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Abstract The classical Sobolev inequalities play a key role in analysis in
Euclidean spaces and in the study of solutions of partial differential equations.
In fact, they are extremely flexible tools and are useful in many different
settings. This paper gives a glimpse of assortments of such applications in a
variety of contexts.

1 Introduction

There are few articles that have turned out to be as influential and truly im-
portant as S.L. Sobolev 1938 article [93] (the American translation appeared
in 1963), where he introduces his famed inequalities. It is the idea of a func-
tional inequality itself that Sobolev brings to life in his paper, as well as the
now so familiar notion of an a priori inequality, i.e., a functional inequality
established under some strong hypothesis and that might be extended later,
perhaps almost automatically, to its natural domain of definition. (These
ideas are also related to the theory of distributions which did not exist at
the time and whose magnificent development by L. Schwartz was, in part,
anticipated in the work of S.L. Sobolev.)

The most basic and important applications of Sobolev inequalities are to
the study of partial differential equations. Simply put, Sobolev inequalities
provide some of the very basic tools in the study of the existence, regularity,
and uniqueness of the solutions of all sorts of partial differential equations, lin-
ear and nonlinear, elliptic, parabolic, and hyperbolic. I leave to others, much
better qualified than me, to discuss these beautiful developments. Instead, my
aim in this paper is to survey briefly an assortments of perhaps less familiar
applications of Sobolev inequalities (and related inequalities) to problems and
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in settings that are not always directly related to PDEs, at least not in the
most classical sense. The inequalities introduced by S.L. Sobolev have turned
out to be extremely useful flexible tools in surprisingly diverse settings. My
hope is to be able to give to the reader a glimpse of this diversity. The reader
must be warned that the collection of applications of Sobolev inequalities
described below is very much influenced by my own interest, knowledge, and
limitations. I have not tried at all to present a complete picture of the many
different ways Sobolev inequalities have been used in the literature. That
would be a very difficult task.

2 Moser’s Iteration

2.1 The basic technique

This section is included mostly for those readers that are not familiar with
the use of Sobolev inequalities. It illustrates some aspects of one of the basic
techniques associated with their use. To the untrained eyes, the fundamental
nature of Sobolev inequalities is often lost in the technicalities surrounding
their use. Indeed, outside analysis, Lp spaces other than L1, L2, and L∞ still
appear quite exotic to many. As the following typical example illustrates, they
play a key role in extracting the information contained in Sobolev inequalities.

Recall that Hölder’s inequality states that
∫
|fg|dx 6 ‖f‖p‖g‖q

as long as 1 6 p, q 6 ∞ and 1/p + 1/q = 1 (these are called conjugate
exponents). A somewhat clever use of this inequality yields

‖f‖r 6 ‖f‖θ
s‖f‖1−θ

t

as long as 1 6 r, s, t 6 ∞ and 1/r = θ/s + (1− θ)/t. These basic inequalities
are used extensively in conjunction with Sobolev inequalities.

Let ∆ =
∑

(∂/∂xi)2 be the Laplacian in Rn. Consider a bounded domain
Ω ⊂ Rn, λ > 0, and the (Dirichlet) eigenfunction/eigenvalue problem:

∆u = −λu in Ω, u
∣∣
∂Ω

= 0. (2.1)

Our goal is to show how the remarkable inequality

sup
Ω
{|u|2} 6 Anλn/2

∫

Ω

|u|2dx (2.2)
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(for solutions of (2.1)) follows from the most classical Sobolev inequality,
namely, the inequality (2.5) below. For a normalized eigenfunction u with
‖u‖2 = 1 the inequality (2.2) bounds the size of u in terms of the associated
eigenvalue. The technique illustrated below is extremely flexible and can be
adapted to many situations.

In fact, we only assume that u ∈ H1
0 (Ω), i.e., u is the limit of smooth

compactly supported functions in Ω in the norm

‖u‖ =




∫

Ω

[|u|2 +
n∑
1

|∂u/∂xi|2]dx




1/2

and that ∫

Ω

n∑
1

∂u

∂xi

∂v

∂xi
dx = λ

∫

Ω

uvdx (2.3)

for any v ∈ H1
0 (Ω). We set ∇u = (∂u/∂xi)n

1 , |∇u|2 =
n∑
1
|∂u/∂xi|2. To avoid

additional technical arguments, we assume a priori that u is bounded on Ω.
For 1 6 p < ∞ we take v = |u|2p−1(u/|u|) in (2.3). This yields

λ

∫

Ω

|u|2p = (2p− 1)
∫

Ω

|u|2p−2|∇u|2dx =
2p− 1

p2

∫

Ω

|∇|u|p|2dx. (2.4)

As our starting point, we take the most basic Sobolev inequality

∀ f ∈ H1(Rn),
(∫

|f |2qndx

)1/qn

6 C2
n

∫
|∇f |2dx, qn = n/(2−n). (2.5)

If kn = (1 + 2/n), then 1/kn = θn/qn + (1 − θn) with θn = n/(n + 2), and
Hölder’s inequality yields

∫
|f |2kndx 6

(∫
|f |2qndx

)1/qn
(∫

|f |2dx

)2/n

.

Together with the previous Sobolev inequality, we obtain

∫
|f |2(1+2/n)dx 6 C2

n

∫
|∇f |2dx

(∫
|f |2dx

)2/n

. (2.6)

For a discussion of this type of “multiplicative” inequality see, for example,
[75, Sect. 2.3].

Now, for a solution u of (2.1) the inequalities (2.6) and (2.4) yield

∫
|u|2p(1+2/n)dx 6 C2

npλ

(∫
|u|2pdx

)1+2/n

.
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This inequality can obviously be iterated by taking pi = (1 + 2/n)i, and we
get

(∫
|u|2pidx

)1/pi

6 (1 + 2/n)
i∑
1

(j−1)p−1
j (

3C2
nλ

) i∑
1

p−1
j

∫
|u|2dx.

Note that
∞∑
1

p−1
j = n/2 and lim

p→∞
‖|u|2‖p = ‖u2‖∞. The desired conclusion

(2.2) follows.

2.2 Harnack inequalities

The technique illustrated above is the simplest instance of what is widely
known as Moser’s iteration technique. In a series of papers [77]–[80], Moser
developed this technique as the basis for the study of divergence form uni-
formly elliptic operators in Rn, i.e., operators of the form (we use ∂i = ∂/∂xi)

La =
∑

i,j

∂i(ai,j(x)∂j)

with real matrix-valued function a satisfying the ellipticity condition

∀x ∈ Ω,





∑
i,j

ai,j(x)ξiξj > ε|ξ|2,
∑
i,j

ai,j(x)ξiξ
′
j 6 ε−1|ξ||ξ′|,

where ε > 0 and the coefficients ai,j are simply bounded real measurable func-
tions. Because of the low regularity of the coefficients, the most basic question
in this context is that of the boundedness and continuity of solutions of the
equation Lau = 0 in the interior of an open set Ω. This was solved earlier
by De Giorgi [34] (and by Nash [81] in the parabolic case), but Moser pro-
posed an alternative method, squarely based on the use of Sobolev inequality
(2.5). To understand why one might hope this is possible, observe that the
argument given in the previous section works without essential changes if, in
(2.1), one replaces the Laplacian ∆ by La.

Let u be a solution of Lau = 0 in a domain Ω, in the sense that for any
open relatively compact set Ω0 in Ω, u ∈ H1(Ω0) and for all v ∈ H1

0 (Ω0)
∫

Ω

∑

i,j

ai,j
∂u

∂xi

∂v

∂xj
dx = 0.

In [77], Moser observed that the interior boundedness and continuity of such
a solution follow from the Harnack inequality that provides a constant C(n, ε)
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such that if u as above is nonnegative in Ω and the ball B satisfies 2B ⊂ Ω,
then

sup
B
{u} 6 C(n, ε) inf

B
{u} (2.7)

(a priori, the supremum and infimum should be understood here as essential
supremum and essential infimum. The ball 2B is concentric with B with
twice the radius of B). He then proceeded to prove this Harnack inequality
by variations on the argument outlined in the previous section. In his later
papers [78]–[80], Moser obtained a parabolic version of the above Harnack
inequality. Namely, he proved that there exists a constant C(n, ε) such that
any nonnegative solution u of the heat equation (∂t−La)u = 0 in a time-space
cylinder Q = (s− 4r2, s)× 2B satisfies

sup
Q−
{u} 6 C(n, ε) inf

Q+
{u}, (2.8)

where Q− = (s− 3r2, s− 2r2)×B and Q+ = (s− r2/2, s)×B.
Moser’s iteration technique has been adapted and used in hundreds of

papers studying various PDE problems. Some early examples are [2, 3, 90].
The books [42, 69, 76] contain many applications of this circle of ideas, as
well as further references. The survey paper [83] deals specifically with the
heat equation and is most relevant for the purpose of the present paper.

The basic question we want to explore in the next two subsections is: what
exactly are the crucial ingredients of Moser’s iteration? This question is moti-
vated by our desire to use this approach in other settings such as Riemannian
manifolds or more exotic spaces. Early uses of Moser’s iteration technique on
manifolds as in the influential papers [22, 23] were actually limited by a mis-
understanding of what is really needed to run this technique successfully.
Interesting early works that explored the flexibility of Moser’s iteration be-
yond the classical setting are related to degenerated elliptic operators as in
[56]–[58] (see also [39] and the references therein).

2.3 Poincaré, Sobolev, and the doubling property

Moser’s technique in Rn uses only three crucial ingredients:

(1) The Sobolev inequality in the form (2.6), i.e.,

∀ f ∈ C∞0 (Rn),
∫
|f |2(1+2/n)dx 6 C2

n

∫
|∇f |2dx

(∫
|f |2dx

)2/n

.

(2) The Poincaré inequality in the unit ball B, i.e.,
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f ∈ C∞(B),
∫

B

|f − fB |2dx 6 Pn

∫

B

|∇f |2dx,

where fB stands for the average of f over B.

(3) Translations and dilations.

Some might be surprised that the interesting John–Nirenberg inequality
that appears to be a crucial tool in [77, 78] is not mentioned above. However,
as Moser himself pointed out in [80], it can be avoided altogether by using
a clever, but very elementary observation of Bombieri and Giusti. Somewhat
unfortunately, this important simplification has been ignored by a large part
of the later literature!

Obviously, in order to use the method in a larger context, one wants to
replace the use of translations and dilations by hypotheses that are valid at
all scales and locations. For instance, the needed Poincaré inequality takes
the form

∀ z, ∀ r > 0, f ∈ C∞(B(z, r)),
∫

B(z,r)

|f − fB(z,r)|2dx 6 Pnr2

∫

B(z,r)

|∇f |2dx,

where fB stands for the average of f over B. A correct generalization is less
obvious in the case of the Sobolev inequality. As stated, the inequality (2.6)
turns out to be too restrictive and not strong enough, both at the same time!

For instance, consider a complete Riemannian manifold (M, g) of dimen-
sion n. We set |∇f |2 = g(∇f,∇f), where the gradient ∇f is the vector field
defined by gx(∇f, X) = df(X) for any tangent vector X at x. Let µ be the
Riemannian measure, B(x, r) the geodesic ball with center x and radius r,
and

V (x, r) = µ(B(x, r)).

If we assume that the inequality analogous to (2.6) holds on M , i.e.,

∀ f ∈ C∞0 (M),
∫
|f |2(1+2/n)dµ 6 C2

M

∫
|∇f |2dµ

(∫
|f |2dµ

)2/n

, (2.9)

then it turns out that this implies the existence of a constant cM > 0 such
that

∀x ∈ M, ∀ r > 0, µ(B(x, r)) = V (x, r) > cMrn

(see [17, Proposition 2.4] and [87, Theorem 3.15]). This rules out simple
manifolds such as Rn+k/Zk or Rn−k × Sk (on which, for other reasons, one
knows that the above-mentioned analogs of the Harnack inequalities (2.7),
(2.8) hold). Let us observe that when n > 3, (2.9) is, in fact, equivalent to
the more standard Sobolev inequality
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∀ f ∈ C∞0 (M),
(∫

|f |2qndµ

)1/qn

6 C2
M

∫
|∇f |2dµ, qn = n/(n− 2),

(2.10)
where the constant CM may be different in (2.9) and in (2.10).

In the other direction, (2.10) and thus (2.9) holds in the case of hyperbolic
spaces (with dimension n > 2 for (2.10)), but the desired Harnack inequalities
fail to hold uniformly at large scale in such spaces.

Definition 2.1. We say that a complete Riemannian manifold M satisfies a
scale invariant family of Sobolev inequalities if there is a constant CM and
a real number q = ν/(ν − 2) > 1 such that for any x ∈ M , r > 0, and
B = B(x, r) we have

∀ f ∈ C∞0 (B),




∫

B

|f |2qdµ




1/q

6 CMr2

µ(B)2/ν

∫

B

[|∇f |2 + r−2|f |2] dµ. (2.11)

Remark 2.1. The inequality (2.11) can be written in the form: for all f ∈
C∞0 (B)


 1

µ(B)

∫

B

|f |2qdµ




1/q

6 CMr2


 1

µ(B)

∫

B

[|∇f |2 + r−2|f |2] dµ


 .

Remark 2.2. In this definition, the exact value of q is not very important
and ν appears here as a technical parameter. If (2.11) holds for some q =
ν/(ν − 2) > 1, then the Jensen inequality shows that it also holds for all
1 < q′ = ν′/(ν′ − 2) 6 q, i.e., for all finite ν′ > ν.

Remark 2.3. In general, (2.10) does not imply (2.11). However, (2.10) does
imply (2.11) with ν = n when the manifold M has an Euclidean type volume
growth, i.e., there exists 0 < vM 6 VM < ∞ such that vMrn 6 V (x, r) 6
VMrn for all x ∈ M and r > 0. This is obviously a very restrictive and
undesirable hypothesis. This is exactly the point that restricted the use of
Moser’s iteration technique to very local results in some early applications of
the technique to analysis on Riemannian manifolds as in [22, 23].

Remark 2.4. There are many equivalent forms of (2.11). We mention three.
The first one is analogous to (2.6) and reads

∫

B

|f |2(1+2/ν)dµ 6 CMr2

µ(B)2/ν

∫

B

[|∇f |2 + r−2|f |2] dµ




∫

B

|f |2dµ




2/ν

.

The second is in the form of the so-called Nash inequality and reads
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∫

B

|f |2(1+2/ν)dµ 6 CMr2

µ(B)2/ν

∫

B

[|∇f |2 + r−2|f |2] dµ




∫

B

|f |dµ




4/ν

(see [81] and [75, Sect. 2.3]). The third is often referred to as a Faber–Krahn
inequality (see [44]) and reads

λD(Ω) > cM

r2

(
µ(Ω)
µ(B)

)2/ν

,

where λD(Ω) is the lowest Dirichlet eigenvalue in Ω, an arbitrary subset of
the ball B of radius r. In each case, r is the radius of B and the inequality
must hold uniformly for all geodesic balls B. The exact value of the constants
varies from one type of inequality to another. Many results in the spirit of
these equivalences can be found in [75] in the context of Euclidean domains.
A discussion in a very general setting is in [4] (see also [87, Chapt. 3]).

The following theorem describes some of the noteworthy consequences
of (2.11). Let ∆M be the Laplace operator on M , and let h(t, x, y) be the
(minimal) fundamental solution of the heat equation (∂t −∆M )u = 0 on M ,
i.e., the kernel of the heat semigroup et∆M . For complete discussions, surveys,
and variants, see [43, 44, 46, 45, 48, 85, 86, 87].

Theorem 2.1. Assume that (M, g) is a complete Riemannian manifolds
which satisfies the scale invariant family of Sobolev inequalities (2.11) (with
some parameter ν > 2). Then the following properties hold.

• There exists a constant VM such that for any two concentric balls B ⊂ B′

with radii 0 < r < r′ < ∞

µ(B′) 6 VM (r′/r)νµ(B). (2.12)

• There exists a constant CM such that for all x ∈ M and r > 0 any
positive subsolution u of the heat equation in a time-space cylinder Q =
(s− 4r2, s)×B(x, 2r) satisfies

sup
Q′
{u2} 6 CM

1
r2µ(B)

∫

Q

|u|2dµds, (2.13)

where Q′ = (s− r2, s)×B(x, r).

• For any integer k > 0 there is a constant A(M, k) such that for all points
x, y ∈ M and t > 0

|∂k
t h(t, x, y)| 6 A(M,k)

tkV (x,
√

t)

(
1 + d(x, y)2/t

)ν+k
exp

(
−d(x, y)2

4t

)
. (2.14)
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Remark 2.5. The inequality (2.13) can be obtained by a straightforward ap-
plication of Moser’s iteration technique. One of many possible applications
of (2.13) is (2.14).

Remark 2.6. The volume inequality (2.12), together with the heat kernel
bound

∀x ∈ M, t > 0, h(t, x, x) <
AM

V (x,
√

t)
,

implies the Sobolev inequality (2.11).

Definition 2.2. A complete Riemannian manifold has the doubling volume
property if there exists a constant VM such that

∀x ∈ M, r > 0, V (x, 2r) 6 VMV (x, r).

Remark 2.7. It is easy to see that the doubling property implies (2.12) with
ν = log2 VM .

Definition 2.3. A complete Riemannian manifold admits a scale invariant
Poincaré inequality (in L2) if there exists a constant PM such that

∀x ∈ M, r > 0,

∫

B

|f − fB |2dµ 6 PMr2

∫

B

|∇f |2dµ, (2.15)

where B = B(x, r) and fB is the average of f over B.

Remark 2.8. This Poincaré inequality can be stated in terms of the spectrum
of minus the Neumann Laplacian in geodesic balls. For minus the Neumann
Laplacian (understood in an appropriate sense) in a ball B, the lowest eigen-
value is 0 (associated with constant functions). The L2 Poincaré inequality
above is equivalent to say that the second eigenvalue λN (B(x, r)) is bounded
from below by cr−2, where r is the radius of B.

Remark 2.9. Keeping Moser’s iteration in mind, it is a very important and
remarkable fact that if M satisfies both the doubling property and a scale
invariant Poincaré inequality, then it satisfies (2.11) (see [85]–[87]). In this
case, one can take ν to be an arbitrary number greater than 2 and such that
(2.12) holds.

Definition 2.4. A complete Riemannian manifold admits a scale invariant
parabolic Harnack inequality if there exists a constant CM such that for any
x ∈ M , r > 0, and s ∈ R and for any nonnegative solution u of the heat
equation in the time-space cylinder Q = (s− 4r2, s)×B(x, 2r)

sup
Q−
{u} 6 CM inf

Q+
{u}

with Q− = (s− 3r2, s− 2r2)×B(x, r) and Q+ = (s− r2, s)×B(x, r).
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In this setting, a version of Moser’s iteration methods gives one half of the
following result (see [43, 85] and a detailed discussion in [87, Sect. 5.5]).

Theorem 2.2. Let (M, g) be a complete Riemannian manifold. The following
properties are equivalent.

• The doubling property and a scale invariant L2 Poincaré inequality.

• The scale invariant parabolic Harnack inequality.

• The two-sided heat kernel bound

c

V (x,
√

t)
exp

(
−A

d(x, y)2

t

)
6 h(t, x, y) 6 C

V (x,
√

t)
exp

(
−a

d(x, y)2

t

)

for constants 0 < a,A, c, C < ∞.

One may asked how the above properties are related to the elliptic version
of Harnack inequality. This is not entirely understood, but the following result
involving the Sobolev inequality (2.11) sheds some light on this question (see
[61]).

Theorem 2.3. Let M be a complete manifold satisfying the Sobolev inequal-
ity (2.11) for some q > 1. Then the following properties are equivalent.

• The scale invariant L2 Poincaré inequality.

• The scale invariant elliptic Harnack inequality.

• The scale invariant parabolic Harnack inequality.

We conclude with results concerning global harmonic functions.

Theorem 2.4. Let M be a manifold satisfying the doubling volume property
and a scale invariant L2 Poincaré inequality.

• Any harmonic functions on M that is bounded from below must be con-
stant.

• There exists a0 > 0 such that for any fixed point x ∈ M any harmonic
function satisfying sup

y
{u(y)/(1 + d(x, y))a0} < ∞ must be constant.

• For any a > 0 and a fixed point x ∈ M the space of harmonic functions
on M satisfying sup

y
{u(y)/(1 + d(x, y))a} < ∞ is finite dimensional.

Remark 2.10. The first two statements are standard consequences of the
(scale invariant) elliptic Harnack inequality which follows from the assump-
tions of the theorem. The last statement is a recent result due to Colding and
Minicozzi [24, 25, 72, 71]. The proof of the last statement makes explicit the
use of the Poincaré inequality and the doubling volume property. A number
of interesting variations on this result are discussed in [24, 25, 72, 71]. A
different viewpoint concerning Liouville theorems, restricted to some special
circumstances, but very interesting nonetheless is developed in [68].
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Example 2.1. Euclidean spaces are the model examples for manifolds that
satisfy both the doubling condition and the Poincaré inequality. Larger classes
of examples will be described in the next section. Interesting examples where
the Poincaré inequality fails are obtained by considering manifolds M that
are the connected sum of two (or more) Euclidean spaces. Here, we write M =
Rn#Rn to mean a complete Riemannian manifold that can be decomposed in
the disjoint union E1∪K∪E2, where E1, E2 are each isometric to the outside
of some compact domain with smooth boundary in Rn and K is a smooth
compact manifold with boundary. In words, Rn#Rn is made of two copies
of Rn smoothly attached together through a compact “collar.” The following
facts (that are not too difficult to check) make these examples interesting.

• M = Rn#Rn has the doubling property. In fact, obviously, V (x, r) ' rn.

• M = Rn#Rn satisfies (2.11) with ν being any positive real that is both at
least n and greater than 2. In fact, (2.9) holds on Rn#Rn for any n, and
(2.10) holds if n > 2. This means that Theorem 2.1 applies.

• Except for the trivial case n = 1, the scale invariant Poincaré inequality
(2.15) does not hold on Rn#Rn. More precisely, if o is a fixed point in the
collar of Rn#Rn and Br = B(o, r), then for large r À 1, we have

λN (Br) '
{

(r2 log r)−1 if n = 2,

r−n if n > 2,

where λN (Br) is the second lowest eigenvalue of the Neumann Laplacian
in Br. This means that the best Poincaré inequality in Br has a constant
that is in r2 log r if n = 2 and rn if n > 3 (instead of the desired r2).

• For n > 1, M = Rn#Rn does not satisfy the elliptic Harnack inequality
(again, it fails for nonnegative harmonic functions in the balls Br as above,
when r tends to infinity).

• For n 6 2 there are no nonconstant positive harmonic functions, but for
n > 3 there are nonconstant bounded harmonic function on M = Rn#Rn.

• For n > 2 let o be a point in the collar of M = Rn#Rn, and let x and
y be, respectively, in the first and second copies of Rn constituting M ,
at distance about r =

√
t from o. Then the heat kernel h(t, x, y) satisfies

h(t, x, y) ' t−n+1. This should be compare with the Euclidean heat kernel
at time t for points x, y about

√
t apart which is of size about t−n/2. For

more on this we refer the reader to [49]–[51].
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2.4 Examples

We briefly discuss various examples that illustrate the above-described re-
sults.

Example 2.2 (manifolds with nonnegative Ricci curvature). The Ricci cur-
vature Ric is a symmetric (0, 2)-tensor (obtained by contraction of the full
curvature tensor) that contains a lot of useful information. Two well-known
early examples of that are:

(1) Meyers’ theorem (more on this later) stating that a complete Rieman-
nian manifold with Ric > Kg with K > 0 must be compact and

(2) Bishop’s volume inequality asserting that if Ric > Kg for some k ∈ R,
then the volume function on M , V (x, r), is bounded from above by the volume
function VK/(n−1)(r) of the simply connected space of the same dimension
and constant sectional curvature K/(n− 1) (see, for example, [20, p.73], [21,
Theorem 3.9] and [41, 3.85; 3.101]).

Theorem 2.5 ([14, 22, 74]). A complete Riemannian manifold (M, g) with
nonnegative Ricci curvature satisfies the equivalent properties of Theorem 2.2.

It is interesting to note that the equivalent properties of Theorem 2.2
where proved independently for manifolds with nonnegative Ricci curvature.
The doubling property follows from the more precise Bishop–Gromov volume
inequality of [22]. Namely, if Ric > k(n− 1)g, then

∀x ∈ M, s > r > 0,
V (x, s)
V (x, r)

6 Vk(s)
Vk(r)

. (2.16)

If k = 0, this gives V (x, s) 6 (s/r)nV (x, r) for all x ∈ M , s > r > 0. The
Poincaré inequality follows from the result in [14] (see also [21, Theorems
3.10 and 6.8] and [87, Theorem 5.6.5]). The Harnack inequality and two-
sided heat kernel estimate follow from the gradient estimate of Li and Yau
[74]. Of course, these results imply that the various conclusions of Theorem
2.4 hold for Riemannian manifolds with nonnegative Ricci curvature. In this
setting, the last statement in Theorem 2.4 (due to Colding and Minicozzi)
solves a conjecture of Yau (see [24, 25, 72, 71]).

Example 2.3. Let G be a connected real Lie group equipped with a left-
invariant Riemannian metric g. Note that the Riemannian measure is also a
left-invariant Haar measure. We say that G has polynomial volume growth if
there exist C, a ∈ (0,∞) such that V (e, r) 6 Cra for all r > 1. A group G with
polynomial volume growth must be unimodular (left-invariant Haar measures
are also right-invariant) and, by a theorem of Guivarc’h [55], there exists an
integer N such that c0 6 r−NV (e, r) 6 C0 for all r > 1. It follows that (G, g)
satisfies the volume doubling property. By a simple direct argument (see, for
example, [87, Theorem 5.6.1]), the scale invariant Poincaré inequality also
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holds. Hence one can apply Theorem 2.2. In fact, in this setting, one has the
following result.

Theorem 2.6. Let G be a connected real unimodular Lie group equipped with
a Riemannian metric g. The following properties are equivalent.

• The group G has polynomial volume growth.

• Any positive harmonic function on G is constant.

• The scale invariant elliptic Harnack inequality holds.

• The scale invariant Sobolev inequality (2.11) holds for some q > 1.

• The scale invariant parabolic Harnack inequality holds.

Proof. Connected Lie groups have either strict polynomial growth V (e, r) '
rN for all r > 1 for some integer N or exponential volume growth (see [55]).
Thus, if the volume growth is polynomial, it must be strictly polynomial and
the doubling volume property follows. As already mentioned, it is also very
easy to prove the scale invariant Poincaré inequality on a connected Lie group
of polynomial growth (see, for example, [87, Theorem 5.6.2]). By Theorem
2.2, this shows that polynomial volume growth implies the parabolic Harnack
inequality in this context. The parabolic Harnack inequality implies all the
other mentioned properties (see Theorem 2.2 and the various remarks in the
previous section). The Sobolev inequality (2.11) implies the doubling volume
property, hence polynomial volume growth in this context. The elliptic Har-
nack property implies the triviality of positive harmonic functions. This, in
turns, implies polynomial volume growth by [13, Theorem 1.4 or 1.6]. The
stated theorem follows. ut

For more general results in this setting see [103]. Harmonic functions of
polynomial growth on Lie groups of polynomial growth are studied in [1].

Example 2.4 (coverings of compact manifolds). Let (M, g) be a complete Rie-
mannian manifold such that there exists a discrete group of isometries Γ
acting freely and properly on (M, g) with compact quotient N . The discrete
group Γ must be finitely generated. Its volume growth is defined by using
the word metric and counting measure.

Theorem 2.7. Let (M, g) be a complete Riemannian manifold such that
there exists a discrete group of isometries Γ acting freely and properly on
(M, g) with compact quotient M/Γ . The following properties are equivalent.

• The group Γ has polynomial volume growth.

• The scale invariant elliptic Harnack inequality holds.

• The scale invariant Sobolev inequality (2.11) holds for some q > 1.

• The scale invariant parabolic Harnack inequality holds.
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For a complete discussion see [88, Theorem 5.15]. Note the similarity and
differences between this result and Theorem 2.6. The main difference is that,
for coverings of a compact manifold, there is no known criterion based on
the triviality of positive harmonic functions. This is due to the fact that the
group Γ may not be linear (or close to a linear group) (see [13, 88]).

3 Analysis and Geometry on Dirichlet Spaces

3.1 First order calculus

One of the recent developments in the theory of Sobolev spaces concerns the
definitions and properties of such spaces under minimal hypotheses. The most
general setting is that of metric measure spaces. There are very good reasons
to try to understand what can be done in that setting including important
applications to problems coming from different areas of mathematics and
even to questions concerning classical Sobolev spaces. In what follows, I only
discuss a very special class of metric measure spaces, but it is useful to keep in
mind the more general setting. Indeed, the theory of Sobolev spaces on metric
measure spaces is also of interest because of the many similar, but different
setting it unifies. We refer the reader to the entertaining books [59, 62, 89]
and the review paper [63] for glimpses of the general viewpoint on “first order
calculus.”

There are many interesting natural metric spaces (of finite dimension type)
on which one wants to do some analysis and that are not Riemannian mani-
folds. Some appear as limit of Riemannian manifolds, for example, manifolds
equipped with sub-Riemannian structures and more exotic objects appearing
through various geometric precompactness results. Others are very familiar
(polytopal complexes seem to appear in real life as often, if not more often,
than true manifolds), but have not been studied in much detail as far as
analysis is concerned. One natural structure that captures a good number of
such examples and provides many natural analytic objects to study (beyond
first order calculus) is the structure of Dirichlet spaces. The earliest detailed
reference on Dirichlet spaces is [36]. We refer the reader to [40] for a detailed
introduction to Dirichlet spaces.

3.2 Dirichlet spaces

This subsection describes a restricted class of Dirichlet spaces that provides
nice metric measure spaces. There are several interesting possible variations
on this theme, and we only discuss here the strongest possible version.
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We start with a locally compact separable metric space M equipped with
a Radon measure µ such that any open relatively compact nonempty set has
positive measure. The original metric will not play any important role.

In addition, we are given a symmetric bilinear form E defined on a dense
subset D(E) of L2(M, dµ) such that (u, u) > 0 for any u ∈ D(E). We assume
that E is closed, i.e., D(E) equipped with the norm

E1(u, u)1.2 =
√
‖u‖22 + E(u, u)

is complete (i.e., is a Hilbert space). In addition, we assume that the unit
contraction

u 7→ vu = inf{1, sup{0, u}}
operates on (E ,D(E)) in the sense that

u ∈ D(E) =⇒ vu ∈ D(E) and E(vu, vu) 6 E(u, u).

Such a form is called a Dirichlet form and is associated with a self-adjoint
strongly continuous semigroup of contractions Ht, t > 0, on L2(M, dµ) with
the additional property that 0 6 u 6 1 implies 0 6 Htu 6 1. Namely, if A is
the infinitesimal generator so that Ht = etA (in the sense of spectral theory,
say), then D(E) = Dom((−A)1/2) and E(u, v) = 〈(−A)1/2u, (−A)1/2v〉.

We assume that the form E is strongly local, i.e., E(u, v) = 0 if u, v ∈ D(E)
have compact support and v is constant on a neighborhood of the support of
u. Finally, we assume that (M, E ,D(E)) is regular. This means that the space
Cc(M) of continuous compactly supported functions on M has the property
that D(E)∩Cc(M) is dense in Cc(M) in the sup norm ‖u‖∞ = sup

M
{|u|} and is

dense in D(E) in the norm E1/2
1 . Note that this is a hypothesis that concerns

the interaction between E and the topology of M . We call (M,µ, E ,D(E)) a
strictly local regular Dirichlet space.

Under these hypotheses, there exists a bilinear form Γ defined on D(E)×
D(E) with the values in signed Radon measures on M such that

E(u, v) =
∫

M

dΓ (u, v).

For u ∈ D(E) ∩ L∞(M), Γ (u, u) is defined by

∀ϕ ∈ D(E) ∩ Cc(M),
∫

M

ϕdΓ (u, u) = E(u, ϕu)− (1/2)E(u2, ϕ).

Although the measure Γ (u, v) might be singular with respect to µ, it behaves
much like g(∇u,∇v)dx on a Riemannian manifold. For instance, versions
of the chain rule and Leibnitz rule apply. In what follows, we work under
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additional assumptions that imply that the set of those u in D(E) such that
dΓ/dµ exists is rich enough (see [10, 97] for further details).

We now introduce a key ingredient to our discussion: the intrinsic distance.

Definition 3.1. Let (M, µ, E ,D(E)) be a strictly local regular Dirichlet
space. For x, y in M we set

ρ(x, y) = sup{u(x)− u(y) : u ∈ D(E) ∩ Cc(M), dΓ (u, u) 6 dµ}.

Here, the condition dΓ (u, u) 6 dµ means that the measure Γ (u, u) is abso-
lutely continuous with respect to µ with Radon–Nykodim derivative bounded
by 1 almost everywhere. It is obvious that ρ is symmetric in x, y and satisfies
the triangle inequality. It might well be either 0 or ∞ for some x, y. If ρ is
finite and ρ(x, y) = 0 only if x = y, then ρ is a distance function.

Qualitative hypotheses.

Throughout the paper, we assume that

(A1) The function ρ : M ×M → [0,∞] is finite, continuous, satisfies

ρ(x, y) = 0 ⇒ x = y,

and defines the topology of M .

(A2) The metric space (M, ρ) is a complete metric space.

With these hypotheses, one can show that the metric space (M,ρ) is a
length space (i.e., ρ(x, y) can be computed as the minimal length of con-
tinuous curves joining x to y, where the length of a curve is defined using
ρ in a natural manner). Denote by B(x, r) the open balls in (M,ρ). Each
B(x, r) is precompact with compact closure given by the associated closed
ball. Set V (x, r) = µ(B(x, r)). For each fixed x ∈ M , r > 0 the function
δ(y) = max{0, r−ρ(x, y)} is in D(E)∩Cc(M) and satisfies dΓ (δ, δ) 6 dµ (see
[10, 11, 12, 94, 95, 96, 97] for details).

3.3 Local weak solutions of the Laplace and heat
equations

Recall that A is the infinitesimal generator of the semigroup of operators
associated to our Dirichlet form. Identify L2(M, µ) with its dual using the
scalar product.

Let V be a nonempty open subset of M . Consider the subspace Fc(V ) ⊂
D(E) of those functions with compact support in V . Note that Fc(V ) ⊂
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D(E) ⊂ L2(M, µ) and consider their duals L2(X, µ) ⊂ D(E)′ ⊂ Fc(V )′. We
use the brackets 〈·, ·〉 to denote duality pairing between these spaces. Let
Floc(V ) be the space of functions u ∈ L2

loc(V ) such that for any compact
set K ⊂ V there exists a function uK ∈ D(E) that coincides with u almost
everywhere on K.

Definition 3.2. Let V be a nonempty open subset of X. Let f ∈ Fc(V )′. A
function u : V 7→ R is a weak (local ) solution of Au = f in V if

1. u ∈ Floc(V );

2. for any function ϕ ∈ Fc(V ) we have E(ϕ, u) = 〈ϕ, f〉.
Remark 3.1. If f can be represented by a locally integrable function in V
and u is such that there exists a function u∗ ∈ Dom(A) (the domain of the
infinitesimal generator A) satisfying u = u∗|V , then u is a weak local solution
of Au = f if and only if Au∗|V = f a.e in V .

Remark 3.2. The notion of weak local solution defined above may contain
implicitly a Neumann type boundary condition if M has a natural boundary.
Consider, for example, the case where M is the closed upper-half plane P+ =
R2

+ equipped with its natural Dirichlet form

E(f, f) =
∫ ∫

R2
+

(∣∣∣∣
∂f

∂x

∣∣∣∣
2

+
∣∣∣∣
∂f

∂y

∣∣∣∣
2
)

dxdy, f ∈ W 1(R2
+).

Let V = {z = (x, y) : x2 + y2 < 1; y > 0} ⊂ P+. Note that V is open in P+.
Let u be a local weak solution of ∆u = 0 in V . Then it is easy to see that u
is smooth in V and must have vanishing normal derivative along the segment
(−1, 1) of the real axis.

Next, we discuss local weak solutions of the heat equation ∂tu = Au in a
time-space cylinder I × V , where I is a time interval and V is a nonempty
open subset of X. Given a Hilbert space H, let L2(I → H) be the Hilbert
space of functions v : I 7→ H such that

‖v‖L2(I→H) =




∫

I

‖v(t)‖2Hdt




1/2

< ∞.

Let W 1(I → H) ⊂ L2(I → H) be the Hilbert space of those functions
v : I 7→ H in L2(I → H) whose distributional time derivative v′ can be
represented by functions in L2(I → H), equipped with the norm

‖v‖W 1(I→H) =




∫

I

(‖v(t)‖2H + ‖v′(t)‖2H)dt




1/2

< ∞.
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Given an open time interval I, we set

F(I ×X) = L2(I → D(E)) ∩W 1(I → D(E)′).

Given an open time interval I and an open set V ⊂ X (both nonempty), let

Floc(I × V )

be the set of all functions v : I × V → R such that for any open interval
I ′ ⊂ I relatively compact in I and open subset V ′ relatively compact in V
there exists a function u# ∈ F(I × X) satisfying u = u# a.e. in I ′ × V ′.
Finally, let

Fc(I×V ) = {v ∈ F(I×X) : v(t, ·) has compact support in V for a.a. t ∈ I}.

Definition 3.3. Let I be an open time interval. Let V be an open subset in
X, and let Q = I ×V . A function u : Q 7→ R is a weak (local) solution of the
heat equation (∂t −A)u = 0 in Q if

1. u ∈ Floc(Q);

2. for any open interval J relatively compact in I and ϕ ∈ Fc(Q)
∫

J

∫

V

ϕ∂tudµdt +
∫

J

E(ϕ(t, ·), u(t, ·))dt = 0.

As noted in the elliptic case, this definition may contain implicitly some
Neumann type boundary condition along a natural boundary of X (see [94,
96] for a detailed discussion).

3.4 Harnack type Dirichlet spaces

The following is the main definition of this section.

Definition 3.4. We say that a regular strictly local Dirichlet form (E ,D(E))
on L2(M, µ) is of Harnack type if the distance ρ satisfies the qualitative
conditions (A1), (A2), and the following scale invariant parabolic Harnack
inequality holds. There exists a constant C such that for any z ∈ M , r > 0
and weak nonnegative solution u of the heat equation (∂t − A)u = 0 in
Q = (s− 4r2, s)×B(z, 2r) we have

sup
(t,x)∈Q−

u(t, x) 6 C inf
(t,x)∈Q+

u(t, x), (3.1)

where Q− = (s− 3r2, s− 2r2)×B(z, r), Q+ = (s− r2, s)×B(z, r) and both
sup and inf are essential, i.e. are computed up to sets of measure zero.
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Any Harnack type Dirichlet form (E ,D(E)) obviously satisfies the following
elliptic Harnack inequality (with the same constant C as in (3.1)). For any
z ∈ X and r > 0 and weak nonnegative solution u of the equation Lu = 0 in
B(z, 2r) we have

sup
B(z,r)

u 6 C inf
B(z,r)

u. (3.2)

This elliptic Harnack inequality is weaker than its parabolic counterpart.
One of the simple, but important consequences of the Harnack inequal-

ity (3.1) is the following quantitative Hölder continuity estimate (see, for
example, [87, Theorem 5.4.7] and [94]).

Theorem 3.1. Assume that (E ,D(E)) is a Harnack type Dirichlet form on
L2(M,µ). Then there exists α ∈ (0, 1) and A > 0 such that any local (weak)
solution of the heat equation (∂t − A)u = 0 in Q = (s − 4r2, s) × B(x, 2r),
x ∈ X, r > 0 has a continuous representative and satisfies

sup
(t,y),(t′,y′)∈Q′

{ |u(y, t)− u(y′, t′)|
[|t− t′|1/2 + ρE(y, y′)]α

}
6 A

rα
sup
Q
|u|,

where Q′ = (s− 3r2, s− r2)×B(x, r).

A crucial consequence of this is that, on a Harnack type Dirichlet space,
local weak solutions of the Laplace equation or the heat equation are contin-
uous functions (in the sense that they admit a continuous representative).

Definition 3.5. Let (M, µ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2).

• We say that the doubling volume property holds if there is a constant D0

such that V (x, 2r) 6 D0V (x, r) for all x ∈ M and r > 0.

• We say that the scale invariant L2 Poincaré inequality holds if there is a
constant P0 such that for any ball B = B(x, r) in (M, ρ)

∀u ∈ Floc(B(x, r),
∫

B

|u− uB |2dµ 6 Por
2

∫

B

dΓ (u, u),

where uB denotes the average of u over B.

• We say that these properties hold uniformly at small scales if they hold
under the restriction that r ∈ (0, 1).

We can now state the main result of this section which is a direct general-
ization of Theorem 2.2 in the setting of strictly local regular Dirichlet spaces
(see [94]).

Theorem 3.2. Let (M,µ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2). The following properties are
equivalent.
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• The space (M,µ, E ,D(E)) is a Harnack type Dirichlet space.

• The doubling volume property and the scale invariant Poincaré inequality
are satisfied on (M,µ, E ,D(E)).

• The heat semigroup etA admits a transition kernel h(t, x, y) satisfying the
two-sided bound

c

V (x,
√

t)
exp

(
−A

ρ(x, y)2

t

)
6 h(t, x, y) 6 C

V (x,
√

t)
exp

(
−a

ρ(x, y)2

t

)

for constants 0 < a,A, c, C < ∞.

As in the classical case, if one uses Moser’s iteration techniques, one of
the first steps of the proof that the doubling property and Poincaré inequal-
ity imply the parabolic Harnack inequality is that they imply the family of
Sobolev inequalities

∀ f ∈ Fc(B),




∫

B

|f |2qdµ




1/q

6 CMr2

µ(B)2/ν




∫

B

dΓ (f, f) +
∫

B

r−2|f |2dµ




(3.3)
for some q > 1 and ν > 2 related to q by q = ν/(ν − 2). This inequality
implies the volume estimate

∀x ∈ M, r > s.0, V (x, r) 6 C(r/s)νV (x, s).

Furthermore, a precise analog of Theorem 2.1 holds in this setting, as well as
the following version of Theorem 2.3 (see [61]).

Theorem 3.3. Let (M,µ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2) and (3.3). The following prop-
erties are equivalent.

• The scale invariant L2 Poincaré inequality.

• The scale invariant elliptic Harnack inequality.

• The scale invariant parabolic Harnack inequality.

3.5 Imaginary powers of −A and the wave equation

This section is merely a pointer to some interesting related results and liter-
ature regarding the wave equation. In the classical setting of Rn, the wave
equation is the PDE (∂2

t − ∆)u = 0. One of its main properties is the fi-
nite propagation speed property which asserts that if a solution u has sup-
port in the ball B(x0, r0) at time t0, then, at time t, its has support in
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B(x0, r0 + (t − t0)). Although this property can be proved in a number of
elegant ways in Rn, its generalization to other settings is not quite straight-
forward. Basic solutions of the wave equation can be obtain as follows. Using
Fourier transform, consider the operator cos(t

√−∆) acting on L2(Rn). Then
for any smooth ϕ with compact support

u(t, ·) = cos(t
√
−∆)ϕ

is a solution of the wave equation with u(0, ·) = ϕ. This construction gen-
eralizes using spectral theory to any (nonpositive) self-adjoint operator, in
particular, to the infinitesimal generator A of a Markov semigroup associated
with a strictly local regular Dirichlet space (M, µ, E ,D(E)). In this general
setting, it is not entirely clear how to discuss the finite speed propagation
property of the wave equation

(∂2
t −A)u = 0.

Given a distance function d on M ×M (assumed, at the very least, to be a
measurable function on M×M), one says that the wave equation (associated
to A) has unit propagation speed with respect to d if for any functions u1, u2 ∈
L2(M,µ) compactly supported in S1, S2, respectively, with

d(S1, S2) = min{d(s1, s2) : s1 ∈ S1, s2 ∈ S2} > t

we have
〈cos(t

√
−A)u1, u2〉µ = 0.

The following theorem follows from the techniques and results in [91, 92].

Theorem 3.4. Let (M,µ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2). Then the associated wave
equation has unit propagation speed with respect to the distance ρ introduced
in Definition 3.1.

This result plays an important role in the study of continuity properties on
Lp spaces of various operators defined via spectral theory by the functional
calculus formula

m(−A) =

∞∫

0

m(λ)dEλ,

where Eλ stands for a spectral resolution of the self-adjoint operator −A. This
formula defines a bounded operator on L2(M,µ) for any bounded function m.
The question then is to examine what further properties of m imply additional
continuity properties of m(−A). The finite speed propagation property is
very helpful in the study of these questions. We refer the reader to [37, 38,
92], where earlier references and detailed discussions of the literature can
be found. As an illustrative example, we state the following result. For a
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function m defined on [0,∞) we set mt(u) = m(tu) and ‖m‖(s) = ‖(I −
(d/du)2)s/2m‖∞.

Theorem 3.5. Let (M,µ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2). Assume that the Sobolev in-
equality (3.3) holds for some q > 1 and ν given by q = ν/(ν − 2).

Fix a function η ∈ C∞c ((0,∞)), not identically 0. If m is a bounded function
such that

sup
t>0

‖ηmt‖(s) < ∞

for some s > ν/2, then the operator m(−A) is bounded on Lp(M,µ) for each
p ∈ (1,∞). The operators (−A)iα, α ∈ R, are all bounded on Lp(M,µ),
1 < p < ∞, and there exists a constant C such that the norm of (−A)iα on
Lp(M, µ) is at most C(1 + |α|)ν/2, for all α ∈ R and 1 < p < ∞.

3.6 Rough isometries

One of the strengths of the techniques and results discussed in this paper
is their robustness. In the present context, the idea of rough isometry was
introduced by Kanai [64, 66, 65] and developed further in [32]. It has also been
made very popular by the work of M. Gromov. Note that rough isometries
as defined below do not preserve the small scale structure of the space.

Definition 3.6. Let (Mi, ρi, µi), i = 1, 2, be two measure metric spaces. We
say that they are roughly isometric (or quasiisometric) as metric measure
spaces if there are two maps ϕk : Mi → Mj , k = (i, j) ∈ {(1, 2), (2, 1)} and a
constant A such that for k′ = (j, i) we have the following.

1. ∀x ∈ Mi, ρi(x, ϕk′ ◦ ϕk(x)) 6 A.

2. Mj = {y ∈ Mj : ρj(y, ϕk(Mi)) 6 A}.
3. ∀x, x′ ∈ Mi, A−1(ρi(x, x′)−A) 6 ρj(ϕk(x), ϕk(x′)) 6 A(1 + ρi(x, x′)).

4. ∀x ∈ Mi, A−1V (x, 1) 6 V (ϕk(x), 1) 6 AV (x, 1).

Condition 3 requires that each of the maps ϕk roughly preserves large
enough distances (larger than 2A, say). Condition 2 requires that each of
the maps ϕk is almost surjective, in a quantitative metric sense. The first
condition says that the maps ϕk and ϕ′k are almost inverse of each other.
The last condition concerns volume transport and is obviously specific to the
setting of measure metric spaces. This definition is nicely symmetric (as an
equivalence relation should be!), but is redundant. It is enough to require the
existence of one map, say from M1 to M2 with the last three properties. The
existence of an almost inverse with the desired properties follows from the
axiom of choice.
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The relevance of rough isometries in the study of Harnack type Dirichlet
space lies in the following stability theorem from [32, Theorem 8.3] (although
[32] does not explicitly cover the setting of Dirichlet spaces, the same proof
applies).

Theorem 3.6. Let (Mi, µi, Ei,D(Ei)), i = 1, 2, be two regular strictly lo-
cal Dirichlet spaces satisfying the qualitative conditions (A1), (A2). Assume
further that these two spaces satisfy the volume doubling property and the L2

Poincaré inequality, uniformly at small scales. If (M1, ρ1, µ1) and (M2, ρ2, µ2)
are roughly isometric as metric measure spaces, then (M1, µ1, E1,D(E1)) is of
Harnack type if and only if (M2, µ2, E2,D(E2)) is of Harnack type.

Example 3.1. In a sense, the following example illustrates in the simplest non-
trivial possible way the results of this section. Consider the two-dimensional
cubical complex obtained as the subset M of R3 of those point (x, y, z) with
at least one coordinate in Z. In other words, M is the union of the planes
{x = k}, {y = k}, {z = k}, k ∈ Z. It is also the union M =

⋃
k

Qk, where Qk

is the two-dimensional boundary of the unit cube with lower left back corner
k ∈ Z3. This space is equipped with its natural measure µ (Lebesgue measure
on each of the planes above). To describe the natural Dirichlet form and its
domain, we recall that if F is a face on a unite cube Qk and if a function
f in L2(F ) has distributional first order partial derivatives in L2(F ) (i.e., is
in the Sobolev space H1(F )), then the trace of f along the one dimensional
edges of the face F are well defined, say, as an L2 function on the edges.
Taking into account this remark, we set (the factor of 1/2 is to account for
the appearance of each face in exactly two cubes)

E(f, g) =
1
2

∑

k

∫

Qk

∇f · ∇g dµ

for all f, g ∈ D(E), where D(E) is the space of those functions f ∈ L2(M)
which have distributional first order partial derivatives in L2(F ) on each face
F of any cube Qk, satisfy E(f, f) < ∞, and have the property that for each
pair of faces F1, F2 sharing an edge I, the restrictions of f |F1 and f |F2 to the
edge I coincide. In the above formula, ∇f refers to the Euclidean gradient
of f viewed as a function defined on each of the square faces of the cube Qk.
Because of the above-mentioned trace theorem for Sobolev functions, it is
easy to see that (E ,D(E)) is a Dirichlet space. It is local, and one can show
(although this is not entirely obvious) that it is regular (see, for example,
[82]). The distance ρ associated to this Dirichlet form on M coincides with
the natural shortest path distance on this cubical complex. It is not hard to
check that

• The uniform small scale doubling property holds.

• The uniform small scale Poincaré inequality holds.
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• The metric measure space (M, ρ, µ) is roughly isometric to R3.

Thus, from Theorem 3.6 it follows that this Dirichlet space is a Harnack
type Dirichlet space.

4 Flat Sobolev Inequalities

In the previous sections, we discussed the role of the family of localized
Sobolev inequalities (2.11) in Moser’s iteration and related techniques. In
some sense, the need to consider (2.11) instead of the more classical inequal-
ity (2.10) comes from looking at situations that are inhomogeneous either at
the level of location or at the level of scales, or both. Because of this one some-
times refers to a global Sobolev inequality that do not require localization
as a “flat” Sobolev inequality. For instance, one might ask: What complete
n-dimensional Riemannian manifolds satisfy a Sobolev inequality of the form

∀ f ∈ Cc(M), ‖f‖2n/(n−2) 6 S‖∇f‖2?

It turns out that this inequality is satisfied by a variety of manifolds not hav-
ing much in common with each others, including manifolds with nonnegative
Ricci curvature and maximal volume growth, as well as simply connected
manifolds with nonpositive sectional curvature (see [60, Theorem 8.3] and
the references therein for this result).

In this section, we discuss such inequalities: how to prove them and what
are they good for?

4.1 How to prove a flat Sobolev inequality?

There are many interesting approaches to proving Sobolev inequalities and
we will, essentially, discuss only one of them here. One useful aspect of this
approach is its robustness. One weakness, among others, is that it never
produces best constants.

Definition 4.1. Let (M, g) be a complete Riemannian manifolds. We say
that it satisfies an Lp pseudo-Poincaré inequality if

∀ f ∈ C∞c (M), ‖f − fr‖p 6 Ar‖∇f‖p

for all r > 0, where fr is a function such that fr(x) is the average of f over
the ball B(x, r).

Theorem 4.1 ([4, Theorem 9.1]). Let (M, g) be a complete Riemannian man-
ifolds satisfying the Lp pseudo-Poincaré inequality. Assume that there exists
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N > 0 such that V (x, r) > crN for all x ∈ M and r > 0. Then the inequality

∀ f ∈ C∞c (M),
∫

M

|f |p(1+1/N)dµ 6 C(M,p)




∫

M

|∇f |pdµ







∫

M

|f |dµ




p/N

holds. If N > p, then

∀ f ∈ C∞c (M), ‖f‖pN/(N−p) 6 S(M,p)‖∇f‖p.

Remark 4.1. The paper [4] shows that a great number of other interesting
Sobolev type inequalities follow as a corollary of the above result.

Remark 4.2. The above definition and theorem hold unchanged for p = 2 in
the context of strictly local regular Dirichlet spaces satisfying the qualitative
conditions (A1), (A2).

Remark 4.3. The volume condition V (x, r) > crN is sharp in the sense that
it follows from the validity of any of the two stated inequalities.

Remark 4.4. The same result holds if one replaces fr in the pseudo-Poincaré
inequality by Mrf and replaces the volume hypothesis by ‖Mrf‖∞ 6
Cr−N‖f‖1. For instance, Mr could be averages over sets different from balls
or some more sophisticated operators. As an example, let Mr = Hr2 = er2∆

be the heat semigroup on (M, g) at time t = r2. Then, if one knows that for
all t > 0, ‖f − Htf‖p 6 C

√
t‖∇‖p and ‖Ht‖1→∞ 6 Ct−N/2, then one can

conclude that the inequalities stated in the above theorem hold on M . The
first of these two hypotheses is always satisfied if p = 2.

Example 4.1. Riemannian manifolds with nonnegative Ricci curvature satisfy
the pseudo-Poincaré inequality of Definition 4.1 for any 1 6 p 6 ∞. They
satisfy the Sobolev inequality

∀ f ∈ C∞c (M), ‖f‖pN/(N−p) 6 S(M, p)‖∇f‖p

if and only if V (x, r) > crN and N > p > 1 (see [87, Sect. 3.3.5]). On
these manifolds, the volume is bounded by V (x, r) 6 Cnrn, where n is the
topological dimension. Hence V (x, r) > crN for all r > 0 is possible only if
N = n and V (x, r) ' rn.

Example 4.2. Let (M, g) be a connected unimodular Lie group equipped with
a left-invariant Riemannian metric. Then the pseudo-Poincaré inequality of
Definition 4.1 holds for any 1 6 p 6 ∞ (see [31] or [87, 3.3.4]). The inequality

∀ f ∈ C∞c (M), ‖f‖pN/(N−p) 6 S(M, p)‖∇f‖p

holds if and only if V (r) > crN for all r > 0. For instance, if M is the group of
upper-triangular 3 by 3 matrices with 1’s on the diagonal (i.e., the Heisenberg
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group), then for any left-invariant Riemannian metric, V (x, r) > crN for all
r > 0 and N ∈ [3, 4].

4.2 Flat Sobolev inequalities and semigroups of
operators

Sobolev inequalities can be generalized in useful ways in many contexts one
of which involves the infinitesimal generator A of a strongly continuous semi-
group of operator etA jointly defined on the spaces Lp(M, µ), 1 6 p < ∞. One
of the most straightforward results in this context is the following theorem
from [26] which extends an earlier result of Varopoulos [100] (see also [103]).
For α > 0 we set

(−A)−α/2 = Γ (α/2)−1

∞∫

0

t−1+α/2etAdt.

Theorem 4.2. Fix p ∈ (1,∞). Assume that etA is a bounded holomorphic
semigroup of operator on Lp(M, µ) which extends as an equicontinuous semi-
group on both L1(M, µ) and L∞(M,µ). Then for any N > 0 the following
two properties are equivalent.

• There exists C1 such that

∀ f ∈ L1(M,µ), ‖etAf‖∞ 6 C1t
−N/2‖f‖1.

• There exists C2 such that for one pair (equivalently, for all pairs) (α, q)
with 0 < αp < N and 1/q = 1p− α/N , we have

∀ f ∈ Lp(M,µ), ‖(−A)−α/2f‖q 6 C2‖f‖p.

Remark 4.5. The first property is known as a form of ultracontractivity
(boundedness of etA from L1 to L∞ for all t > 0). The second property
states that a Sobolev type inequality holds, namely, ‖f‖q 6 C2‖(−A)α/2f‖p,
f ∈ Dom((−A)α/2.

Remark 4.6. A semigroup etA is bounded holomorphic on Lp(X, µ) if

t‖AetAf‖p 6 C‖f‖p

for all f ∈ Lp(M, µ) and t > 0. This implies that for any α ∈ (0, 1] and f in
the domain of (−A)α/2

∀ t > 0, ‖f − etAf‖p 6 Cαtα/2‖(−A)α/2f‖p.
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This can be viewed as a form of pseudo-Poincaré inequality.

Theorems such as Theorem 4.2 apply nicely in the context of Dirichlet
spaces because the associated semigroups are self-adjoint on L2(M, µ) and
contract each Lp(M, µ), 1 6 p 6 ∞. Semigroups of self-adjoint contractions
on L2(M,µ) are automatically bounded holomorphic on L2(M,µ). Moreover,
in the regular strictly local Dirichlet space context described earlier, the gen-
erator A is related to the form E and the energy form Γ by

‖(−A)1/2f‖22 = E(f, f) =
∫

M

dΓ (f, f), f ∈ Dom((−A)1/2) = D(E).

For the following result see [15, 100, 103] and also [33].

Theorem 4.3. Fix N > 0. Let (M, µ, E ,D(E)) be a Dirichlet space with as-
sociated semigroup etA. The following properties are equivalent.

• There exists C1 such that

∀ f ∈ L1(M, µ), t > 0, ‖etAf‖∞ 6 C1t
−N/2‖f‖1.

• For one (equivalently, all) (α, q) with 1 < α < N/2 and q = 2N/(N − 2α)
there exists C(α) such that

∀ f ∈ Dom((−A)α/2), ‖f‖q 6 C(α)‖(−A)α/2f‖2.

• There exists C2 such that

∀ f ∈ L1(M, µ) ∩ D(E), ‖f‖2(1+2/N)
2 6 C2E(f, f)‖f‖4/N

1 .

Remark 4.7. The first property is a particular type of ultracontractivity. The
second property is a Sobolev type inequality. If N > 2, one can take α = 1,
q = 2N/(N − 2) and the inequality takes the form ‖f‖q 6 C1E(f, f). The
third property is a Nash inequality.

Example 4.3. Let (M, g) be an n-dimensional complete Riemannian manifold
that is simply connected and has nonpositive sectional curvature. By a simple
comparison argument (see, for example, [20, Theorem 6] and the references
therein), the heat kernel on M is bounded from above by the Euclidean heat
kernel. In particular, for all t > 0,

sup
x,y∈M

{h(t, x, y)} 6 cnt−n/2.

This implies that for all t > 0 we have ‖et∆M f‖∞ 6 cnt−n/2‖f‖1. Hence the
above theorem gives the Sobolev inequality

∀ f ∈ C∞c (M), ‖f‖2n/(n−2) 6 SM‖(−∆)1/2f‖2.
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Of course, ‖(−∆)1/2f‖2 = ‖∇f‖2, so that this inequality can be written as

∀ f ∈ C∞c (M), ‖f‖2n/(n−2) 6 SM‖∇f‖2.

There is an open conjecture that this inequality should holds with SM

being the same constant as in the Euclidean n-space.
The first property in Theorem 4.3 obviously calls for a more general for-

mulation. The following general elegant result was obtained by Coulhon [27]
(after many attempts by different authors). A smooth positive function Φ
defined on [0,∞) satisfies condition (D) if there exists ε ∈ (0, 1) such that
ϕ′(s) > εϕ′(t) for all t > 0 and s ∈ [t, 2t], where ϕ(s) = − log Φ(s).

Theorem 4.4 ([27]). Let (M, µ, E ,D(E)) be a Dirichlet space with associated
semigroup etA. Let Φ be a positive smooth decreasing function on [0,∞) sat-
isfying condition (D), and let Θ = −Φ′ ◦ Φ−1. The following properties are
equivalent.

• There exists a constant c1 ∈ (0,∞) such that

∀ f ∈ L1(M,µ), t > 0, ‖etAf‖∞ 6 Φ(c1t)‖f‖1.

• The exists a constant C1 ∈ (0,∞) such that for all f ∈ L1(M, µ) ∩ D(E)
with ‖f‖1 6 1 we have

Θ(‖f‖22) 6 CE(f, f).

We refer the reader to [4, 8, 9, 27] for explicit examples and further results.

4.3 The Rozenblum–Cwikel–Lieb inequality

One of the surprising aspects of the Sobolev inequality

‖f‖22N/(N−2) 6 S2E(f, f)

is how many different equivalent form it takes (hence the title “Sobolev in-
equalities in disguise” of [4]). Despite the equivalence of this different forms,
some appear “stronger” than other. For instance, on one hand, deducing from
the above inequality the Nash inequality

‖f‖2(1+2/N)
2 6 S2E(f, f)‖f‖4/N

1

only involves a simple use of Hölder’s inequality (and the constant remains
the same). On the other hand, recovering the Sobolev inequality from its
Nash form involves some more technical arguments. The constant S changes
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in the process (the two inequalities in RN have different best constants) and
one needs to assume that N > 2.

In 1972, Rozenblum proved a remarkable spectral inequality showing that,
in RN with N > 3, if V is a nonnegative measurable function and N−(−∆−
V ) denotes the number of negative eigenvalues of −∆− V , then there exists
a constant C(N) such that

N−(−∆− V ) 6 C(N)
∫

RN

V (x)N/2dx.

Very different proofs were later given by Cwikel and by Lieb, and this inequal-
ity is known as the Rozenblum–Cwikel–Lieb inequality. We refer the reader to
the review of the literature in [70, 84]. The following elegant result is taken
from [70] and is based on the technique used in [73] in Euclidean space.

Theorem 4.5 ([70]). Let (M, µ, E ,D(E)) be a Dirichlet space with associated
semigroup etA. Assume that the Sobolev inequality

∀ f ∈ D(E), ‖f‖22N/(N−2) 6 S2E(f, f)

holds for some N > 2. Then for any measurable function V > 0

N−(−A− V ) 6 C(N)
∫

M

V N/2dµ.

In [84], this result is generalized in a number of useful ways. In particular,
the following version related to Theorem 4.4 is obtained.

Theorem 4.6 ([84]). Fix a nonnegative convex function Q on [0,∞), growing
polynomially at infinity and vanishing in a neighborhood of 0. Set

q(u) =

∞∫

0

v−1Q(v)e−v/udv.

Let (M, µ, E ,D(E)) be a Dirichlet space with associated semigroup etA. As-
sume that

∀ f ∈ L1(M, µ), t > 0, ‖etAf‖∞ 6 Φ(t)‖f‖1

with Φ continuous, integrable at infinity
( ∞∫

ϕ(t)dt < ∞
)
, and satisfying

Φ(t) = O(t−α) at 0 for some α > 0 . Then for any measurable function
V

N−(−A− V ) 6 1
q(1)

∞∫

0




∫

M

Q(tV (x))dµ(x)


 Φ(t)

t
dt.
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Remark 4.8. One can take Q(u) = (u− 1)+. In this case,

∞∫

0




∫

M

Q(tV (x))dµ(x)


 Φ(t)

t
dt 6

∫

M


V (x)

∞∫

1/V (x)

Φ(t)dt


 dµ(x)

so that if

Ψ(u) =

∞∫

u

Φ(t)dt,

then
N−(−A− V ) 6 C

∫

M

V (x)Ψ(1/V (x))dµ(x).

In particular, if Φ(t) ' t−N/2, t > 0 for some N > 2, then Ψ(u) ' u−N/2+1,
u > 0, and

N−(−A− V ) 6 C

∫

M

V N/2dµ.

Example 4.4. Let (G, g) be an amenable connected Lie group of topological
dimension n equipped with a left-invariant Riemannian metric with Laplace
operator ∆. In this case, there are two possible behaviors for the function Φ.
If G has polynomial volume growth, then

Φ(t) '
{

t−n/2 for t ∈ (0, 1],

t−N/2 for t ∈ (1,∞),

where N is some integer. If that is not the case, then G has exponential
volume growth and

Φ(t) 6 C ×
{

t−n/2 for t ∈ (0, 1]
e−ct1/3

for t ∈ (1,∞)

for some c, C ∈ (0,∞) (a similar lower bound holds as well).
In the case of polynomial volume growth, application of Theorem 4.6 re-

quires N > 2. Assuming that N > 2, the function Ψ introduced in the above
remark is given by Ψ(u) ' u−N/2+11u>1 + (1 + u−n/2+1)1u61. Hence

N−(−∆− V ) 6 C
( ∫

{V >1}

V (1 + V n/2−1)dµ +
∫

{V <1}

V N/2dµ
)
.

In the case of exponential volume growth, one gets
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N−(−∆− V ) 6 C

∫

{V >1}

V (1 + V n/2−1)dµ + C

∫

{V <1}

e−cV −1/3
dµ.

In this case, since the volume growth is exponential, we see that for a smooth
positive potential with V (x) ' (1+ρ(e, x))−γ , N−(−∆−V ) is finite if γ > 3.

4.4 Flat Sobolev inequalities in the finite volume case

Recall that a flat Sobolev inequality of the form ∀ f ∈ C∞c (M), ‖f‖2q 6
SM‖∇f‖2, with q > 1, on a complete Riemannian manifolds (M, g), implies
that the volume grows at least as rν with q = ν/(ν − 2). In particular,
the volume of M cannot be finite. In order to allow for some finite volume
manifolds, one needs to consider inequalities of the form

∀ f ∈ C∞c , ‖f‖22q 6 aM‖f‖22 + C2
M‖∇f‖22. (4.1)

If we assume that the volume of M is finite, we can normalize the measure
so that µ(M) = 1 and then it is easy to see that the above inequality can
hold only if aM > 1. Moreover, if the global Poincaré inequality ‖f −fM‖2 6
AM‖∇f‖2 holds for all f ∈ C∞(M), then (4.1) implies

∀ f ∈ C∞c , ‖f‖22q 6 ‖f‖22 + S2
M‖∇f‖22. (4.2)

The aim of this section is to point out a beautiful consequence of this in-
equality obtained by Bakry and Ledoux [5]. We refer the reader to [5] for a
complete discussion and detailed references.

Theorem 4.7 ([5, Theorem 2]). Assume that (M, g) is a complete Rieman-
nian manifold with finite volume. Assume that, equipped with its normalized
Riemannian measure, (M, g) satisfies (4.2) for some q > 1 and SM ∈ (0,∞).
Then M is compact with

Diam(M) 6 π

√
q

q − 1
SM .

This result is a form of a well-known theorem of Meyers that asserts that
an n-dimensional Riemannian manifold whose Ricci curvature is bounded
from below by Ric > kg with k > 0 must be compact with diameter at most
π
√

(n− 1)/k. Indeed, Ilias proved that, on a manifold of dimension n, the
hypothesis Ric > kg for some k > 0 implies the Sobolev inequality (4.2) with
q = n/(n−2) and S2

M = 4(n−1)/n(n−2)k. Hence Meyers’ result follows from
Ilias’ inequality and the above theorem. The upper bound in the theorem is
sharp and is attained when M is a sphere.
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The above theorem of Bakry and Ledoux is, in fact, obtained in a much
more general setting of strictly local Dirichlet spaces (see [5] for a precise
description).

4.5 Flat Sobolev inequalities and topology at infinity

We complete this section on flat Sobolev inequalities by pointing out the
relevance of the Sobolev inequality in some problems concerning topology.
The following result due to Carron [18] is actually closely related to the
results concerning the Rozenblum–Cwikel–Lieb inequality.

Theorem 4.8 ([18, Theorem 0.4]). Let (M, g) be a complete Riemannian
manifold (hence, connected) satisfying the Sobolev inequality

∀ f ∈ C∞c (M), ‖f‖22ν/(ν−2) 6 S2
M

∫
|∇f |2dµ

for some ν > 2. Assume that the smallest negative eigenvalue ric− of the
Ricci tensor is in Lν/2(M). Then M has only finitely many ends. In fact,
there exists a constant C(ν) such that the number of ends is bounded by

1 + C(ν)S2
M

∫

M

|ric−|ν/2dµ.

For more sophisticated results in this direction see, for example, [16, 18, 19]
and the references therein.

5 Sobolev Inequalities on Graphs

All the ideas and techniques discussed in this paper can be developed and used
in the discrete context of graphs, sometimes to great advantage. To a large
extend, the context of graph is actually harder to work with than the context
of manifolds (and strictly local Dirichlet spaces), but the new difficulties that
appear are mostly of a technical nature and can often be overcome. This short
section provides pointers to the literature and explains in some detail one of
the first applications of Sobolev inequalities on graphs, namely, Varopoulos’
solution of Kesten’s conjecture regarding random walks on finitely generated
groups. We refer to [47] for a short survey and to [98, 105] for a detailed
treatment of some aspects.
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5.1 Graphs of bounded degree

In what follows, a graph is a pair (V, E), where E is a symmetric subset of
V × V and V is finite or countable. Elements of V are vertices and elements
of E are (oriented) edges. For x, y ∈ V we write x ∼ y if (x, y) ∈ E and we
say that x, y are neighbors. A path in V is a sequence of vertices such that
consecutive points are neighbors. The length of a path is the number of edges
it crosses. The distance ρ(x, y) between two points x, y ∈ V is the minimal
length of a path joining them. The degree µ(x) of x ∈ V is the number of
y ∈ V such that (x, y) ∈ E. Throughout the paper, we assume that our
graphs are connected, i.e., ρ(x, y) < ∞ for all x, y ∈ V and have uniformly
bounded degree, i.e., there exists D ∈ [1,∞) such that sup

x
{µ(x)} = D.

Moreover, we equip V with the measure µ defined by µ(A) = D−1
∑

x∈A

µ(x).

A graph is regular if µ(x) = D for all x. In this case, the measure µ is a
counting measure. Let B(x, r) be the (closed) ball of radius r around x, and
let V (x, r) = µ(B(x, r)). For a book treatment of various aspects of the study
the volume growth in Cayley graphs see [35].

Given a function f on V , we set df(x, y) = f(y)− f(x) and

|∇f(x)| =
(

µ(x)−1
∑
y∼x

|df(x, y)|2
)1/2

.

Also, set fr(x) = V (x, r)−1
∑

B(x,r)

f(z)µ(z).

We now have all the ingredients to consider whether or not the graph
(V, E) satisfies the Sobolev inequality

∀ f ∈ Cc(V ), ‖f‖2q 6 S‖∇f‖2 (5.1)

for some q > 1, and related inequalities. Here, Cc(V ) is the space of functions
with finite support. Moreover, according to our notation, we have

‖f‖2q
2q =

∑

x∈V

|f(x)|2qµ(x) and ‖∇f‖22 =
∑

x∈V

∑
y∼x

|f(y)− f(x)|2.

In what follows, we concentrate on the simple case of flat Sobolev inequalities
because this case is quite interesting and important and does avoid most
technical difficulties. For developments paralleling the ideas and results of
Sect. 2 we refer the reader to [28, 29, 30, 52, 53, 98] and the references
therein.
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5.2 Sobolev inequalities and volume growth

We start with the following two theorems.

Theorem 5.1. Fix ν > 0. For a graph (V, E) as above, the following proper-
ties are equivalent.

• ∀ f ∈ Cc(V ), ‖f‖(1+2/ν)
2 6 N‖∇f‖2‖f‖2/ν

1 .

• ∀ f ∈ Cc(V ) with support in a finite set Ω, ‖f‖2 6 Cµ(Ω)1/ν‖∇f‖2.

Moreover, if ν > 2, these properties are equivalent to (5.1) with q = ν/(ν−
2). Finally, any of these inequalities implies the existence of c > 0 such that

∀x ∈ V, r > 0, V (x, r) > crν .

Remark 5.1. The first inequality is a Nash inequality, the second is a Faber–
Krahn inequality. For a proof of this theorem see, for example, [4].

The next results gives two Nash inequalities under the volume growth
hypothesis that V (x, r) > crν . The first inequality requires no additional
hypotheses, whereas the second one depends on the validity of a pseudo-
Poincaré inequality. Under that extra hypothesis, the Nash inequality one
obtains is, in fact, equivalent to the volume lower bound. Both results are
optimal (see [6]).

Theorem 5.2 ([6, 31]). Fix ν > 0 and assume that a graph (V,E) has volume
growth bounded from below:

∀x ∈ V, r > 0, V (x, r) > crν .

• In all the cases,

∀ f ∈ Cc(V ), ‖f‖(1+1/γ)
2 6 N‖∇f‖2‖f‖1/γ

1 , γ = ν/(ν + 1).

• Assume that the pseudo-Poincaré inequality ∀ f ∈ Cc(V ), ‖f − fr‖2 6
Cr‖∇f‖2 holds on (V, E). Then

∀ f ∈ Cc(V ), ‖f‖(1+2/ν)
2 6 N‖∇f‖2‖f‖2/ν

1 .

Proof. First statement. Fix a finite set Ω. For each x ∈ Ω let r(x) be the
distance between x and V \ (Ω). If f has support in Ω, by a simple use of
the Cauchy–Schwarz inequality, for all x ∈ Ω, |f(x)|2 6 r(x)‖∇f‖22. Also
Ω ⊃ B(x, r(x)− 1) for each x ∈ Ω. Hence, by hypothesis,

µ(Ω) > V (x, r(x)− 1) > c(r(x)− 1)ν > c′r(x)ν .
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This yields |f(x)|2 6 Cµ(Ω)1/ν‖∇f‖22. Summing over Ω, we find

‖f‖2 6 C1/2µ(Ω)(ν+1)/2ν‖∇f‖2.

The desired result follows from Theorem 5.1.

Second statement. Observe that the volume hypothesis yields

‖fr‖∞ 6 c−1r−ν‖f‖1.

Writing ‖f‖22 = 〈f, f − fr〉+ 〈f, fr〉 and using the hypotheses, we obtain

‖f‖22 6 Cr‖f‖2‖∇f‖2 + c−1r−ν‖f‖21.

Picking r ' (‖f‖21‖f‖−1
2 ‖∇f‖−1

2 )1/(1+ν), we find

‖f‖22 6 C1‖f‖ν/(1+ν)
2 ‖∇f‖ν/(1+ν)

2 ‖f‖2/(1+ν)
1

or
‖f‖(2+ν)/(1+ν)

2 6 C1‖∇f‖ν/(1+ν)
2 ‖f‖2/(1+ν)

1 .

Taking the (1+ν)/νth power of both sides, we arrive at the desired inequality.
ut

5.3 Random walks

In the context of graphs, one of the possible natural definitions of the “Lapla-
cian” (and the one we will use) is

∆Ef(x) = µ(x)−1
∑
y∼x

(f(y)− f(x)) = (K − I)f(x),

where I is the identity operator and K is the Markov kernel

K(x, y) =

{
µ(x)−1 if y ∼ x,

0 otherwise,

and Kf(x) = µ(x)−1
∑
y∼x

f(y). The random walk interpretation of K is as

follows. Think of a particle whose current position at a (discrete) time t ∈ N,
is at x ∈ V with some probability p(t)({x}) = p(t, x). At time t + 1, the
particle picks uniformly one of the neighboring sites and moves there. Hence
the probability of the particle to be at a site x at time t + 1 is

p(t + 1, x) =
∑
y∼x

p(t, y)µ(y)−1 = p(t)K(x),
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where the action of K on a measure p is defined naturally by pK(f) = p(Kf).
It follows immediately that the operator K is a self-adjoint contraction on
L2(V, µ) and the function

u(t, x) = µ(x)−1p(t, x)

is a solution of discrete time discrete space heat equation

u(t + 1, ·)− u(t, ·) = ∆Eu(t, ·).

In this context, the heat kernel h(t, x, y) is obtained by setting

h(t, x, y) = ux(t, y) = µ(y)−1px(t, y), px(0, y) = δx(y).

It is a symmetric function of x, y, and for any f with finite support on V

u(t, x) =
∑

y∈V

h(t, x, y)f(y)µ(y)

is a solution of the heat equation with the initial value f . Finally, by definition,

px(t, y) = h(t, x, y)µ(y)

is the probability that our particle is at y at (discrete) time t given that it
started at x at time 0.

The idea of applying Sobolev type inequalities in this context was intro-
duced by Varopoulos [101] and produced a remarkable breakthrough in the
study of random walks on graphs and finitely generated groups. The book
[105] gives a detailed treatment of many aspects of the resulting develop-
ments. The following theorem is the most basic result (see [15, 101, 103, 105]).

Theorem 5.3. Fix ν > 0. Let (V,E) be a connected graph with bounded
degree as above. The following properties are equivalent.

• ∀ f ∈ Cc(V ), ‖f‖(1+2/ν)
2 6 N‖∇f‖2‖f‖2/ν

1 .

• ∀ t ∈ N, x, y ∈ V, h(t, x, y) 6 C(1 + t)−ν/2.

Example 5.1. A rather interesting family of examples is as follows. Assume
that the graph (V,E) has no loops (i.e., is a tree) and there exists ν > 0 such
that V (x, r) ' rν . Such a tree must have many leaves (vertices of degree 1).
For examples of such trees see [6]. Applying Theorems 5.2 and 5.3, we obtain
the estimate h(t, x, y) 6 C(1 + t)−ν/(1+ν). As is proved in [7], this estimate
is optimal in the sense that

h(2t, x, x) ' (1 + t)−ν/(ν+1).

Much more generally, the following assertion similar to Theorem 4.4 holds
as well.
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Theorem 5.4 ([27]). Let (V,E) be as above. Let Φ be a positive smooth de-
creasing function on [0,∞) satisfying condition (D), and let Θ = −Φ′ ◦ Φ−1.
The following properties are equivalent.

• There exists a constant c1 ∈ (0,∞) such that

∀ t ∈ N, x, y ∈ V, h(t, x, y) 6 Φ(c1t).

• The exists a constant C1 ∈ (0,∞) such that for all fCc(V ) with ‖f‖1 6 1

Θ(‖f‖22) 6 C‖∇f‖22.

Example 5.2. A case of interest is when Φ(t) = ce−tγ

for some γ ∈ (0, 1). Then
−Φ′(t) = ctγ−1e−tγ

, Φ−1(s) = (c+log 1/s)1/γ , and Θ(s) = s(c+log 1/s)1−1/γ .

5.4 Cayley graphs

A Cayley graph is a graph (V, E) as above, where V = G is a finitely generated
group equipped with a finite generating set S and (x, y) ∈ V ×V is in E if and
only if y = xs with s ∈ S ∪ S−1. Hence one can assume that S is symmetric,
i.e., S = S−1. These graphs are regular of degree D = #S, and thus the
measure µ used earlier is just a counting measure. Denote by e the identity
element in G.

The random walk on a Cayley graph can be described as follows. Let
ξ1, ξ2, . . . be independent uniform picks in the finite symmetric generating set
S. Then for t ∈ N and x, y ∈ G, px(t, y) is the probability that the product
Xt = xξ1 · · · ξt is equal to y. It is oblivious that px(t, y) = pe(t, x−1y) (left-
invariance). For general finitely generated groups the study of such random
walks originated in H. Kesten’s thesis. Later, Kesten considered the natural
question of when such a random walk is recurrent. Recall that recurrence
here means that, with probability 1, the walk returns infinitely often to its
starting point. A walk that is not recurrent is called transient and has the
property that, with positive probability, it never returns to it starting point.
By a celebrated result of Polya, the random walk on the integer lattices Zn is
recurrent if n = 0, 1, 2 and is transient otherwise. One of Kesten’s questions
about the recurrence of random walks can be formulated as follows: What are
the groups that admit recurrent random walks (with generating support). For
a long time, the conjectural answer known as Kesten’s conjecture was that
the only groups that admit recurrent random walks are the finite extensions
of Zn, n = 0, 1, 2 (i.e., those groups that contain {0} or Z or Z2 with finite
index).

A basic result around this question (see, for example, [105]) is that recur-
rence is equivalent to
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∞∑
t=1

pe(t, e) = ∞.

Indeed,
∞∑

t=1
px(t, y) can be understood as the mean number of returns to y

starting from x. Thus, the question is really a question about the behavior
of the associated heat kernel h(t, x, x).

Theorem 5.5 ([31]). Fix p ∈ [1,∞]. Let (V, E) be the Cayley graph associ-
ated to a finitely generated group G equipped with a finite symmetric gener-
ating set S. Then the pseudo-Poincaré inequality

‖f − fr‖p 6 Cr‖∇f‖p (5.2)

holds, as well as the Poncaré type inequality

∑

B

|f − fB |p 6 Crp V (2r)
V (r)

∑

2B

|∇f |p, (5.3)

where B = B(e, r), 2B = B(e, 2r), V (r) = #B(e, r), and fB is the average
of f over B.

Remark 5.2. The paper [31] treats mostly the case p = 1 (and the case p = 2,
briefly, towards the end), partly because the other cases are obvious variations
on the same argument. The inequality (5.2) with p = 1 is contained in [31,
p. 296]. The inequality (5.3) with p = 1 and p = 2 is contained in [31,
pp. 308-310] because, on a Cayley graph and under an invariant choice of
paths, the constants K(x, n) and K2(x, n) appearing in [31] can be of order
nV (2n)/V (n) and n2V (2n)/V (n) respectively. Below, we give a complete
proof of the case p = 2, emphasizing the great similarity between these two
inequalities.

Proof. We treat the case p = 2 (other cases are similar except for p = ∞
which is trivial and has little content). The crucial observation is that for
any set A ⊂ G

∑

x∈A

∑

y∈B(e,s)∩x−1A

|f(xy)− f(x)|2 6 (#S)s2V (s)
∑

As/2

|∇f |2.

Here, Aτ = {z ∈ G : ρ(z,A) 6 τ}. To prove this inequality, for each y denote
by γy a fixed path of minimal length from e to y and use the Cauchy–Schwarz
inequality to get

|f(xy)− f(x)|2 6 (#S)|y|
∑
z∈γy

|∇f |(xz)2,

where |y| = ρ(e, y) is the graph distance between e and y (i.e., the length of
y). Note that ρ(xz, A) 6 min{ρ(e, z), ρ(z, y)} 6 |y|/2 6 s/2. Moreover, and
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this is the crucial point of the argument, y being fixed, a given vertex ξ = xz
can appear for at most |y| different points x. Hence

∑

x∈A

∑

y∈B(e,s)∩x−1A

|f(xy)− f(x)|2 6 (#S)s2V (s)
∑

As/2

|∇f |2.

Taking A = G, r = s and dividing both sides by V (r), we obtain the pseudo-
Poincaré inequality ‖fr− f‖2 6 (#S)1/2r‖∇f‖2. Taking A = B(e, r), s = 2r
and dividing both sides by V (r), we find

∑

B

|f − fB |2 6 Cr2 V (2r)
V (r)

∑

2B

|∇f |2.

ut
Theorem 5.6. Let (V, E) be the Cayley graph associated to a finitely gener-
ated group G equipped with a finite symmetric generating set S. Assume that
V (r) > crν , r > 0. Then there are constants N and C such that

∀ f ∈ Cc(G), ‖f‖(1+2/ν)
2 6 N‖∇f‖2‖f‖2/ν

1

and
∀ t ∈ N, x, y ∈ G, h(t, x, y) 6 C(1 + t)−ν/2.

In addition, if the doubling volume property V (2r) 6 DV (r) holds, then the
scale invariant Poincaré inequalities

∀B = B(x, r),
∑

B

|f − fB |p 6 Ppr
p
∑

B

|∇f |p

are satisfied for all p ∈ [1,∞].

Proof. The first two properties are equivalent and follow from Theorems 5.2,
5.3, and 5.5. The last statement follows from Theorem 5.5 and a well-known,
but somewhat subtle argument to get rid of the doubling of the ball over
which one integrates the gradient (see, for example, [87, Sect. 5.3]). ut
Remark 5.3. The statement that V (r) > crν implies h(t, x, x) 6 Cε(1 +
t)−(ν−ε)/2, ε > 0, was first proved by Varopoulos [104, 102] by different,
but related methods.

Returning to Kesten’s conjecture, let us observe that the above theorem
implies that if a finitely generated group G satisfies V (r) > crν with ν > 2,
then ∞∑

t=1

h(t, e, e) =
∞∑

t=1

pe(t, e) < ∞, (5.4)

i.e., the random walks on the Cayley graphs of G are transient (it is easy to
see that different generating sets S always yield comparable growth functions
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V ). This means that a group carrying a recurrent random walk must have a
volume growth function satisfying

∀ε > 0, lim inf
r→∞

r−(2+ε)V (r) < ∞.

By the celebrated theorem of Gromov [54] (and its extension in [99]), the
condition

∃A > 0, lim inf
r→∞

r−AV (r) < ∞ (5.5)

implies that G contains a nilpotent subgroup of finite index. Since a subgroup
of finite index in G has volume growth comparable to that of G and, by a
theorem due to Bass, nilpotent groups have volume growth of type rν for some
integer ν (see, for example, [35]), we see that a group carrying a recurrent
walk must contain a nilpotent subgroup of finite index and volume growth
of type r0 or r1 or r2. It is easy to check that this means that G is a finite
extension of {0} or Z or Z2, as desired.

Theorem 5.7 (solution of Kesten’s conjecture, [104]). If a finitely generated
group G admits a finite symmetric generating set S such that the associated
random walk is recurrent, then G is a finite extension of {0} or Z or Z2.

Remark 5.4. In a recent preprint [67], Kleiner gave a new proof of Gromov’s
theorem on groups of polynomial volume growth. His argument is quite sig-
nificant since it avoids the use of the Montgomery–Zippin–Yamabe structure
theory of locally compact groups (and of the solution of Hilbert fifth prob-
lem). It is also very significant from the viewpoint of the present paper and
in relation to Theorem 5.7, as we will explain. The proof of Theorem 5.7 is
based on two main results: the theorem of Gromov on groups of polynomial
growth (albeit, only in the “small growth” case (5.4)) and Varopoulos’ re-
sult that links volume growth to the decay of the probability of return of a
random walk as expressed in Theorem 5.6. Until Kleiner’s work on Gromov’s
theorem, these two corner stones of the proof of Theorem 5.7 appeared to be
rather unrelated. However, it is remarkable that one of the key ingredients of
Kleiner’s proof is the Poincaré inequality (5.3). Recall that, in Theorem 2.4,
we stated a result of Colding and Minicozzi to the effect that, on complete
manifolds, the Poincaré inequality and the doubling property imply the fi-
nite dimensionality of the spaces of harmonic functions of polynomial growth.
One of Kleiner’s main ideas in [67] is to show that, because one has (5.3),
the Colding–Minicozzi finite dimensionality results for harmonic functions of
polynomial growth does hold for Cayley graphs under the (weak) polynomial
volume growth hypothesis (5.5). This makes Theorem 5.5 central for each of
the two main ingredients of the proof of Kesten’s conjecture.

We complete with what can be seen as a generalization of Theorem 5.7
which involves Sobolev’s inequalities. Because of the relation between the
Sobolev inequality and the Nash inequality and the decay of the probabil-
ity of return in Theorem 5.3, it is possible to formulate Theorem 5.7 in
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an equivalent way as follows: a Cayley graph always satisfies the inequality
‖f‖5/3

2 6 N‖∇f‖2‖f‖2/3
1 unless the group is a finite extension of a nilpotent

group of growth degree at most 2. More generally, the following assertion
holds.

Theorem 5.8. Fix a positive integer ν. On the Cayley graph of a finitely
generated group G, the Nash inequality

∀ f ∈ Cc(G), ‖f‖1+2/ν
2 6 N‖∇f‖2‖f‖2/ν

1

always holds for some constant N ∈ (0,∞) (depending on ν, G and the
Cayley graph structure) unless G is a finite extension of a nilpotent group of
volume growth degree at most ν − 1.

Similarly, the Sobolev inequality

∀ f ∈ Cc(G), ‖f‖pν/(ν−p) 6 S‖∇f‖p

always holds for all ν > p > 1 and some constant S ∈ (0,∞) (depending
on p, ν,G and the Cayley graph structure) unless G is a finite extension of a
nilpotent group of volume growth degree at most ν − 1.
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