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ABSTRACT. We show that, for  random walks on Cayley graphs, the long time behavior o f  the probability o f  

return after 2n steps is invariant by quasi-isometry. 

1. Introduction 

Let G be a finitely generated group. For any finite generating set S satisfying S = S -1 , consider 
the Cayley graph (G, S) with vertex set G and an edge from x to y if and only if y = xs  for some 
s ~ S. Thus, edges are oriented but this is merely a convention since (x, y) is an edge if and only 
if (y, x) is an edge. We allow the identity element id to be in S in which case our graph has a loop 
at each vertex. Clearly the graph (G, S) is invariant under the left action of  G. Denote by Ixl the 
distance from the neutral element id to x in the Cayley graph (G, S), that is, ]xl is the minimal 
number k of  elements of S needed to write x as x = sis2 .. �9 sk, si ~ S. The volume growth function 
of (G, S) is defined by 

V(n)  = # I x  ~ a : Ixl _< n]. 

This paper focuses on the probability of  return after 2n steps of  the simple random walk on 
(G, S). For a survey of this topic, see [36]. The simple random walk on (G, S) is the Markov process 
(Xi)~ c with values in G which evolves as follows: If  the current state is x, the next state is a neighbor 

of x chosen uniformly at random. This implicitly defines a probability measure Ps  on G r~ such that 

Ps (Xn = y /  Xo = x)  = Iz (sn' ( x - l y )  

where 
1 

Ixs(g) = ~-~ls(g) 

and/1 ~n) is the n-fold convolution power of/x. Following usual notation we will also write P~(.) = 
P s ( ' / X o  = x)  for the law of  the walk based on S and started at x e G. To avoid parity problems, 
we consider only the probability of return at even times and set 

4)s(n) = P~ (XEn = id) =/x(s2n)(id) �9 
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It is well known and easy to see that Cs (n) = maxg #~2,~) (g), and it follows that r  is a non-increasing 
function. 

We are interested in the behavior of ~bs(n) for large n and up to the equivalence relation _~ 
which we now define. Given two positive non-increasing functions u, v defined on the positive real 
axis, write u _ v if there exist C _> 1 such that 

V t > O, u(t)  <_ C v ( t / C )  . 

Write u ~ v if u % v and v _~ u. When a function is defined only on the integers, we extend it to the 
positive real axis by linear interpolation. We will use the same name for the original function and 
its extension. In particular, we view Cs as defined on the positive real axis. 

The following theorem is the simplest result of this paper and illustrates well the type of questions 
that will be considered in the sequel. 

Theorem 1.1. 
sets o f  G. Then 

Let G be a finitely generated group. Let S and T be two symmetric finite generating. 

To the best of our knowledge, this has not yet been proved in this generality. The result is not 
surprising. In fact, the idea that the behavior of ~s does not depend on S is at the heart of Varopoulos' 
work in this area during the early 1980s [31, 32, 33, 34, 35]. This idea is also present in [2] where the 
invariance of the transient/recurrent character of random walks is treated. What is more surprising 
is that the relatively simple proof that we will give below has escaped notice until now. Actually, we 
will give two different proofs of Theorem 1.1. 

Part of our interest in this result stems from the fact that there are many groups for which 
the behavior of Cs is not known explicitly. This is the case for the groups of intermediate growth 
constructed by Grigorchuk [17]. Even among solvable finitely generated (or even finitely presented) 
groups, there are many for which the behavior of Os is not yet understood. See [27]. Still, for 
these groups, Theorem 1.1 says that the (unknown) behavior of the probability of return of a simple 
random walk after 2n steps is independent of the generating set. 

Of course, there are several classes of groups for which Theorem 1.1 is known thanks to a 
detailed knowledge of the behavior of ~s. This is the case for non-amenable groups since, by a 
theorem of Kesten [25], 

qbs(n) ~-- exp ( -n )  

for such groups. It is also the case for groups having polynomial growth of degree d (i.e., V(n)  ~- 
(l + n)a), since Varopoulos [33] proved that 

OS(n) --'~ (1 q-n) -d /2  

in this case. See also [22, 35]. By celebrated results of Bass and Gromov, the groups of polynomial 
volume growth are exactly those groups that contain a nilpotent subgroup of finite index. Finally, 
groups that contain a polycyclic subgroup of finite index and have exponential volume growth satisfy 

~ps(n) ~- e x p ( - n  1/3) �9 

See 11, 34, 22, 35]. Using these results and structure theorems one can prove Theorem 1.1 for all 
finitely generated groups that appear as discrete subgroup of a connected Lie group. Indeed, one 
can show that the behavior of q~s for such a group must be of one of the following three "'classical" 
types: exp( -n) ,  exp(-nl /3) ,  or (1 + n) -d/2 for some integer d. See I28, 26]. 
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The importance of the notion of quasi-isometry in geometric group theory is well established. 
See, e.g., [19]. Section 4 generalizes Theorem 1.1 as follows. 

T h e o r e m  1.2. Let (G, S) and (H, T) be Cayley graphs of  two finitely generated groups G, H 
that are quasi-isometric. Then 

Many analytic properties are known to behave well under quasi-sometries, see, e.g., [24, 14] 
and the references therein. It is worth emphasizing that the technique we will use in the proof  of  
Theorem 1.2 is sirrfilar but different and somewhat more refined than the techniques used in such 
references as [24, 14]. 

Another useful result concerns finitely generated subgroups of a finitely generated group. 

T h e o r e m  1.3. Let ( G, S) be a Cayley graph of  the finitely generated group G. Let H be a finitely 
generated subgroup of  G and T a finite symmetric generating set of  H. Then 

~s -- OT.  

Let # be a probability measure on a countable group G. The random walk associated with/z  
is the Markov process (X i )~  with values in G which evolves as follows. If the current state is x, 
the next state is y -- xz where z is chosen at random according to ~. This notion generalizes that of  
simple random walk on a Cayley graph. We set 

cku(n) Pu (X2n id/Xo id) id . . . .  Pu (X2n = id) =/J(2n)( id) .  

When # is symmetric, that is , /z(x)  = / z ( x  -1)  for all x e G, then epu(n ) = maxg ~(2,)(g) and ~ 
is a non-increasing function. The next result generalizes both Theorem 1.1 and Theorem 1.3. 

T h e o r e m  1.4. Let G be a finitely generated group with finite symmetric generating set S. Let 11 
be a symmetric probability measure on G such that Iz has finite second moment, that is, 

Then 

Ix l2u(x)  < + o o .  
xEG 

r __ ~ ,  �9 

The direct comparison in Theorem 1.4 allows us to obtain lower bounds on Cu i f / z  has finite 
second moment. 

Corollary 1.5. Let G be a finitely generated group with finite symmetric generating set S. Let p 
be a probability measure on G such that 

Ix l2u(x)  < + o c  
xeG 

I. l f  G has polynomial volume growth of  degreed (that is V (n) ~_ (1 + n)d ), then cbu(n) ~_ 
(1 + n) -d12. 

2. I f  G contains a potycyclic subgroup of  finite index and has exponential votume growth, 
then On(n) >- exp ( - h i / 3 ) .  
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Proof.  The stated lower bounds are known if ~u is replaced by Cs, S a finite symmetric generating 
set. See [1, 33, 22, 35]. Hence, the desired results follow readily from Theorem 1.4. Note that these 
lower bounds can be complemented with matching upper bounds if we assume in addition that the 
support of/z contains a finite generating set. See [35, Theorem VII.I.1]. [-- 

Finally, in Section 5, Riemannian coverings of a compact manifold are considered. If  M covers 
the compact manifold N with deck transformation group G, we show that the large time behavior of 
the heat kernel ht on M is ___-equivalent to the behavior of simple random walk on G. This yields 
examples of Riemannian manifolds having new types of large time heat kernel behavior. See [27]. 

2. ~ s  --~ r and assorted results 

This section establishes the ___-invariance of r under changes of generating set, that is Theo- 
rem 1.1. In fact, we will prove Theorem 1.4, from which Theorems 1.1 and 1.3 follow. The purpose 
of this section is also to present the basic structure of proof and the main ideas that will later serve 
in Sections 4 and 5 to obtain Theorem 1.2 and the results concerning Riemannian coverings. 

L e m m a  2.1. Let G be a finitely generated group, S a finite symmetric generating set. Let Ix l 
denote the distance between the neutral element id and x in the Cayley graph (G, S). Fix two 
symmetric probability measures #1, #2 on G and assume that 

c = i n f # 2 ( s )  > 0  and C = Z l x l 2 # l ( x )  < + o o .  
s E S  

2~ 

For f with finite support, consider 

l 
s f )  = ~ E I f (x)  - f(xy)121zi(y), 

3f Y 

i = l ,  2.  (2.1) 

Then these Dirichlet forms satisfy 
cs < Cs 

P r o o f  This is well known [33]. We give the proof for completness. I f / z l (y )  > 0, write 
y = sosl . . . s t ,  with so = id, si = si(y) E S, i = 1 . . . . .  k and k = [Yl- Then the Cauchy-Schwarz 
inequality yields 

k 

I f (x)  - f ( x y ) l  2 <_ k Z I f  ( x s o "  "Si-l) - -  f ( x s o "  "si)l 2 �9 
1 

Summing over x and using translation invariance of the counting measure, we get 

k 

E IS(x ) -  S(,y)i k E iS(x) - s �9 
x ] Jr 

Then 
c Z I f (x )  - f ( xy ) [  2 <_ 21y12s f ) .  

)c 

Multiplying by �89 (y) and summing over all y e G we obtain 

cs f )  <_ Cs f )  . 
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This proves the lemma. [ ]  

For readers that are not familiar with the notion of Dirichlet form, let us recall that, for any 
symmetric probability measure/1, on G, we have 

1 
( f  * (6 - / z ) ,  f )  = ~ Z I f (x )  - f (xy)12kt(y)  

x,) '  

where 6 denotes the Dirac mass at the identity, 6(y) = lid(Y). The form 

1 
Cu(f '  f )  = ~ Z I f (x )  - f(xy)[21.t(y) 

x . y  

on ~2 (G) is called the Dirichlet form of it. In terms of operators, ,f~ is the quadratic form associated 
to the self-adjoint operator (1 - # * ) f  = f �9 (6 - / 2 ) .  

The following notation will be used several times throughout this paper. Let/x be a symmetric 
probability measure on G. Let A be a finite subset of G. Consider the kernel 

{ /z ( x - l y )  if x, y �9 A 
KA,u(x,  Y) 0 otherwise (2.2) 

and the corresponding operator 

K a , t t f ( x )  = Z Ka,tt(x,  y ) f ( Y )  
Y 

acting on g2(A). This is a sub-Markovian operator, i.e., 

Ka,tt(x,  y) > 0 and Z KA,#(x,  y) <_ 1 . 
y 

When the measure/z under consideration is clear from the context, we will drop the direct reference 
to # in this notation. Define the Dirichlet form of Ka,tt by setting 

Ca,u(f ,  f )  = ((1 -- KA,u) f ,  f )  

where the scalar product is in e2(A). Define the extension f of f �9 t2(A) to G by setting f ( x )  = 
f ( x )  i fx  ~ A and f ( x )  = 0 otherwise. Then, for x �9 A, Km, t t f (x )  = f * kt(x) and 

CA,.(S,S)= . (2.3) 
xEA 

Finally, the symmetry of # implies that KA,t~ is a self-adjoint operator on s which is a 
finite dimensional Hilbert space. Thus, KA,u is diagonalizable with real eigenvalues. Denote its 
eigenvalues in non-increasing order by 

flA,,u(~-) �9 [ -1 ,  1], ~ = 1 . . . . .  #A .  

With this notation, the trace of K n is given by A,la 

#A 
Tlg(rnA,~) = Z KA,I.I(X'X) = Z flA'/z('~)n " (2.4) 

.~ 1 
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The following simple lemma is one of the keys of our proof of Theorems 1.1 and 1.3. 

L e m m a  2.2. For i = 1, 2,1et K i be a symmetric sub-Markovian operator on a finite set A i with 
associated Dirichet form gi . Let Hi be the finite dimensional Hilbert space o f  all real valued functions 
on Ai with the scalarproduct Y'xeAi f (x )g(x)  and the norm IIf[[i.2 = ()-~xeAi I f  (x)[2)]/2" Assume 

that there exists a linear map f ~ f from H2 to HI such that, for all f �9 H2, 

: (:, <_ :). IIf Ih.2 < C] ],2 and El 

Then 

wi~ B = C]C2. 

Tr (K2"+ ' )  <_ 2[#A2e  -n/B + Tr  (K~In/(2B)])] 

/'roof. 
implies that the eigenvalues of K], K2 satisfy 

l - i l l ( t )  < B ( l - f l 2 ( s  e = l  . . . . .  #A2 

(observe that f ~ f is one to one so that #A] > #A2). Hence, if ~2(e) >_ 0, 

The hypotheses and the minimax characterization of eigenvalues (see, e.g., [21, p. 179]) 

# 2 ( e )  2n --< ] - -  ~ (1 - -  ,/~l ( e ) )  5 exp - (1 - ,8] (e)) 

If ~6] (s > 1/2, it follows that 
~2(e) 2n --< ill(e) n/B  

(use x > e -2(I-x) if 1/2 < x < 1). Now, observe that 

#A2 

* x  2 _ _  �9 

x 0 

Hence, 
l~2(e)[ 2n+2 5 ~ ~2(e) 2n. 

fl2(t)<O #2(t)>0 

_< E :,":~ 
#2(e)>0 

= 2 E '82(g)2n-12 E ~ 2 ( e ) 2 n  

,82(t)>0 ,82(~)>0 
#1 (t)< 1/2 /~1 (t)> ]/2 

<_ 2#A2e  -" /B +2}-~l/h(e)l./~ 
< 2 [ # A 2 e  - " ' B  + Tr(K~In/(2B)])] . [ ]  

Finally, 

Theorem 2.3. Let  G be a finitely generated group. Assume  that G is amenable. Let Izi, i = 1, 2, 
be two symmetric  probability measures on G. Assume  that the Dirichlet forms gi, i = 1 ,2  defined 
at (2.1) satisfys < Bs Then 

(21n/(28)1) (id)] . #~2n+2)(id) _< 2[e -n/B + IZ 1 
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In particular; 
(2 ,, ( 2 n ) ,  . , ,  lz�89 n) (ia) ~- #1 ~za) . 

Proof. Let A be a finite subset of G. Consider the kernels 

KA.i = KA,ui (x,  y), i = 1,2 

introduced at (2.2). For simplicity, we refer to the objects relative to/z i  by using the subscript 
i ~ {1, 2}. The hypothesis ,fl < BC2 implies CA.1 < BCA.2 because of  (2.3). Applying Lemma 2.2 
with A = A1 = A2, H1 = H2, and f w-> f = f the identity map, we get 

2 ( n + l )  [ # A  e -n /B  [ K 2ln/(2B)]'~ ] TIr(KA, 2 ) < 2  I. + T r  (2.5) - -  \ A , I  . ] . j  �9 

For each ~ ~ (0, 1), let U(E) be a finite set containing the identity and such that 

/z2(U(E)) >_ 1 - E. 

As G is amenable, Fr criterium [16] yields a sequence of  increasing finite sets F(i) such that 

#F(i)W 

#F(i) 
+ l (2.6) 

for any fixed finite set W. Fix n and set 

W = W(n,E) = U(~) 2~ . 

Let A(i) = F( i )W and consider the sub-Markovian kernels 

KA(i) , j (X,  y), j = 1,2, i = 1, 2, 3 . . . . .  

z be the probability measure on G r~ corresponding to the random walk as above. For j = 1,2, let P j  

(Xe)~ c on G associated to # j  (i.e., whose increments X-~Ix~+j are independent of law/z  j)  and 
started at X0 = z. Hence, 

z . ( n ) (  ) Pj (Xn = y) = tzj z - l y  �9 

In these terms, if x, z ~ A(i), we have 

K'~ . x x m(i),j( , Z )  = Pj (Xn = z and Xt ~ A(i) for all 1 < t < n - 1 )  . 

It follows that 
K~a(i),j(x, x) <_ /z~)(id) .  

Furthermore, i fx  E F(i) C A(i) = F(i)W, 

K2(n+l) tx  x ~ 
A(i ) .2  ~ ' J 

= P~ (X2~,,+1) = x and Xt ~ A(i) for all 1 < t < 2(n + 1)) 

= P~ (X2~n+l) = x) - P~ (X21n+l) = X and 3 ~ 6 {1 . . . . .  2(n + 1)} : Xe ~ A(i)) 

> P ~ ( X z < n + , ) = x ) - P ~ ( 3 e 6 { O  . . . . .  2n+I} :X-~ 'X t+1  6 G \ U ( , ) )  

> U ~ n ) ( i d ) -  2(n + 1)~. 

The first inequality follows from the inclusion 

{v I0 . . . . .  2,, + 1 /  x[lx +l c Iv Io . . . . .  2(,, + 1)1 : F ( i ) W l  
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which is satisfied when Xo ~ F(i) because W = U(E) a( '+l) .  By (2.5) it follows that 

1 Tr (~.2(~+J)~ /z~2(n+l))(id) - 2(n + 1)~ < #Y(i------~ ~,'LA(i)'2 -] 

[#A(i) e_n/B #a(i)  . (2[n/2Bl)(id,] 
_< 2 L#F( i )  + # - ~ t z  1 .,j . 

Letting i tend to infinity, we obtain 

IZ~20'+l))(id)- 2(n + 1), _< 2 [ e  - " /B  +/z{121"/2B])(id)] . 

Letting ~ tend to zero yields the desired inequality. [ ]  

Lemma 2.1 and Theorem 2.3 imply Theorem 1.4 since, in this theorem, there is no loss of 
generality in assuming that G is amenable. Indeed, if G is not amenable and S is a symmetric  
generating set in G, then eps(n) ~- e x p ( - n )  by a celebrated theorem of Kesten [25] whereas, for any 
symmetric probability measure/z  on a countable group, obviously ~ ,  (n) >- e x p ( - n ) .  

3. A second proof of ~ s  --~ q~T 

3.1. Trace comparison in von Neumann algebra 

Kenneth Brown pointed out that well-known results in the theory of  von Neumann algebra 
can be used to provide a slicker proof of  Theorem 1.1, allowing us to make no distinction between 
amenable and non-amenable groups. Roughly, the idea is to use a version of the minimax principle 
belonging to the theory of von Neumann algebra. The usual minimax principle can be interpreted as 
a comparison of  the dimension of certain finite dimensional spectral subspaces. In the yon Neumann 
algebra version, one compares the trace of spectral projections (i.e., the von Neumann dimension 
of the associated modules). This is well known, but it seems difficult to find a precise reference in 
text books. Lemma 3 and 4 in [5] give a detailed treatment that suffices for our purpose. To state 
a precise result, we need some notation. One works in the von Neumann algebra A generated by 
the reduced C* algebra of the group G. A symmetric probability measure/z  can be interpreted as a 
bounded self-adjoint operator #* acting on s by f --+ f �9 It belongs to A. If  F is a bounded 
real function of the real variable and a e A is a self-adjoint bounded operator acting on s (G) ,  F(a) 
is a bounded operator on s defined by elementary functional calculus and F(a) belongs to A. 
This operator has a bounded convolution kernel that we also denote by F(a) and its trace is defined 
by 

z[F(a)] = F ( a ) ( i d ) .  

For instance, if F 0 0  = e -t~', t > 0, and a = (I - #*) for some symmetric probability m e a s u r e / ,  
on G, then 

F(a) = e - t ( l - # * )  

has kernel 
oc 

F(a)(y) = e-'~a-U)(y) = e- '  E --tnu(n)(Y) 
n! , y E G  

0 

where ~ is the Dirac mass at id ~ G. This is a continuous time convolution semigroup. The next 
subsection relates the behavior of  this continuous time semigroup to the discrete time semigroup 
/a (n) in a more general context. 

The following lemma follows easily from the arguments in [5, p. 6-7]. 
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L e m m a  3.1. Let G be a finitely generated group (amenable or noO. Let  tx l, Ix2 be two symmetric  
probability measures on G whose Dirichlet forms satisfy s <_ Bs (i.e., (I  - tz~) <_ B( I  - #~) in 
operator notation). Then, for any non-increasing continuous function F : [0, oo) ~ II~, 

r [F  (B (1 - #~))]  _<r [F  ((1 - / z ; ) ) ]  . 

In particular 
e-tB(~-u2)(id) <_ e-t(~-ul)( id)  . 

3.2. Continuous vs. discrete time 

Let (K, 7r) denote a reversible Markov chain on countable state space X. Consider the iterates 
K n and the associated continuous time semigroup 

H t  = e - t ( l - K )  = e - t  
tn K n 

l__.a n! 
0 

These are self-adjoint operators on L2(X,  Jr). Let K = f+l 1_ ZdEx be a spectral resolution of the 

h and consider the probability measure self-adjoint operator K. Fix x 6 X, set fx = 

d#xO.)  = (dExf~ ,  fx)  

on [ -  1, 1 ]. Then 

f' 
K n ( x , x ) =  ~.ndl~x(~.), H t ( x , x ) =  e - t ( l -X)d#x(~ . ) .  

- 1  - 1  

Since K2n+ l (x, x)  >_ O, it follows that 

f o fo' f0' - -  )~2n+ldl~x(~.) <. ;kZn+ldlzx()~) 5 e-I2n+l)(1-~)dlzxO0 < H2n(X, x)  
l 

whence 

f_' /o Kan+2(x, x)  = )~2n+2dixx(L) < - ~.2n+ld/zj (~.) + L2ndlzx(k) < 2H2n(X, x ) .  
] 1 

In the other direction, we always have 

H 4 n ( X ,  x )  = e-4n(1-X)dlxx(X) < e -2" + X2ndlzx(X) < e -2n + K2n(x,  x)  . 
1 /2 

Thus we can state the following general result. 

Proposition 3.2. Let ( K , zr ) denote a reversible Markov chain on a countable state space X.  
Then K n and Ht = e - t ( 1 - K )  satisfy 

K2~+2(x ,x)  < 2H2n(x ,x )  and H 4 , ( x , x )  < e -2n + K 2 n ( x , x )  �9 

Lemma 2.1, Lemma 3.1, and Proposition 3.2 provide the announced second proof of Theo- 
rem 1.4. 
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4. l n v a r i z n e e  u n d e r  quas i - i snme t ry  

The aim of this section is to prove Theorem 1.2. The proof will be adapted from the special 
case of two different Cayley graphs of a same group treated in Section 2. The approach outlined in 
Section 3 seems to break down in this setting because quasi-isometries need not preserve invariance 
at all. 

As promised, we now recall the notion of quasi-isometry. Let (X1, dl), (X2, d2) two metric 
spaces. We say that a map ~ : X1 --+ X2 is a quasi-isometry if there is a constant C such that 

V x, y ~ X l ,  C - l  dl (x ,  y) - C < d2(~(x ) ,  a#(y)) < Cdl (x ,  y) + C ; (1) 

and 
X2 = { x  e X 2 : 3 z e X j , z ~ a P ( X l )  and d2(x, z) < C} . (2) 

Property (1) says that the map ~ preserves large distances up to multiplicative constants. Property (2) 
says that ~ is roughly onto. We say that (X 1, dl ), (X2, d2) are quasi-isometric if there exists a quasi- 
isometry from X1 to X2. It is not hard to see that this defines an equivalence relation among metric 
spaces. See 119] and also [9, p. 191] (quasi-isometries are also called rough isometries). 

Theorem 1.2 is a corollary of the following result. The method of proof will be similar to that 
used in Section 2. 

T h e o r e m  4.1. Let  ( G, S) and(H,  T)  be the Cayley graphs o f  two finitely generated groups G, H 
with S, T finite symmetric generating sets. Denote by ds and dr  the corresponding graph distance 
functions on G and H.  Assume  that there is a map ~ : G --+ H and a constant 0 < C < +oo  such 
that 

C - l d s ( x ,  y) - C <_ d r ( ~ ( x ) ,  ~ ( y ) )  

and 

Then 

H = {x E H : 3 y E G, y E O(G)  and dr ( x ,  y) < C} . 

CG(n) ___ q~H(n) 

where CG (n) = #(s 2n) (id),/zs = ~ l s  (that is, (bG = 49s) and similarly for r 

Before embarking on the proof, let us make a few remarks. Without loss of generality we can 
assume that G is amenable because, if not, CG (n) -~ exp ( -n )  and r (n) >- exp( -n) .  It is also clear 
that we can replace the given generating set S (or T) by any other finite symmetric generating set as 
we please. Indeed, such a change will not alter the hypothesis nor the conclusion (by Theorem 1.1). 

Proof .  We need to introduce some (unfortunately rather cumbersome) notation. By hypothesis, 
for each h e H,  there exists a h e ~p(G) C H such that dr (h ,  [~) <_ C. Fix such a map h --+ 
once and for all with the property that h = h if h ~ ~'(G). For each h, consider the set W ( h )  = 
aP-l({h}) C G. Since/~ = h when h e O(G), obviously 

G = U W(h). (4.1) 
hEH 

By hypothesis, for any fixed h, two elements u, v ~ W ( h )  are at a distance at most C 2 of each other 
in (G, S). By invariance, this shows that 

N = sup # W ( h )  
hEH 
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is a finite integer. For each h 6 H,  we use the set W(h) to construct an ordered N-tuple 

W(h) = (xl (h) . . . . .  xN(h)) (4.2) 

with entries xi(h) E W(h) and such that each element of W(h) appears at least once in W(h). 

On s (H), we have the usual Dirichlet form associated with T which will be denoted gn here. 
It is given by 

1 
s  f )  -- 2#T E ~ I f (h)  - f (h t ) l  2 

hEH t~T 

for any finitely supported function f .  Consider the disjoint union 

H N = l ( h , i ) : h  E H ,  i E { 1  . . . . .  N}} 

of N copies of H. One of the crucial tools for the proof of Theorem 4.1 will be the one to one linear 
map 

f ~ f : s ) ~ s (HN) 

defined by 

f ( (h ,  i)) = f (xi (h)) . (4.3) 

Not only is this map clearly one to one because of (4,1), but furthermore 

(4.4) 

On s  we define a form gN by setting 

N 
1 

s f) = ~ ~ ~ ~__,If((h,i))- f((ht, i))l 2 . 
i=l hEH tET 

(4.5) 

Observe that this is the Dirichlet form associated with simple random walk on the disconnected graph 
obtained as the disjoint union of N copies of (H, T). That is, if we set 

K N ( ( x , i ) , ( y , j ) )  = { Ur(x-lY)o otherwiseif/=j , (4.6) 

then ~N can be written 

E N ( f ,  f )  = ((1 - KN) f, f )  

where the scalar product is in s and 

K N f ( ( x ,  i)) = ~ KN((X, i), (y, j))f((y, j ) ) .  
(y,j)EHIv 

Now, we are going to pick a convenient finite symmetric generating set in G. We will call it R. 
If h, h: are two elements that are neighbors in (H, T), i.e., such that h' = ht for some t ~ T, then 
h, h t are at distance at most 2C + 1 of each other. Hence, any g E W(h),  g: ~ W(h')  are at distance 
at most (3C + 1)C of each other in (G, S). We set 

R = {z e G : d s ( i d c , z )  _< (3C + l)C} . 
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This is, of course, a finite symmetric generating set in G and we set 

1 
s  2#R Z I f ( g ) -  f(gr)[ 2 . 

g~G.reR 

This construction makes the following lemma essentially obvious. 

L e m m a  4 .2 .  Referring to notation introduced above, there exists a constant B such that 

(}, }) s) 
for all finitely supported functions in ~2 ( G ). 

Proof. lndeed, 

2#T Z Z Z f ( ( h , i ) ) -  f ( (h t ,  i ) ) "  
i=1 hEH tET 

N 
1 

- 2#r } 2  } 2  E Is (x , (h))-  /(x,(h,))l  ~ . 
i=1 hEH tET 

By definition of the generating set R C G, i f t  E T then xi(ht) = xi(h)r for some r E R. Hence 

1 

i=1 hEH tET rER 

NM 
-< 2 Z Z I f ( g ) -  f (gr) l  2 

gEG rER 

< #RNMCG(f ,  f )  

where 
M = sup#{h '  e H :/~' = h }  . 

hEH 

By invariance, it is clear that M is finite since two elements h, h' with h = /~' are at a distance at 
most 2C of each other. This ends the proof of Lemma 4.2. [ ]  

Fix a finite set A C G. Consider the sub-Markov kernel KA = KA,#R defined at (2.2) and the 
associate Dirichlet form given by (2.3). 

Associate to A C G the finite subset AN of HN given by 

AN = {(h,i) E HN : xi(h) E A} . 

On AN there is a natural sub-Markovian kernel defined by 

] /ZT(h- lh  ') if (h, i), (h', j )  EAN and i = j  
KN,A  ((h, i), (h', J)) ! 0 otherwise 

with associated Dirichlet form 
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where the scalar product is in s 

For f defined on A (resp. AN), we define the extension f of f to G (resp. HN) by setting 
f = f on A (resp. AN) and f ----- 0 otherwise. Then 

The map f w-~ f defined by (4.3) induces by restriction a map from s (A) to e 2 (AN) and it is obvious 
from the definition that the operations ~ and': commute: For any f 6 s and all (h, i) ~ HN, we 
have 

( f ) ' ( ( h , i ) )  = ( f ) ' ( ( h , i ) )  . (4.8) 

Hence (4.4), (4.7), (4.8), and Lemma 4.2 show that the map 

f ~ f : s ) __.> s (AN) 

is a linear one to one map satisfying 

][fl12 < f 2  and EN,A ( f ,  f )  <_ BgA(f ,  f )  (4.9) 

with B the constant from Lemma 4.2. Lemma 2.2 and (4,9) yield 

2[n/(2B)] Tr(K2n+2)<2[N#Ae-n/B-- I -Tr(KN,A ) ] .  (4.10) 

As noticed before, we can assume that G is amenable. Thus, let F(i )  C G, i = 1, 2 . . . .  a 
#F(i)U Fr sequence in G as in (2.6)) so that limi__,~ #r(i) - I for any finite set U ~ G. Fix an integer 

n > 1, set U = R 4n and A(i)  = F( i )U.  After 2n + 2 steps the random walk in G of law/zR started 
at x ~ F( i )  cannot ever have exit A(i) .  Hence, for x ~ F(i) ,  

2n+2 P~(X2n+2 = x)  = (OR(n -t- 1) = Ka(i) ( x , x )  . 

Furthermore, it is clear that 

KnN.A ((h, i), (h, i)) < ph  (Xn = h) = lZ (T n) (idH) . 

Hence, (4.10) yields 

l ( ) 2N#a(i)( ) 
C P R ( n + I ) < # F ( i )  Tr K2n+2 < #F( i )  e - n / 8 + c p r ( 2 [ n / ( 2 B ) ] )  " 

Letting i tend to infinity, we obtain 

+ 1) < 2N (e -n/~ + C~r(2[n/(2B)])) CR(n 

which is the desired inequality. This ends the proof of Theorem 4.1. Theorem 1.2 follows. 

5. Heat diffusion kernel on covering manifolds 

Let M be a Riemannian manifold, G be a finitely generated group of isometries of M such that 
M~ G = N is a compact Riemannian manifold. Thus M is a covering of N with deck transformation 
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group G. Let A denote the Laplace-Beltrami operator on M and let ht (x, y) be the smooth positive 
kernel of the heat diffusion semigroup e - t A .  Set 

�9 M(t) = sup min {1, ht(x,  x)] . 
xEM 

Observe that, by invariance under G and compactness of N, one can prove that 

sup h t ( x , x )  "~ ht(y,  y) 
xEM 

as functions of t, for any fixed y �9 M. Also note that the only purpose of taking min{1, ht(x,  x)} 
in the definition of ~M (t) is to eliminate the behavior of ht for small t which of course is irrelevant 
for comparison with the behavior of random walk on G. 

Let S be a finite symmetric generating set in G and let 

~)c(n) = C~s(n) = pi~ (X2n = id) 

as before. The aim of this section is to prove the following theorem. 

T h e o r e m  5.1. Let M be a covering o f  a compact manifold N with deck transformation group G. 
Then, referring to the notation introduced above, 

~M -~r �9 

This theorem says that up the equivalence relation _~, the behavior of the heat diffusion on M 
(for large t) is the same as the behavior of the random walk on G. By a Theorem of Brooks [4] 
(see also [30]), we know that G is non-amenable if and only if the spectrum of A is contained in 
[~-0, +c~)  with ~-0 > 0. Moreover, in this case, both ~M and q~c decay exponentially fast. Thus, it 
is enough to prove the theorem when G is amenable. 

5.1. Notation and background 

Let M be a covering of a compact manifold N with deck transformation group G as above. 
Let [Vfl  denote the length of the gradient of a function f .  The Dirichlet form associated to the 
Laplace-Be]trami operator A on M is given by 

IIVfllg = (A f ,  f )  

for any smooth compactly supported function f .  Here, the scalar product is in L2(M,  dr) ,  dv  being 
the Riemannian volume. 

Denote the Riemannian distance function on M by 

M x M  9 ( x , y ) ~  d ( x , y )  

and set 
B ( x , r )  = {y �9 M : d ( x , y )  < r}, 

For any subset W C M and r > 0, define 

W+(r)  = {x �9 M : d(x ,  W) < r} and 

so that, obviously, 
W - ( r )  C W C W + ( r ) .  

V(x ,  r) = Vol (B(x,  r)) . 

W - ( r )  = {x E W : d (x, W c) > r} 
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Since M is a covering of a compact manifold, for any fixed 0 < r < R < +oo ,  there exist two 
constants C0(R), Co(r, R) such that 

[ maxxeM V(x, 4t) } 
max < Co(R) (5.1) 

0<t_<R i minx~M V(x , t )  - 

and 

maxxcM V (x, R) 
< Co(r, R ) .  

minx~M V (x, r) - 
(5.2) 

Fix o e M, a base point and 
viewed as a subset of  M, has the following two properties: 

(1) 
(2) 

Of course, we can assume that ro 

identify G to a subset of M through G 9 g ---> go. The group G, 

3 r0 > 0 : g  # g' ~ d (g ,g ' )  > ro 

3 RO < oo : maxx~m d(G,x )  < Ro �9 

_< R0. Set 

~ 2 = { x  e M : u  g # i d ,  d (o ,x )  < d ( g , x ) } .  

This set is a fundamental domain for the action of G on M, that is, 

gg tNg '~2=O i f g # g '  and M = U g ~ .  
gEG 

Observe that 

(5.3) 

(5.4) 

B (o, r0/2) C g2 C B (o, R0) �9 

Let W C M be an open set. We will need to consider the sub-Markovian heat semigroup Ht W 
acting on L2(W, dr) associated to the Laplacian A with Dirichlet boundary condition in W. Tech- 
nically, this semigroup has generator - A  w where A w is the Friedrichs extension of  the symmetric 
operator A with domain C~(W),  the space of  smooth functions with compact support in W. See, 

e.g., [15, p. 11]. LethW(x,  y), x, y e W, t > 0, denote the kernel of  Ht w. This kernel describes the 
probability of going from x to y in time t without leaving W. When W is relatively compact in M it 
is well known that the spectrum of A w is made of a sequence of positive eigenvalues )~w (i) S +o~,  
i = 1,2 . . . . .  (repeated according to their multiplicity and in non-decreasing order). 

Later on we will need a number of known results concerning h w that we now recall. Consider 
the diffusion (i.e., Brownian motion) (Xt)t>0 on the Riemannian manifold M and let z = rw be the 
stopping time 

r = i n f { t  : t  >O, Xt CW} . 

Thus r is the first exit time from W and Xr is the position of the process when it exits W. The strong 
Markov property yields the well-known formula (see [23]) 

u x, y e W, hW(x, y) = hi(x, y) - E;' ( h , - , ( X , ,  y ) l l ,< , l )  

where EX(.) denote the expectation with respect to  (XI)t> 0 started at Xo = x. Hence, 

h W (x, y) < hi(x, y) 

for any open set W. Furthermore, 

hW(x ,y )  > ht(x, y ) -  sup sup {hs(z, y)} �9 
0<s<t ZEIgW 
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In the present situation the heat kernel satisfies 

ht(z, y) < Cl(min{1, t}) -d/2 exp ( - d ( z ,  y )2 /Cl t )  , (5.5) 

where d is the dimension of M. See, for instance, [29, Theorem 6.1 ]. The earliest reference for such 
an estimate seems to be [10]. 

Lemma 5.2. There exists D > 0 and for each E > 0 there exists ot > 0 such that for any open set 
W and any t > 1, we have 

Vx  E W - ( o t t l / 2 ) ,  hW(x,x)  > D - l m a x l h t / 2 ( y , y ) } - ~  
y E M  

where W-(r )  = Ix ~ W : d(x, 3W) > r}. 

P r o o f  For t > 1 and y E W - ( a t  1~2), (5.5)yields 

sup sup {hs(z, y)} < Cl sup (min{1,s}) -d/2exp ( -o t2 t /C l s )  < C'l Ol - d  " 

0<s< t  zEOW 0<s<t  

Hence, i f a  is such that C'lc~ -d = E, 

Y x E  W-(o t t  1/2) htW(x,x) > h t ( x , x ) - ,  

But, by the Li-Yau parabolic Harnack inequality (see, e.g., [15, Theorem 5.3.5]) and the fact that 
M~ G is compact, 

V x E M, V t > l ,  maxht/2(y, y) < Dht(x ,x )  
y E M  

where D depends only on M. The desired result follows. [ ]  

Lemma 5.3. There exists a constant C2 depending only on M such that, for any open bounded 
W C M ,  

oc 

fw  htw(x'x)dv(x) = E e-D'w(i) < E e-tkw(i)+-C2V~ (W)e- t /2"  
i=1 i:Xw(i)<l 

P r o o f  The heat kernel estimate (5.5) shows that 

h~/2(x, x) < hl/2(x, x) < C2 

where C2 = Cj 2 d/2 is independent of x ~ M and W. Hence, for t > 1, 

f h,W(x, ~)dv(x) <_ e-tkw(i) + e-(t-l/2) E e-XW(i)/2 

i:~,w(i)<_ 1 i:Xw(i)> 1 
OC 

E e-lXw(i) q- e-t~2 E e-xw(i)/2 

i:~.w(i)<_] 1 

< E e-tkw(i)+e-t~2 f hWl/2(x'x)dv(x) 
.I W 

i :Xw(i)<] 

< E e-tkw(i) + C2 Vol (W)  e -t/2 . 

i : ) ,w( i )<|  

[] 
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5.2. Proof of ~b G ___ (]>M 
Let r0, R0 be as defined at (5.3). It will turn out to be convenient to choose the finite generating 

set S of G so that 

{g : d(o, g) < 4R0} C S .  (5.6) 

We can now construct a partition of unity on M indexed by G, say Og, g ~ G, so that 

V x ~ M, Z Og(x) = 1, Og > 0  
g 

and 
Og=O outside B(g ,2Ro) ,  Og--I  in B(g,  ro/4), [VOgl<_C. 

Let us recall briefly this construction. Let f2 be the fundamental domain defined at (5.4). Let 17 > 0 
be a smooth bump function around o ~ M with the properties that support(r/) C f l+( r0 /4)  and 
r / =  1 on ft. Observe that this implies that 

r / ( g - l x ) = O  if g : p i d  and x 6 B(o,  ro/4) 

and set 
r/(g-'x) 

Og(x) = Y~heG r~ ( h - l x )  " 

The desired properties easily follow from this definition after observing that 

min y ~ r / ( h - i x )  >1 
xEM 

h~G 

and 
max# {h : o ( h - l x )  > 0 } < + ~ .  
xEM 

The first assertion is obvious since, for each x, there is at least one h such that h-Jx  ~ -~ and r / =  1 
on ~ .  The second assertion can be proved as follows. Fix x 6 M. If  h is such that r/(h-lx) > 0, 
then d(x, h) < 2R0. For each such h, consider the open ball of radius ro/2 centred at h E M. These 
balls are pairwise disjoint. Hence, by (5.2), 

{ ( ) } m a x x V ( x , 2 R o )  
m a x #  h : r/ h - i x  > 0 < < Co(ro/2,2Ro) . 
x~M - minx V (x, ro/2) - 

Observe that, for each g and all x ~ B(g, r0/4), 

Og(x)= I whereas Oh(x)=O if h 7~g .  (5.7) 

We consider the linear map f ~ f : s ----> L2(M) defined by 

f(x) = E :(g)Og(x). 
gEG 

This map has the following two properties: 

u f E e2(G), 

u f E e2(G), 

Ilfl12 _< C3 f 2 

V f  2 < C3gs ( f ,  f )  �9 

(5.8) 

(5.9) 
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Inequality (5.8) is clear because, by (5.7), there is a ball of radius ro/4 around each g e M such that 
f ( x )  = f ( g )  on that ball. To prove (5.9) observe that V y~g Og -- O. Hence, i fx  ~ B(g, R0), 

V f ( x )  = )-~( f (h)  - f(g))VOh(X). 
h 

lfOh(X) ~ 0, then d(x, h <_ 2R0 so that d(h, g) <_ 3R0. By (5.6), it follows that 

f~ V f ( x )  2dv(x)  < C 2 ~ I f ( g s ) -  f (g) l  2 
(g,Ro) sES 

since [VOh I < C for all h ~ G. This implies the desired conclusion with C3 = 2C2#S because the 
balls B(g, Ro), g ~ G, cover M. 

Now, fix a finite set A C G and set 

A o = { x E M : d ( x , A )  <2R0} . 

This is a bounded subset of M. On s consider the sub-Markovian operator KA with Dirichlet 
fornl ~m associated to #s  as in (2.2). On A0 consider the heat diffusion semigroup with Dirichlet 
boundary condition H A~ 

Any f ~ e2(A) can be extended trivially outside A by setting f (g )  = 0 if g r A and this 
allows us to define f for f e e2(A). Observe that if f e eZ(A), then f is a smooth function with 
compact support in A0 and that (5.8) and (5.9) hold true with Es(f, f )  = ~a (f, f). See (2.3). Also, 
observe that 

Vol (Ao) _< C4#A (5.10) 

for some constant C4 independent of A. 

Let/3A (i), 1 < i < #A be the eigenvalues of KA on s in non-increasing order. Let )~Ao(i), 
i = 1 . . . . .  be the Dirichlet eigenvalues of A in A0, in non-decreasing order. Then, (5.8), (5.9), and 
the minimax principle yield 

XAo(i) < B(1 --t im(i))  i ---- 1 . . . . .  # A ,  

with B = C~, C3 from (5.8) and (5.9). Taking traces, and using the argument of Lemma 2.2 to take 
care of those/3A (i)'s that are negative, we get 

A0 

where the left-hand side is as in (2.4) and 

av (hA~ = = f ,  
i 0 

From here, assuming (as we may) that G is amenable, we choose a F01ner sequence F(i) as in (2.6). 
Fixing n and applying (5.11) and (5.10) to each A(i) = F(i)S an , we obtain (see the end of Section 4 
for the first inequality) 

c~s(n + 1) <_ #F(i----~Tr K~ ("+l) 

2VoI(Ao) 
sup hA~ x) 

< #F(i)  xEAo 

< 2ca#A(i)  sup h2n/B(X,X) . 
- #F( i )  x~M 
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Letting i tend to infinity now yields 

dPs(n) < 2C4 sup h2n/B(X, x)  
xEM 

since #A(i) /#F(i)  ---> 1 by (2.6). The desired conclusion 

qbs(n) < 2C4~M(2n/B) 

follows since qbs(n) < 1 and 

�9 M(t) = sup min {1, ht(x, X)} . 
xEM 

731 

5.3. Proof of  ~ M  ----- ~G 

This is the most technical part of the proof of Theorem 5.1. The additional ingredient we need 
is a good discrete approximation of M. We will appeal to a Poincar6 inequality proved by Buser 
in [6] for manifolds with Ricci curvature bounded below (our M has Ricci curvature bounded below 
since M / G  is compact). See also [9, p. 288]. Buser's inequality can be stated as follows. For each 
R > 0 there exists a constant Po(R) such that 

iB i f  -- fBI 2 dv 5 Po(R)r 2 s IVfl2d  (5.12) 

for any ball B = B(x, r) C M of radius r, 0 < r < R, and any Lipschitz function f in B. Here fB 
denotes the mean of  f over B. 

For each 8 E (0, 1), let F = F(8) C f2 be a maximal finite set of points of  f2 such that 

d ( y , y ' ) > ~ / 2  if y , y ' ~ F ( ~ )  and yg:~,' .  

From the maximality of  1", it follows that 

g2 C U v ~ r B ( y , 8 ) .  

Furthermore, the balls B(y,  ~), y e F do not overlap to much since, by (5.1), 

maxyeM V(y, 28) 
Vx  ~ M ,  #{y ~ F : x ~ B ( y , 8 ) } <  < C o ( l ) .  (5.13) 

- miny~M V(y, ~/2) - 

Write 
F = W I , " ,  gJv} , 

N = N(3) being the cardinality of  F. Consider the disjoint union GN of N copies of  G, i.e., 

GN = { ( g , i ) : g 6 G ,  i 6 { 1  . . . . .  N}}. 

Given a function f : M --+ N define f : GN ~ R by setting 

1 fB f ( z )dv ( z ) .  f (g ,  i) - V (gYi, 8) (gV,,~) 

Lemma 5.4. The linear map f v--> f ,  restricted to Lipschitz functions with compact support, has 

(5.14) 

the following properties: 
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There exist two constant C5, C' 5 independent of f  6- (0, 1) such that 

II/11~ _< c; .:122 + C5<~211 v /11~. 

For each ~ 6- (0, 1) there exists a constant C(~) such that 

&v (f, f) _< c(<~)llVfll~ 

where 

N 
1 

i=I geG,s~S 

If((g, i)) - f((gs, i))I 2 . 

Proof o f ( l ) .  The balls B(ggi, 5), g 6. G, Yi 6- 1-' cover M. Hence, 

/V 

-< zzf, ( ~ <5) geG i=1 gY" 

N 2 N fB f i) 2 
_ 2EEv<g~/,a):<g,i) l +2EE -/<g, d~ 

geG i=1 gEG i=1 (ggi'<5) 

N 

< 2maxV(z ,  1) :11  
zeM (gyi,r geG i=1 

< 2 m a x V ( z ,  1 ) z e M  f 22-1-2P~176  fM IVfl2dv 

Here we have used the Poincar6 inequality (5.12) and (5.13), i.e., the fact that the balls B(gyi, <S), 
g e G, i = 1 . . . . .  N, do not overlap much. This yields the desired conclusion with C~ = 
2maxz~M V(z, 1) and C5 = 2Po(I)Co(I) .  [ ]  

Proof of(2). Observe that there exists RI > 0 such that, for all ~5 6- (0, 1), 

N 

U U B(*Yi,a) cB{~ 
sEStD{id} i=1 

Write 

l N ,~ 

- 2 # S Z  Z f ( ( g ' i ) ) - f ( ( g s ' i ) ) "  
i=1 gEG,s~S 

2#S E V (gYi, 8) (gy~,~) 
i=1 ge . eS 

' L :-I 2 
V (gsyi, 5) (gsyi,~) 
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N 

< i~=l ~ G , s  I f ( x ) - f (Y )12dv (x )dv (Y )  
- 2#Sminz V ( Z ,  8 )  2 g e  e S  (gYi'r (gsvi '~) 

< N F_, fB s I f ( x ) - f ( y ) 1 2 d v ( x ) d v ( y )  
- 2 lI(ln z V ( z ,  ~)2 ( 4R ) (g,4Ri) geG g, 1 

N P0 (4RI) maxz V (z ,4Rl )  s 
< Z IVfl2dv 
- 4 minz V(z, 8) 2 (g,4Rl) 

geG 

< C(8) fM IVfl2dv" 

The last step uses the fact that the balls B(g, R~), g �9 G, do not overlap too much and (5.2). Ei 

Fix a finite subset A C G and let 

= U g ~  " Ag2 
gEA 

Let U (A) C M be an open set with smooth boundary and the following property 

U(A) C [A~2]-(ro/4) C Af2 C U(A) + (ro) �9 (5.15) 

Since U(A) has a smooth boundary and is bounded, one can use classical elliptic theory (e.g., 
[20, Lemma 6.4]) to see that any function u solution of 

A u  = ~.u 
u = 0 on 0U (5.16) 

for some ~. > 0 has a bounded gradient in U(A). It follows that the function 

f i ( x ) =  [ u(x) i f x � 9  

I 0 otherwise 

is a Lipschitz function on M. Moreover, if8 �9 (0, 1) is small enough (e.g., 8 _< r0/4) then, by (5.14) 
and (5.15), the function 

= (~)  : 6 N  ~ 

has support in 
AN = {(g, i) : g �9 A, i �9 {1 . . . . .  N}} . 

On A/v, we consider the self-adjoint operator 

J l zs (g- lg ' )  if ( g , i ) , ( g ' , j ) � 9  and i = j  
K/v i), (8', J)) ,A | 0 otherwise 

with associated Dirichlet form ~ N , A ( f ,  f )  = ((1 - K N , A )  f ,  f ) ,  f �9 ~2(AN). 

L e m m a  5.5. Let 7-l A be the finite dimensional subspace of  L 2 ( U ( A ) , dr) spanned by the solutions 
of  (5.16) with 0 < 9, <_ 1. We can choose 8 �9 (0, 1) small enough so that, for any finite set A C G, 
the linear map 

~ 

u .-', ?~ = (~) : HA C L2(U(A), dr )  ---> ~2 (AN) 
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satisfies 

and 

Proof. 
small 3 > 0, 

and 
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EN,A (fi, fi) < C611VulI~. 

The functions in ~1"~ A a r e  Lipschitz with compact support. Thus by Lemma 5.4, for any 

,u,] = c; Ila I1 = Ilall== + c a ,v.il] 

s (~, ~') = s (LI, fi) < C(a)llVull~. 

But IIVull~ = (~xu, u) 5 Ilull~ because u is solution of (5.16) with 0 < Jk < 1. The desired result 

follows if we pick any 6 _< C~ ]/2/2. Observe that fixing 3 determines the value of N = N (5). 

By the minimax principle, Lemma 5.5 yields a comparison between the Dirichlet eigenvalues 
0 < )~U(A)(i) _< 1 of A in U(A) in non-decreasing order, say there are k of them, and the eigenvalues 
flN,A (i) (in non-increasing order) of KN,A on (2(AN). Namely, 

1 -j~N,A(i) < B~.A(U)(i), i = I . . . . .  k 

with B = C62. Thus, ifflU.A (i) > 1/2, then e-2nZA(V) (i) < t~N.A (i) n/B. Taking traces as in the proof 
of  Lemma 2.2 gives 

2[n/2BI e-n/B Z e-2n~'v(a)(i)<--Tr(KN,a ) + N # A  . 
i:)~U(A)(i)< l 

From the definition of KN,A, it is clear that, for any j e {1 . . . . .  N}, 

Hence, 

K~,A((g' J)' (g' J)) < Pgs (Xn = g) = u(sn)(id) �9 

Z e-2nXu'a)(i) <- N#A (4aG([n/(2B)]) + e -n/B) . (5.17) 

i:s 

Fix an integer n. Fix E > 0 and let c~ = c~(E) be as given by Lemma 5.2. Pick T = T(n, E) C G to 
be a finite subset of  G so large that 

Af2 = U f2 c U ( A T ) -  ((2n)'/2a ) 
g~A 

for all finite set A C G. For instance 

T = {g e G :d(o,g)  < (2n)1/2c~ + 10R0} 

do the job. Then, by Lemma 5.2, 

D JA hU(AT)(x' x)dv(x) max {h,/2(y, y)} _< D~ + Vol (Af2) 
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for t > 1. Thus, by Lemma 5.3 and (5.17), 

max Ihn(y, y)} 
yEM 

_< DE + Vol (Af2) Z e-2n'~u~Ar)(i) + C2 Vol (U(AT))e -n 
i:XU(AT)(i)<I 

D (N#[AT] (d~G([n/(2B)])+e -n/B) + C2 Vol (U(AT))e -n) 
< D ~ +  Vol(Af2) 

,-, #[AT] 5 D, + t.7"--'~'A~ ((PG([nI(2B)])+ e-nlB). 

Finally, assuming as we may that G is amenable, let F(i) be a F01ner sequence as in (2.6). For 
each i, apply the last inequality to A = F(i) and let i tend to infinity. Since #[F(i)T]/#F(i) ~ 1, 
we get 

Letting ~ tend to zero yields the desired result, that is, 

(~M -----~G �9 

6. Further remarks 

]t is natural to ask what role group invariance plays in Theorem 1.2. To be more precise, let 
~i = (Vi, El) be two locally finite graphs with non-oriented edge sets. Let Ni(x) be the number 
of  neighbors o f x  in Gi. Let Ki(x, y) = liNt(x) if {x, y} �9 Ei and Ki(x, y) = 0 otherwise. The 
Markov kernel Ki is reversible with respect to the measure Ni. In what follows we always assume 

that supx~v i Ni(x) < o~. 

In this setting the question solved in Theorem 1.2 for Cayley graphs generalizes as follows. 
Assume that the graphs Gl, G2 are quasi-isometric and let ap : Vj ~ V2 be a quasi-isometry. 

1. Is it true that, as functions of n, 

K~"(x, x) = K~"(~(x), r 

for any x �9 VI (uniformly in x)? 

2. Is it true that 

(6.1) 

sup K2n(x,x) ~-- sup K2n(y, y) ? (6.2) 
xeVl yeV2 

In Cayley graphs, (6.1) and (6.2) are the same because, by invariance, K~ (x, x) = K~ (id, id). 
For general graphs, the argument of the present paper can be used to obtain a result weaker than (6.2), 
namely 

�9 .2 ln /C] t .  , 
inf K~n(x,x) <_ C sup ^2 ty, Y) (6.3) 

xEVl yEV2 

for some constant C. Of  course, this proves (6.2) if 

inf K2n(x, x) ~ sup K2n(x, x) (6.4) 
x6Vl xEV 1 
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and similarly for K2. For instance, this extends the results of this paper to random walks that are 
quasi-transitive with respect to some group action. 

Unfortunately, we do not know any satisfactory method to prove (6.4). To see how poorly this 
question is understood, consider the case where ~l is a Cayley graph of a group G with symmetric 
finite generating set S and ~2 = (G, E2) where E2 is obtained from El by adding some edges 
between points at distance at most 10 of each other in GI. Then it is clear that ~1, G2 are quasi- 
isometric. In fact, the identity map G ~ G is bi-Lipschitz in this case. Clearly, G2 is not necessarily 
a Cayley graph since we did not require invariance under the action of the group when adding edges. 
Even in this simple case we do not know how to prove that 

c~s(n ) "~ sup K2n (x, x) (6.5) 
xEG 

or that 

inf KZn(x, x ) ' ~  sup KZn(x,x)  . (6.6) 
xEG xEG 

If  G contains a polycyclic subgroup of finite index, then one can use Nash type inequalities and (6.3) 
to prove (6.5). See, e.g., [ l 1 ]. Still it seems very reasonable to conjecture that (6.5) and (6.6) hold 
true on any group G with ~l and ~2 as above. 

These remarks and questions can of course be translated in the context of heat kernels on 
manifolds. 
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