two constants C > 1, c > 0, such that

c(n − m)d(αn − mβn)r |Dn | ≤ |�n,m | ≤ C(n − m)d(αn − mβn)r |Dn |.
Moreover, if 0 < ε ≤ 1/2 and m, n satisfy m ≤ εn then

cndαnr |Dn | ≤ |�n,m | ≤ Cndαnr |Dn |.

Proof. The finitely generated group M0 is nilpotent. Hence |{g ∈ M0 : |g| ≤ k}|
behaves, up to multiplicative constants, like a polynomial in k of a certain degree r.
See [2] and [8]. The first point in the lemma follows from this fact and from
Lemma 7.4. The second statement is true for the same reasons and because (7.7)
implies

αn − mβn ≥ αn − nβn ≥ αn/2. ��
Recall that we have chosen X so that

S = X ∪ {
a1, a−1

1 , . . . , ad, a−1
d

}

generates �.

Lemma 7.7 Let s ∈ S. Let 1 ≤ m < n. If γ ∈ �n,m then γs ∈ �n,m−1.

Proof. Let x ∈ M and a = ak1
1 · · · akd

d with k1, . . . , kd ∈ Z uniquely defined by
the equation

γ = xa.

We consider two cases.
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The first case is when s ∈ X. We have γs = xas = x(asa−1)a. Hence to show
that γs ∈ �n,m−1, we have to show that

xasa−1 ∈ E(αn − (m − 1)βn) ∩ Mn .

Applying 1) of Lemma 7.1, we deduce that asa−1 ∈ Mn . By hypothesis, x is also
in the subgroup Mn . This shows that xasa−1 ∈ Mn . According to 1) of Lemma 7.2,
asa−1 ∈ Be(λ

n). By hypothesis, x ∈ E(αn −mβn). According to 2) of Lemma 7.3
and according to (7.6),

E(αn − mβn)Be(λ
n) ⊂ E(αn − mβn + C0λ

n) ⊂ E(αn − (m − 1)βn).

This concludes the proof in the first case.
For the second case, let s = aε

i , where 1 ≤ i ≤ d and ε ∈ {1; −1}. If d = 1 or
if i = d, the proof is trivial. (Notice that if the exact sequence splits, that is if � is
a semi-direct product of M and A, then we can choose the ai so that they commute
together. Hence in this case the proof is also trivial.) We assume 1 ≤ i < d and we
write

a = uv

where u = ak1
1 · · · aki

i and v = aki+1
i+1 · · · akd

d . We have

γs = xas = xuvs = xu[v, s]sv =
xu[v, s]u−1ak1

1 · · · aki+ε
i aki+1

i+1 · · · akd
d .

Hence we have to show that

xu[v, s]u−1 ∈ E(αn − (m − 1)βn) ∩ Mn .

We proceed almost as in the first case. Applying 2) of Lemma 7.1, we deduce
that [v, s] ∈ M|v|. Applying 1) of the same lemma we deduce that u[v, s]u−1 ∈
M|u|+|v| ⊂ Mn . For the geometric part, applying 2) of Lemma 7.2, we deduce that
[v, s] ∈ Be(λ

|v|). Applying 1) of Lemma 7.2, we deduce that

u[v, s]u−1 ∈ Be(λ
|v|+|u|) ⊂ Be(λ

n).

We conclude as in the first case. ��

7.4. The Følner couples

Proposition 7.8 There is a constant K > 1, such that the sets

(�n,�
′
n)n∈N = (�n,0,�n,n/2)n∈N

form a sequence of Følner couples in � with Følner volume function V(s) =
exp(Ks).

Proof. Conditions 1), 2) and 4) of Definition 6.1 follow from Lemma 7.6. Condi-
tion 3) follows from Lemmas 7.6 and 7.5. Condition 5) follows from Lemma 7.7.

��
Theorem 1.1 follows from the above proposition and Corollary 6.3.
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8. Questions and speculations

1. Let � be a finitely generated torsion-free solvable group which is not virtually
nilpotent. Is it true that � has finite rank if and only if its heat decay satisfies
p2t ∼ exp(−t1/3)? If the derived length is two, the following holds.

Theorem 8.1 Let G be a finitely generated metabelian group without torsion
and of exponential growth. The following conditions are equivalent.
(a) The group G has finite rank.
(b) The heat decay of G satisfies p2t ∼ exp(−t1/3).

(c) The group G does not contain a subgroup isomorphic to Z � Z.
(d) The heat decay of G is strictly slower than exp(−t1/3(log t)2/3).

In the case Gab = G/[G, G] is (infinite) cyclic, the above statement follows
from [18]. If Gab � Zk with k > 1, the exact sequence

1 → [G, G] → G → Z
k → 1

does not split in general but, as [G, G] is abelian, [G, G] ⊗ Q is nevertheless
a finitely generated module overQ[t1, t−1

1 , . . . , tk, t−1
k ] and the technics of [18]

still apply.
2. (Alexopoulos) Does the (asymptotic) entropy of the density associated with the

Markov kernel p vanishes on a finitely generated solvable group of finite rank?
See [1, 2].

3. Does the isoperimetric profile of a finitely generated solvable group of finite
rank satisfy I(n) � n/ log(n)? See [17].

4. A polycyclic group has a finite index subgroup which is a uniform lattice in
a simply-connected solvable Lie group. Hence, the possible heat decays for
polycyclic groups can be deduced from the knowledge of the heat decays for
Lie groups (see Sect. 1.3) and from (1.1). Does this strategy generalize if one
replaces polycyclic groups with finitely generated solvable groups of finite rank
and Lie groups with analytic groups? This leads to the following considerations.
(a) Let � be a finitely generated solvable group of finite rank. There is a fi-

nite index subgroup H in � and a locally compact compactly generated
unimodular solvable analytic group G, such that H embeds as a discrete
subgroup in G.

(b) Let � be a finitely generated discrete subgroup of a locally compact com-
pactly generated analytic group G. Is it true that p�

2t(e, e) � pG
t (e, e)?

(c) What are the possible heat decays of locally compact compactly generated
analytic groups? One of the simplest interesting cases is the following. Let
p be a prime. The formula

λ(x, y) = (λx, λ−1 y),

for λ ∈ Q∗
p and x, y ∈ Qp, defines an action of the multiplicative groupQ∗

p

of the field of p-adic numbers on the additive group Q2
p. Let Sol(Qp) be

the corresponding semi-direct product. This is a locally compact compactly
generated solvable unimodular analytic group over Qp. We guess that the
heat decay on Sol(Qp) behaves like exp(−t1/3).
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