
Isoperimetry, volume growth and random walks.

A survey on the relationships between volume growth, isoperimetry, and the behavior

of simple random walk on Cayley graphs, with examples

Ch. Pittet
LATP

Université de Provence

Marseille

L. Saloff-Coste
Department of Mathematics

Cornell University

NY, USA

March 12, 2014



2



Contents

1 Introduction 5
1.1 Before we start . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Notation for finitely generated groups . . . . . . . . . . . . . . . 7
1.3 First examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Quasi-isometries 15
2.1 The notion of quasi-isometry . . . . . . . . . . . . . . . . . . . . 15
2.2 Examples of quasi-isometries . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Cayley graphs . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Trees of bounded degree at least 3 . . . . . . . . . . . . . 19

2.3 Quasi-isometry, growth and isoperimetry . . . . . . . . . . . . . . 20
2.4 invariance for Cayley graphs . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Invariance of volume growth . . . . . . . . . . . . . . . . . 20
2.4.2 Invariance of the isoperimetric profiles . . . . . . . . . . . 21

3 Nash inequalities 29
3.1 Notation for Markov chains . . . . . . . . . . . . . . . . . . . . . 29
3.2 Elementary tools from analysis . . . . . . . . . . . . . . . . . . . 32

3.2.1 The function φ . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Dirichlet forms . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Nash inequalities and the behavior of φ . . . . . . . . . . . . . . 35
3.3.1 The technique of John Nash . . . . . . . . . . . . . . . . . 35
3.3.2 The converse statement . . . . . . . . . . . . . . . . . . . 37

3.4 Nash inequality and volume growth . . . . . . . . . . . . . . . . . 40

4 The volume and φ 43
4.1 General volume upper bounds on φ . . . . . . . . . . . . . . . . . 43
4.2 General volume lower bounds on φ. . . . . . . . . . . . . . . . . . 45
4.3 The Viscek graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Consequences of isoperimetric inequalities 55
5.1 Isoperimetry and volume lower bound . . . . . . . . . . . . . . . 55
5.2 Isoperimetry, Nash profile and φ . . . . . . . . . . . . . . . . . . 56

3



4 CONTENTS

6 Bounding J and φ on Cayley graphs 61
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Chapter 1

Introduction

chap-intro

1.1 Before we start
sec-bef

What is the largest area in the plane bounded by a given perimeter? This ques-
tion was already considered thousand years ago. The isoperimetric inequality

4πA ≤ L2

where L is the perimeter and A the enclosed area shows that disks have the
largest possible area given their perimeter (they are, in a sense, the only extremal
sets). In dimension n ≥ 2, any bounded set Ω with smooth boundary ∂Ω satisfies

nω1/n
n V (Ω)1−1/n ≤ A(∂Ω)

where ωn is the volume of the unit ball in Euclidean n-space, A denotes the
(n − 1)-measure on the hypersurface ∂Ω and V is the Lebesgue measure in
Euclidean n-space. Observe the close relationship between the growth

r 7→ ωnr
n

of the volume of Euclidean n-balls and isoperimetry in Euclidean space. This
relationship is one of the main theme to be developped in these notes in a more
general context.

Recall that heat diffusion is modelled mathematically by the heat equation

∂tu−
n∑
1

∂2
i u = 0

which is the prototype of a parabolic PDE. The fundamental solution of this
equation (i.e., the solution (t, y) 7→ ux(t, y) satisfying ux = δx at time t = 0),
also called the heat kernel, is provided by the Gauss kernel

(t, y) 7→ 1
(4πt)n/2

exp
(
−‖x− y‖

2

4t

)
, t > 0, y ∈ Rn.
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6 CHAPTER 1. INTRODUCTION

These objects (i.e., the heat equation and Gauss kernel) also describe the motion
of a Brownian particle, i.e., the stochastic process called Brownian motion. At a
näıve level, we can observe that the level sets of the Gauss kernel are Euclidean
spheres, establishing a formal link between heat diffusion, isoperimetry and vol-
ume growth. Moreover, one easily comes up with the crude idea that, the more
space there is, the more rapidly heat will diffuse. Indeed, the Gauss kernel indi-
cates that if all the heat is concentrated at x at time 0 then, at time t, a good
portion of the heat will be distributed somewhat uniformly in the Euclidean ball
or radius

√
t around x.

The notions and objects discussed above, volume growth, isoperimetry, and
heat diffusion, generalize naturally to the setting of Riemannian manifolds. In-
deed, the Riemannian structure provides ways to define balls, to measure vol-
umes and to model heat diffusion through the the heat equation (∂t + ∆)u = 0
where ∆ = −div grad is the Riemannian Laplace operator.

As any n-dimensional Riemannian structure copies locally an n-dimensional
Euclidean space, at small scale, many of the properties of Euclidean spaces are
conserved. For instance, the volume of balls around a fixed point x grows like rn

if the radius r is small enough. For sets Ω contained in a small enough compact
neighborhood K of x, we have V (Ω)1−1/n ≤ CKA(∂Ω). The heat kernel h(t, x, y)
satisfies h(t, x, x) ≈ cn,xt−n/2 for small enough time t and resembles locally the
Gauss Euclidean kernel.

What happens at large scale is a very different matter for Euclidean geometry
plays no essential role there. For instance, in the hyperbolic plane, balls have
exponential volume growth as the radius goes to infinity, the linear isoperimetric
inequality

V (Ω) ≤ A(∂Ω)

is satisfied and the heat kernel is given by

h(t, x, y) =
√

2
(4πt)3/2

e−t/4
∫ ∞
d

se−s
2/4t

(cosh s− cosh d)1/2
ds

where d = d(x, y) is the hyperbolic distance between x and y. The large time
and large distances behavior of this kernel is very different from the behavior of
the Euclidean Gauss kernel.

It turns out that, at large scale and for general Riemannian manifolds, only
certain relations between volume growth, isoperimetry and heat diffusion be-
havior remain whereas many are lost. In particular, fast volume growth says
little about the isoperimetric problem or the large time decay of the heat kernel
h(t, x, x) in general. One drastic way to forget about the irrelevant smooth n-
dimensional Euclidean structure and focuss on the large scale geometry of the
Riemannian manifold M under consideration is to approximate M by a discrete
combinatorial structure, a graph, which one can think of as a skeleton of M .
One is led to consider volume growth and isoperimetry on graphs, the mean-
ing of which is rather clear. The role of heat diffusion is then taken by the
notion of random walk. In particular, the heat kernel h(t, x, y) is replaced by
the probability that a random walk started at x reaches y in (discrete) time t.
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This is no surprise if one remembers that the heat equation is also the equa-
tion driving Brownian motion and that random walk is the discrete analog of
Brownian motion. Just as for Riemannian manifolds, on a general (symmetric,
connected, locally finite) graph a fast volume growth does not imply much in
terms of isoperimetry or random walk.

So the question naturally arises: does there exists a natural class of graphs
(manifolds) for which volume growth has interesting implications concerning
isoperimetry and/or random walk (heat kernel) behavior? One answer is that
interesting results can be obtained if one assumes enough “homogeneity” of the
underlying structure. In particular, in the context of Cayley graphs of finitely
generated groups there is indeed strong connections between volume growth,
isoperimetry and random walk behavior. Going back to Riemannian manifolds
this means in particular that covers of compact manifolds enjoy similar relation-
ships between volume growth, isoperimetry and heat kernel behavior.

This informal discussion has now taken us to the main subject treated in
this book, that is, the relationships between volume growth, isoperimetry, and
random walks on finitely generated groups. The next section gives precise def-
initions and introduces notation in that context. In order to obtain a more
complete picture of the subject and to be able to stress the differences between
what happens on general graphs versus what happens on Cayley graphs, we will
also consider volume growth, isoperimetry and random walks on graphs. Our
aim however is to concentrate on the rich and important case of Cayley graphs,
providing a complete treatment of most of the results that will be mentioned as
well as many illustrating examples.

1.2 Growth, isoperimetry and random walks on
finitely generated groups

sec-notfgg
Let G be a finitely generated group. For any finite generating set S satisfying
S = S−1, we consider the Cayley graph (G,S) with vertex set G and an edge
from x to y if and only if y = xs for some s ∈ S. Thus, our edges are oriented
but this is merely a convention since (x, y) is an edge if and only if (y, x) is
an edge. We allow the identity element id to be in S in which case our graph
has a loop at each vertex. Since edges are defined using the set S, there are no
multiple edges. Clearly the graph (G,S) is invariant under the left action of G.

This work focuses on three functions associated with (G,S), namely,

1. the volume growth function VS : n→ VS(n),

2. the isoperimetric profile IS : n→ IS(n),

3. the probability of return of the simple random walk at time 2n, φS : n→
φS(n).

Precise definitions are given below. We will survey the relationships between the
growth rate of VS , the growth rate of IS , and the decay rate of φS .
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We will mainly be interested in these functions up to a natural equivalence
relation u ' v between positive functions defined on the positive real axis. When
a function is defined only on the integers, we extend it to the positive real axis
by linear interpolation. We will use the same name for the original function and
its extention. In particular, we will consider VS , IS and φS as defined on the
positive real axis.

If one of the functions u, v is monotone then u ' v means that there exists
a, b, C > 0 such that

∀ t, u(t) ≤ C v(at) and v(t) ≤ C u(bt).

The precise meaning of u ' v for general positive functions u, v is slightly com-
plicated: Given two positive functions u, v defined on the positive real axis, write
u � v if there exist C ≥ 0 and b > a > 0 such that

∀ t > 0,


u(t) ≤ C sup

at≤s≤bt
v(s)

inf
at≤s≤bt

u(s) ≤ Cv(t)
.

Write u ' v if u � v and v � u. Observe that if one of the two functions u, v is
monotone, then u � v if and only if there exist C, c > 0 such that u(t) ≤ C v(ct)
for all t > 0 so that our two definitions are consistent.

Let us now introduce VS , IS and φS in detail. As S is generating, any element
g of G can be written as a word g = s1 · · · sk with si ∈ S. We define the S-
length |g|S of g to be the smallest k such that g is the product of k elements
of S. Clearly, for h, g ∈ G, the length |h−1g|S is the same as the usual graph
distance between h and g in the Cayley graph (G,S). We will write x ∼ y if x, y
are neighbors in the graph (G,S). Define the S-boundary of a finite set A ⊂ G
by

∂SA = {e = (x, y) ∈ A×Ac : x ∼ y}.

Thus, the boundary of A is the set of all oriented edges from A to Ac = G \ A.
This definition as several advantages over possible variants (for instance, except
for orientation, A and Ac have the same boundary). An alternative definition is
to define the boundary δA as the set of vertices in A that have a neighbor in Ac.
Observe that #δA ≤ #∂A ≤ #S ×#δA. For our purpose, this means there is
no harm in choosing one or the other of these two definitions.

The volume growth function VS of (G,S) is defined by

VS(n) = #{g ∈ G : |g|S ≤ n}. (1.2.1) def-V

This is clearly an increasing function.
The isoperimetric profile IS is defined by

IS(n) = inf
#A=n

{#∂SA} . (1.2.2) def-I

Note that this function is not necessarily increasing.
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Define also
JS(n) = sup

#A≤n

#A
#∂SA

. (1.2.3) def_J

This is a non-decreasing function of n satisfying

n

IS(n)
≤ JS(n) ≤ n. (1.2.4) IJ1

In fact, group invariance shows that

JS(n) = sup
1
2n<#A≤n

#A
#∂A

Indeed, if the maximum is attained at a set B with #B ≤ n/2 then the union
of two disjoint translated copies of B gives a set A with #A = 2#B ≤ n and
#∂A ≤ 2#∂B. Repeated use of this construction proves the claim. It follows
that

JS(n) ≤ sup
1
2n≤`≤n

`

IS(`)
. (1.2.5) IJ2

The reader should note that, at this writing, it is not clear that

JS(n) � n

IS(n)
.

This is because it is not clear if there exist positive a < b and c such that

c inf
an≤`≤bn

JS(`) ≤ n

I(n)

for all n. Thus, we do not know if

JS(n) ' n

IS(n)

in general. Similarly, whether or not IS is '-equivalent to the non-decreasing
isoperimetric profile

I↑S(n) = inf
#A≥n

{#∂SA} (1.2.6) def-Iup

is not clear at this writing.
There is yet another way to look at the isoperimetric profile. It consists in

setting

FS(t) = min{s : ∃A ⊂ G such that #A = s and #∂A < s/t}. (1.2.7) def-F

This non-decreasing function FS is related to JS by

FS(t) > k ⇐⇒ JS(k) ≤ t. (1.2.8)

Indeed, FS(t) > k means exactly that there are no sets A such that #A ≤ k and
#∂A < t−1#A. Equivalently, all sets A with #A ≤ k satisfy #A/#∂A ≤ t, i.e.,
JS(k) ≤ t. Note that FS(t) =∞ for all t large enough if JS ' 1.
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Figure 1.1: The Cayley graph (Z, {−1,+1}) fig-1

r r r r r r r r
xx−1 x+1

The third and last object we want to consider is the probability of return
after 2n steps of the simple random walk on (G,S). The simple random walk on
(G,S) is the Markov process (Xi)∞0 with values in G which evolves as follows. If
the current state is x, the next state is xs where s is chosen uniformly at random
in S. To avoid parity problems, we set

φS(n) = P(X2n = id/X0 = id) = µ
(2n)
S (id) (1.2.9) def-phi

where
µS(g) =

1
#S

1S(g)

and µ(n) is the n-fold convolution power of µ where the convolution of two
functions u, v with finite support is given by

u ? v(x) =
∑
y

u(y)v(y−1x).

It turns out that, because S is symmetric, φS(n) = maxg µ
(2n)
S (g) and it follows

that φS is a non-increasing function of n. See Lemma 2.1 below.

1.3 First examples
sec-firstE

Let us end this introductory chapter by describing some basic examples. When-
ever the context makes it clear which set S is used to define the functions
VS , IS , JS , FS and φS we will drop the reference to S in our notation.

The Cayley graph (Z, {−1,+1})

Figure
fig-1
1.1 shows (a piece of) this Cayley graph. Obviously, V (n) = 2n+ 1 and

I(n) = 2, J(n) = n/2, F (n) = 2n. It is less trivials but not hard to compute

φ(n) = 2−2n

(
2n
n

)
∼ 1√

πn
.

The Cayley graph (Z, {−2,−1,+1,+2})

Figure
fig-2
1.2 shows (a piece of) this Cayley graph. We have V (n) = 4n + 2,

I(n) = 4, J(n) = n/4, F (n) = 4n. The main reason for looking at this example
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Figure 1.2: The Cayley graph (Z, {−2,−1,+1,+2}) fig-2
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is to note that the exact computation of φ(n) in a useful closed form gets rapidly
messy. An application of the local central limit theorem (in this case, a slightly
tricky exercise in elementary Fourier analysis) gives φ(n) ∼ (6πn)−1/2.

The Cayley graph (Z2, {±e1,±e2,±e1 ± e2})

First the reader can draw the Cayley graph of (Z2, {±e1,±e2}) (the square grid!)
and try to find the exact volume growth (easy), the various exact isoperimetric
profiles (not so easy at all), the exact formula for φ(2n) (easy with a trick!).

For a change, we look here at the generating set

S = {−e1 − e2,−e1 + e2, e1 − e2,−e1,−e2, e1, e2, e1 + e2}

where (ei, e2) is the canonical orthogonal basis in R2. See Figure
fig-3
1.3. Balls are

very nice since

B(n) = {x : d(id, x) ≤ n} = {x = (x1, x2) : max{|x1|, |x2|} ≤ n}.

Hence V (n) = (2n+ 1)2. The boundary of these balls has cardinality 8(3n+ 1).
This gives an upper bound on I and a lower bound on J . Of course, one knows
that I(n) '

√
n, J(n) '

√
n (dimension 2 is the only case when I ' J !),

F (n) ' n2. We appeal again to the local central limit theorem to get

φ(n) ∼ 2
3πn

.

Let us set T = S ∪ {id} (of course here id is just (0, 0)). This addition
of the identity element to the generating set does not change the volume and
isoperimetric profiles at all (we have just added a loop to each vertex). For
this generating set T , the associated simple random walk Xn = (X1

n, X
2
n) has

its two coordinates X1
n, X

2
n evolving exactly as two independent simple random

walks on (Z, {−1, 0,+1}). We have P(X1
2n = 0) ∼ ((4/3)πn)−1/2 and thus

φT (n) ∼ 3/(4πn).

The Heisenberg group

Here, the Heisenberg group is the group of 3 by 3 upper-triangular matrices with
integer entries and one’s on the diagonal, i.e.,

H =


 1 y z

0 1 x
0 0 1

 : x, y, z ∈ Z

 .
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Figure 1.3: The Cayley graph (Z2, {±e1,±e2,±e1 ± e2}) fig-3
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It is generated by the four matrices obtained by setting x = ±1, y = z = 0 and
y = ±1, x = z = 0. The corresponding Cayley graph is shown in Figure

figHeis
1.4.

It has V (n) ' n4, I(n) ' n3/4, J(n) ' n1/4, F (n) ' n4, φ(n) ' n−2. None of
these results is entirely trivial. They will be proved later in these notes.

The free group F2

The free group on two letters {a, b} is the set of all reduced words

w =
k∏
1

anibmi

where k = 0, 1, 2, . . ., n1,mk ∈ Z, n2, . . . , nk = ±1,±2, . . ., m1, . . . ,mk−1 =
±1,±2, . . . in the alphabet {a, a−1, b, b−1}. The empty word is the identity. The
product of w1, w2 is obtaining by writing the word w1w2 (concatenation) and
reducing it by deleting (recursively) all products ana−n, bnb−n, n = ±1,±2, . . ..

By induction on n, one finds V (n) = 2 × 3n − 1. We claim that I(n) ' n.
To prove this, for any finite set A, consider δA = {x ∈ A : ∃ y 6∈ A, x ∼ y}. Let
R be the maps from F2 \ id to F2 which deletes the last letter of any non-empty
reduced word. Let A be a finite set. If x 6∈ A and R(x) ∈ A then R(x) ∈ δA since
x ∼ R(X). Hence R−1(A \ δA) ⊂ A. Now the sets R−1({x}), x ∈ A \ δA, form
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Figure 1.4: A piece of the Cayley graph of the Heisenberg group

figHeis
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Figure 1.5: The ball of radius 4 in (F2, {a±1, b±1})
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a partition of R−1(A \ δA) and each contains at least 3 elements (the identity
element has 4 pre-images). This gives

#A ≥ #R−1(A \ δA) ≥ 3#(A \ δA) ≥ 3(#A−#δA),

that is, 2#A ≤ 3#δA ≤ 3#∂A. This yields (2/3)n ≤ I(n) ≤ 4n. Hence
J(n) ' 1.

The asymptotic behavior of φ can be computed precisely and is given by

φ(n) ∼ cn−3/2

(
2
√

2
3

)2n

at infinity,

for some positive finite constant c.



Chapter 2

Quasi-isometries

2.1 The notion of quasi-isometry

The notion of quasi-isometry plays a central role, both heuristically and tech-
nically, in the study of volume growth, isoperimetry, and the behavior of the
return probability function φ. The idea is already present in the early works on
volume growth where the notion of volume growth of finitely generated group
was introduced in connection with the study of the (large scale) volume growth
of Riemannian manifolds. For instance, it was observed that the volume growth
of the universal cover M̃ of a compact manifold M is comparable to the volume
growth of its fundamental group π1(M). In fact, the relationship between π1(M)
and M̃ is very typical of what is now called a quasi-isometry (or rough-isometry).

Definition 2.1.1 Let (X1, d1), (X2, d2) be two metric spaces. A map f from X1

to X2 is Lipschitz if there exists a finite constant C such that

∀x, y ∈ X1, d2(f(x), f(y) ≤ Cd(x, y).

It is bi-Lipschitz if there exist two positive finite constants c, C such that

∀x, y ∈ X1, cd(x, y) ≤ d2(f(x), f(y) ≤ Cd(x, y).

def-QI Definition 2.1.2 Let (X1, d1), (X2, d2) be two metric spaces. A map f from X1

to X2 is a quasi-isometry (from X1 to X2) if there are positive finite constants
Ci, 1 ≤ i ≤ 5, such that:

1. The set X2 equals the C1-neighborhood of the image of X1 by f , that is,

X2 = {z ∈ X2 : d2(z, f(X1)) ≤ C1}.

2. Large distance are roughly preserved by f , that is,

∀x, y ∈ X1, C−1
2 (d1(x, y)− C3) ≤ d2(f(x), f(y)) ≤ C4(d1(x, y) + C5).

15
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Comparing these two definitions, we see that the requirement of being “distance
preserving” is weaker for a quasi-isometry than for a bi-Lipschitz map (small
distances do no matter for quasi-isometries). However, a bi-Lipschitz map does
not have to be “almost surjective” as a quasi-isometry must be (condition 1 in
Definition

def-QI
2.1.2).

An important observation is that although a quasi-isometry need not be
either injective nor surjective, it does admits a sort of inverse. Namely, Assume
that f is a quasi-isometry from X1 to X2. For any u ∈ X2, there is a point
v = v(u) such that d2(v, u) ≤ C1 and v ∈ f(X1). This point is not uniquely
defined but we pick one for each u (we use the axiom of choice here also in
many case there could be an explicit procedure to pick v). Again, among the
pre-image of v, we pick one, say x = x(v) ∈ f−1({v}) and we set g(u) = x. We
claim that g is a quasi-isometry from X2 to X1 and that both g ◦ f and f ◦ g are
at bounded distance from the identity map in X1 and X2, respectively. Consider
for instance the map g ◦ f . For x ∈ X1, let u = f(x). By definition, there exists
v ∈ X2 with d2(v, u) ≤ C1 and g(u) ∈ f−1({v}). Thus,

d1(g ◦ f(x), x) = d1(g(u), x) ≤ C4(d2(v, u) + C5) ≤ C4(C1 + C5) = C6.

This also shows that X1 = {x ∈ X1 : d1(x, g(X2)) ≤ C6}. It also easily follows
from the definition that g roughly preserves large distance as desired.

2.2 Examples of quasi-isometries

2.2.1 Coverings

As already mentioned, one of the most typical example of quasi-isometry is given
by the embedding

f : G 7→ M̃, f(g) = go

of the deck transformation group of the regular covering M̃ of a compact mani-
fold M = M̃/G. Here, o is a fixed point in M̃ and go is the image of o under the
action of g ∈ G on M̃ . More precisely, fix a Riemannian metric on M and lift
it to M̃ . This turns M̃ into a metric space (M̃, d). Let S be a finite symmetric
generating set of G (it is well-known and easy to see that G must be finitely
generated!). The Cayley graph structure (G,S) induces a metric dS (the word
metric) on G. We claim that f defined above is a quasi-isometry between these
two metric spaces. It is plain that

M̃ = {x ∈ M̃ : d(x, f(G)) ≤ C1}

where we can take C1 to be, say, twice the diameter of the compact manifold
M . Pick g, h ∈ G and write h−1g = s1 . . . sk with si ∈ S and k minimal, that
is, k = dS(g, h). Set CS = max{d(o, so) : s ∈ S}. Then

d(go, ho) = d(h−1go, o) ≤
k−1∑
i=0

d(s1 . . . si+1o, s1 . . . sio)
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=
k−1∑
i=0

d(si+1o, o) ≤ CS k = CS dS(g, h).

To obtain a converse inequality, let

U = {z : ∀ g ∈ G, d(z, o) ≤ d(z, go)}.

Then U is a compact fundamental domain for the action of G: M̃ =
⋃
G gU

and the sets gU , g′U have disjoint interiors if g 6= g′. The diameter of U
equals the diameter of the compact manifold M and U contains the open ball
B(o, η) = {z ∈ M̃ : d(o, z) < η) for some η > 0. Let Σ = {σ ∈ G : U ∩ σU 6= ∅}.
The set Σ is finite. Indeed, σ ∈ Σ implies that d(o, σo) ≤ 2diam(M) and the
balls B(σo, η), B(σ′o, η) are disjoint if σ 6= σ′. The set Σ is also symmetric
because U ∩ σU 6= ∅ implies σ−1U ∩ U 6= ∅.

Let U ′ = {z ∈ M̃ : ∃σ ∈ {id} ∪ Σ, z ∈ σU}. Then U ′ is a neighborhood of
U . We claim that Σ generates G. Indeed, let γ be a distance minimizing curve
joining o to go. Let U0, U1, U2, . . . Uk be the sequence of translates of U defined
inductively as follows: U0 = U . Assume that U0, . . . Ui have been constructed
such that the curve γ visits each set Uj = gjU , 0 ≤ j ≤ i. If go belongs to Ui
or to one of the sets σUi, σ ∈ Σ, set k = i and stop. If not, let Ui+1 be the first
translate of U visited by γ after it leaves giU ′. Then, by definition of Σ, there
exists σi, σ′i ∈ Σ such that Ui+1 = σiσ

′
iUi. From this construction it follows that

go = σ1σ
′
i . . . σkσ

′
kσk+1o, that is g = σ1σ

′
i . . . σkσ

′
kσk+1.

where σk+1 ∈ {id} ∪ Σ. Moreover, if we set ε = d(U, M̃ \ U ′), the length of the
minimizing curve γ from o to go is at least εk. Thus

dΣ(id, g) ≤ 2k + 1 ≤ 2ε−1d(o, go) + 1.

It follows that for any g, h ∈ G,

dΣ(g, h) ≤ 2ε−1d(go, ho) + 1.

Finally, we have proved that

(ε/2)(dΣ(g, h)− 1) ≤ d(f(g), f(h)) ≤ CΣ dΣ(g, h),

that is, f is a quasi-isometry from G to M̃ .

2.2.2 Cayley graphs

Let G be a finitely generated group and let S1, S2 be two finite symmetric gener-
ating sets. Then the identity map is a bi-Lipschitz map from (G, dS1) to (G, dS2).
To prove this it suffices to show that

∀x ∈ G, |x|S1 = dS1(id, x) ≤ CdS2(id, x) = C|x|S2 .
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This follows immediately from the definition of the word distance with

C = max
s∈S1
{|s|S2}.

A somewhat less obvious result is the following.

pro-quasi-GH Proposition 2.2.1 Let G be a finitely generated group and H a subgroup of
finite index. Then H is finitely generated and the inclusion map H → G is a
quasi-isometry between any Cayley graphs of G and H.

Proof: Let the right cosets of G be Hu0, Hu1, . . . Huk with u0 = id, ui ∈ G,
1 ≤ i ≤ k. For any x ∈ G let x̃ = ui if x ∈ Hui. Let S be a symmetric generating
set for G. We claim that

Σ = {us(ũs)−1 : u ∈ {u0, . . . , uk}, s ∈ S}

is a generating set of H. Observe first that, indeed, Σ ⊂ H. Next, let h ∈ H ⊂ G
and write

h = s1 . . . sn, si ∈ S.
Set h0 = id, hi = s1 . . . si and write

h =
n∏
1

h̃i−1sih̃i
−1
.

This equality is true simply because h0 = id and hn = h ∈ H so that h̃n = id.
To show that Σ generates H, it suffices to show that h̃i−1sih̃i

−1
∈ Σ. But

h̃i = h̃i−1si = ˜̃
hi1si

because, as one easily checks, x̃y = ˜̃xy for any x, y ∈ G. It follows that

h̃i−1sih̃i
−1

= h̃i−1si

(
˜̃
hi−1si

)−1

∈ Σ

as desired. Not only this shows that H is finitely generated, it also yields

dΣ(x, y) ≤ dS(x, y)

that for any x, y ∈ H ⊂ G. The complementary inequality

dS(x, y) ≤ C1dΣ(x, y)

with C = max{|σ|S : σ ∈ Σ} follows from writting any element in Σ as a word
of minimal length in S. Finally, writting each coset representative ui as a word
of minimal length in S shows that

G = {x ∈ G : dS(x,H) ≤ C2}

with C2 = max{|ui|S : 1 ≤ i ≤ k}. Thus the inclusion maps is a quasi-isometry
from (H, dΣ) to (G, dS). As any two Cayley graphs of a given finitely generated
group are bi-Lipschitz, this proves Proposition

pro-quasi-GH
2.2.1.

The next result is simpler.
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Proposition 2.2.2 Let G be a finitely generated group and H be a finite normal
subgroup. Then the projection map x 7→ Hx is a quasi-isometry between any
Cayley graphs of G and H\G.

Fix a finite generting set S and consider its projection Σ onto H\G. By defini-
tion, we have dΣ(Hx,Hy) ≤ dS(x, y). Conversely, if dΣ(Hx,Hy) = k then there
is a sequence s1, . . . , sk of elements of S such that Hy = Hxs1 . . . sk. Hence
y = hxs1 . . . sk = xs1 . . . skh

′ for sme h, h′ ∈ H. Thus

dS(x, y) ≤ dΣ(Hx,Hy) + max{|h|S : h ∈ H}.

This proves the proposition.

2.2.3 Trees of bounded degree at least 3

The following example is elementary but it may be surprising at first sight.

Proposition 2.2.3 Let (X,E) be a connected tree with vertex degree N(x) sat-
isfying 3 ≤ N(x) ≤M for some finite M . Then (X,E) is quasi-isometric to the
3-regular tree. In particular, any two regular trees of degree p and q, p, q ≥ 3 are
quasi-isometric.

Proof: From (X,E) construct a new graph (X ′, E′) and a map f from X to
X ′ as follows. Enumerate the vertices of X and follow the following procedure,
in order. For each vertex x ∈ X, if N(x) = 3, keep x and the edges around
x unchanged, and set f(x) = x. If N(x) = n + 3 with n ≥ 1, enumerate the
edges at x, say, e0, . . . en+2. Split x into n + 1 vertices x1, . . . , xn+1 as follows.
The vertex x1, which we identify as the image of the original vetex x by setting
f(x) = x1, carries the edges e0, e1 (and the part of the graph that comes with
them) and a new edge e1,2 leading to x2. The vertex x2 also carries the edge e2

(and the part of the graph that comes with it) and another edge e2,3 connecting
to x3. In general, for 2 ≤ i ≤ n, xi is connected to xi−1 by ei−1,i, to xi+1 by
ei,i+1 and carries the (original) edge ei (and the part of the graph that comes
with it). Finally xn+1 is connected to xn by the edge en,n+1 and carries en+1 and
en+2 (and the part of the graph that comes with them). At each stage of this
procedure, the graph is a connected tree. After inspection and local modification
of one of the original vertex, that vertex has degree 3 and all new added vertices
have degree 3. Thus after completion of this procedure we obtain a connected
3-regular tree (X ′, E′) and a map f from X to X ′. By construction,

X ′ = {z ∈ X ′ : d′(z, f(X)) ≤M − 3}

and
d(x, y) ≤ d′(f(x), f(y)) ≤ [2(M − 3) + 1]d(x, y).

Thus f is a bi-Lipschitz map and a quasi-isometry.
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2.3 Quasi-isometry, growth and isoperimetry

2.4 invariance for Cayley graphs

For i = 1, 2, let (Gi, Si) denotes the Cayley graph of the finitely generated group
Gi equipped with a finite symmetric generating sets Si. Let di = dSi be the
associated graph (i.e., word) distance. The next two sections put the following
simple key result in a more general context.

Theorem 2.4.1 Let (Gi, Si), i = 1, 2, be two (locally finite) Cayley graphs of
finitely generated groups as above. Assume that the metric spaces (G1, d1) and
(G2, d2) are quasi-isometric. Then the volume growth functions V1, V2 are com-
parable, i.e.,

V1 ' V2

and the isoperimetric profiles I1, I2, I↑1 , I
↑
2 , and J1, J2 are comparable, i.e.,

I↑1 ' I
↑
2 , J1 ' J2

Proving this theorem is a pretty simple exercise and will be left to the reader.
Complete proofs of more general versions of the result are given below.

Is it true that I is invariant by quasi-isometry between Cayley
graphs? I am not so sure.

2.4.1 Invariance of volume growth

In a metric space equipped with a Borel measure µ, setB(x, r) = {z : d(x, z) < r)
and

V (x, r) = µ({z : d(x, z) ≤ r}).

pro-vol-QI Proposition 2.4.2 Let (Xi, di), i = 1, 2, be two quasi-isometric metric spaces
and let f : X1 → X2 be a quasi-isometry. For i = 1, 2, assume that Xi is
equipped with a Borel measure µi and that, for each r ≥ 1/4, there exists a
constant Cr ∈ (0,∞) such that

∀x ∈ Xi, i = 1, 2, Vi(x, 2r) ≤ CrVi(x, r). (2.4.1) loc-D

Assume further that there exist constants c, C ∈ (0,∞) such that

∀x ∈ X1, cV1(x, 1/2) ≤ V2(f(x), 1/2) ≤ CV (x, 1/2). (2.4.2) vol1-comp

Then there are constant a,A ∈ (0,∞) such that

∀x ∈ X1, ∀ r ≥ 1, aV1(x, r) ≤ V2(f(x), r) ≤ AV1(x, r). (2.4.3) vol-comp

Proof: Fix M large enough and r ≥ 2M and x ∈ X1. The parameter M will
be chosen later: it depends only on the quasi-isometric constants of the map f .
In the ball B1(x, r −M) = {z : d1(z, x) < r −M}, consider a maximal set of
points zi, 1 ≤ i ≤ k, such that d(zi, zj) > M for all i 6= j. Then the open balls
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B1(zi,M/2), 1 ≤ i ≤ k are disjoint and the balls B1(zi,M) cover B1(x, r −M).
It follows that the balls B1(zi, 2M) cover B1(x, r) and, by (

loc-D
2.4.1),

V1(x, r) '
k∑
1

V1(zi,M/2) '
k∑
1

V1(zi, 1).

Now, consider the points f(x), f(zi) ∈ X2. As f is a quasi-isometry, there is a
constant C1 such that d2(f(x), f(zi)) ≤ C1r. Moreover, there exists a constant
c1 > 0 such that, if M is chosen large enough, d2(f(zi), f(zj)) ≥ c1M . It follows
that

V2(f(x), r) ≥ a1V2(f(x), 2C1r) ≥ a1

N∑
1

V2(f(zi), c1M/2)

≥ a2

k∑
1

V2(f(zi), 1) ≥ a3

k∑
1

V1(zi, 1) ≥ a4V1(x, r).

Furthermore, there exists c2 > 0 such that any point in B2(f(x), c2r) is at
bounded distance from the image by f of B1(x, r). It follows that there exists
C2 such that the balls B2(f(zj), C2M) cover B2(x, r). Hence

V2(x, r) ≤
k∑
1

V2(f(zi), C2M) ≤ A1

k∑
1

V2(f(zi), 1)

≤ A2

k∑
1

V1(zi, 1) ≤ A3V1(x, r).

This proves that V2(f(x), r) ' V1(x, r) for all r large enough as desired.

2.4.2 Invariance of the isoperimetric profiles

We starts by introducing the following notion. Let (X, d, µ) be a metric measure
space. For any set A ⊂ X and t ≥ 0, denote by At = {y : d(y,A) ≤ t} be the t
neighborhood of A. Define the boundary of a set A to be the set δA = A1 \ A.
Now, we can compute and compare the volume A and δA for any measurable set
A (of finite measure). In full generality, these definitions are not very practical
since, for instance, the volume of the boundary of A could change drastically if
we replace A1 by A2.

Define the isoperimetric profiles I↑ and J as follows:

I↑(r) = inf{µ(δA) : A ⊂ X, r ≤ µ(A) <∞},

J(r) = sup
{
µ(A)
µ(δA)

: A ⊂ X, µ(A1/2) ≤ r
}
.

Let us point out that these definitions must be used with caution if no further
hypotheses are made on the metric measure space (X, d, µ). Consider the case
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where X is the vertex set of a connected graph and d is the natural graph
distance (i.e., d(x, y) is the minimal number of edges one needs to cross to go
from x to y). In this case, A1/2 = A and

δA = {y ∈ Ac : ∃x ∈ A, x ' y}.

Hence, we recover one of the usual notions of the boundary of a finite subset of
the vertex set of a graph: the boundary of A is the set of points not in A having
a neighboor in A (recall that for a graph with bounded degree, all the usual
notions of boundary yield comparable results as far as (coarse) isoperimetry is
concerned). If we now replace the graph distance d by the distance 2d then, for
any set A, the boundary δA is the empty set! Hence, I↑ ≡ I ≡ 0, J ≡ ∞ on
(0,∞). This clearly shows that, in general, these notions are not stable under
quasi-isometry. However, as we shall see, this problem is not too serious.

Let us not that if the space (X,µ) has finite volume then it follows that
I↑ ≡ 0 whereas J(r) =∞ for r ≥ µ(X).

lem-Ak1 Lemma 2.4.3 Assume that (X, d, µ) satisfies the mild regularity condition (
loc-D
2.4.1),

that is, for each r > 1/4 there exists Cr such that

∀x ∈ X, V (x, 2r) ≤ CrV (x, r).

Then for any fixed ε, η ∈ (1/4,∞) there exists a constant Cε,η such that, for any
measurable compact set A,

µ(Aε) ≤ Cε,ηµ(Aη).

Proof: Consider a maximal collection of points zi in A such that the balls
B(zi, 1/4) are disjoint. Then µ(A1/4) ≥

∑
i V (zi, 1/4). Moreover, the balls

B(zi, 1/2) cover A. Hence the ball B(zi, 3/2) cover A1/2. It follows that

µ(A1/2) ≤
∑
i

V (zi, 3/2) ≤ C
∑
i

V (zi, 1/4) ≤ µ(A1/4).

This suffices to prove the claim.
Recall that a metric space is called a length metric space if the distance d can

be computed by minimizing the length of curves between points. Namely, for any
continuous curve γ : [a, b]→ X, let L(γ) be the supremum of

∑N
1 d(γ(ti−1), γ(ti))

over all partitions a = t0 ≤ t1 ≤ . . . ≤ tN = b of [a, b]. Then (X, d) is a length
metric space if d(x, y) is the infimum of the length L(γ) over all continuous curve
joining x to y. If (X, d) is a locally compact complete length metric space then
for any two points x, y there is a continuous curve γ joining x and y and such
that d(x, y) = L(γ).

lem-Ak Lemma 2.4.4 Assume that (X, d) is a locally compact complete length metric
space and that the measure µ satisfies the mild regularity condition (

loc-D
2.4.1), that

is, for each r ≥ 1/4 there exists Cr such that

∀x ∈ X, V (x, 2r) ≤ CrV (x, r).
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Then for any fixed k ≥ 1 there exists a constant Ck such that, for any measurable
compact set A

µ(Ak \A) ≤ Ckµ(A1 \A).

It suffices to prove this for k = 2. Let {zi} be a maximal collection of points
such that the balls B(zi, 1/4) are disjoint and contained in A1 \ A (by (

loc-D
2.4.1)

and the boundedness of A1, this is a finite collection). We claim that the balls
B(zi, 2) cover A2 \A1. If not, there is a point y ∈ A2 \A1 such that d(y, zi) ≥ 2
for all zi. As y ∈ A2, there exists y′ in A such that d(y, y′) ≤ 2. Let γ be
a shortest curve from y to y′. On this curve, there exists a point z such that
d(z,Ac1) = d(z,A) = 1/2. Moreover, this point z is at distance at most 3/2
of y and satisfies d(z, zi) ≥ d(y, zi) − d(y, z) ≥ 1/2. Hence the existence of z
contradicts the maximality of the collection {zi}.

Now, by (
loc-D
2.4.1), we have

µ(A1 \A) ≥
∑
i

V (zi, 1/4) ≥ c
∑
i

V (zi, 2) ≥ cµ(A2 \A1).

From this, the claim easily follows.

pro-iso-QI Proposition 2.4.5 Let (Xi, di), i = 1, 2, be two locally compact complete length
metric spaces. For i = 1, 2, assume that Xi is equipped with a Borel measure
µi satisfying the volume regularity condition(

loc-D
2.4.1). Assume that there exists a

quasi-isometry f : X1 → X2 satisfying the volume comparison condition (
vol1-comp
2.4.2).

Then there are constant c1, C1 ∈ (0,∞) and an integer k ≥ 1 such that for any
set A ⊂ X1,

c1µ1(A1) ≤ µ2([f(A)]1) ≤ C1µ1(A1) (2.4.4) iso-QI-1

and
µ2([f(A)]k+1 \ [f(A)]k) ≤ C1µ1(δA1). (2.4.5) iso-QI-2

Proof: Let {xi} be a maximal collection in A such that the balls B1(xi, 1) are
disjoint. Then the balls B1(xi, 3) cover A1 and it follows that

µ1(A1) '
∑
i

µ1(B1(xi, 1)).

As the map f : X1 → X2 is a quasi-isometry, there exists R <∞ such that the
balls B2(f(zi), R) cover [f(A)]1. Moreover there exists M <∞ (depending only
of the quasi-isometry constants) such that

max
z∈X2

#{i : z ∈ B2(f(zi), R)} ≤M.

Hence

µ2([f(A)]1) '
∑
i

µ2(f(zi), R) '
∑
i

µ1(B1(zi, 1) ' µ1(A1).

This proves (
iso-QI-1
2.4.4).
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To prove (
iso-QI-2
2.4.5), we proceed similarly. If k is picked large enough (depending

on the quasi-isometry constants of f), any point in [f(A)]k \ [f(A)]k−1 is at
bounded distance of a point f(z) with z ∈ Ar \ A1 and r = Ck. Let {zi} be a
maximal collection of points in Ar \A such that the balls B1(zi, 1) are disjoint.
Then the balls B1(zi, 2) cover Ar \A1 and

µ1(Ar \A1) '
∑
I

V1(zi, 1).

By construction, for C ′ large enough, the balls B2(f(zi), C ′) cover [f(A)]k \
[f(A)]k−1. Hence we have

µ2([f(A)]k \ [f(A)]k−1) ≤
∑
i

V2(f(zi), C ′) '
∑
i

V1(zi, 1) ' µ1(Ar \A1).

By Lemma
lem-Ak
2.4.4, the desired conclusion follows.

Remark Proposition
pro-iso-QI
2.4.5 is somewhat more subtle that it appears at first

sight. First, it is obviously not true that µ1(A) ' µ2(f(A)) since we could have
µ2(f(A)) = 0 with µ1(A) > 0. Second, and more importantly, is not true in
general that µ2(δf(A)) ≤ Cµ1(δA) as simple examples show.

th-iso-QI Theorem 2.4.6 Let (Xi, di), i = 1, 2, be two locally compact complete length
metric spaces. For i = 1, 2, assume that Xi is equipped with a Borel measure
µi satisfying the volume regularity condition(

loc-D
2.4.1). Assume that there exists a

quasi-isometry f : X1 → X2 satisfying the volume comparison condition (
vol1-comp
2.4.2).

Then the isoperimetric profiles satisfy

I↑1 ' I
↑
2 , J1 ' J2.

Proof: We first prove the statement concerning I↑j , j = 1, 2. Note that µ1(X1) <
∞ if and only if µ2(X2) <∞, and that µj(Xj) <∞ implies I↑j ≡ 0 (take A = Xj

in the definition of I↑).
Thus we can assume that µj(Xj) = ∞. Fix r > 0 and let A ⊂ X1 with

r ≤ µ1/2(A) < ∞. Then, by Lemma
lem-Ak1
2.4.3 and Proposition

pro-iso-QI
2.4.5, there exists

c > 0 such that cr ≤ µ2([f(A)]1/2) < ∞. Obviously, cr ≤ µ2([f(A)]k) < ∞
for any k ≥ 1. Let k ≥ 1 be given by Proposition

pro-iso-QI
2.4.5 and set A′ = [f(A)]k.

Then cr ≤ µ2(A′) < ∞ and µ2(δA′1) ≤ Cµ1(δA1). Hence I↑2 (cr) ≤ µ1(δA1).
As the set A with r ≤ µ(A) < ∞ is arbitrary, we have I↑2 (cr) ≤ CI↑1 (r). As
these functions are non-decreasing, the last inequality and the symmetry of the
hypothesis imply I↑2 ' I

↑
1 as desired.

Next we consider the profiles Jj , j = 1, 2. Let A be a subset of X1 with
µ1(A1/2) ≤ r. Let k be given by Proposition

pro-iso-QI
2.4.5 and set A′ = [f(A)]k.

Then µ2(A′) ' µ2([f(A)]1/2) ' µ1(A1/2) ≥ µ1(A) and µ2(δA′) ≤ Cµ1(δA1) ≤
Cµ1(δA). Hence, there is a constant C such that

µ1(A)
µ1(δA)

≤ C µ2(A′)
µ2(δA′)

≤ CJ2(Cr).
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This yields
J1(r) ≤ CJ2(Cr).

By the symmetry of the hypothesis and the monotonicity of the functions Jj ,
j = 1, 2, it follows that J1 ' J2.

Remark One may be tempted to define another isoperimetric profile say I, by
setting

I(r) = inf{µ(δA) : A ⊂ X, µ(A) = r}.

This definition is problematic in many ways. First of all there may be many
values of r for which there are no sets with µ(A) = r. In this case, the above
infimum should probably be intepreted as ∞ but this seems inadequate. A
possibly better solution is to introduce the set Rµ of all non-negative reals r
such that there exists A ⊂ X with µ(A) = r. For r ∈ Rµ, set

I0(r) = inf{µ(δA) : A ⊂ X, µ(A) = r}

and for r ∈ Rµ, set
I(r) = lim inf

t∈Rµ,t→r
I0(t).

If r 6∈ Rµ, set
I(r) = I(t), t = max{s ∈ Rµ : s ≤ r}.

It is interesting to note that it is not always true that I1 ' I2 in the context
of Theorem

th-iso-QI
2.4.6, even if one restricts attention to large sets, or even to sets of

the form A1/2. The isoperimetric profile I does not have enough regularity to be
invariant by quasi-isometry: Let X1 = R with its usual distance and let µ1 be the
Lebesgue measure. Let X2 be R∪N where N = ∪∞i=1Ki is a countable union of
intervals Ki ' (0, 1], each of length 1/2 and Ki is attached to R at the point xi =
i/4 ∈ R. The measure µ2 on X2 is dµ2 =

∑
n∈Z δn/4 +

∑∞
i=1 δk′i +

√
2
∑∞
i=1 δki

where n/4 is understood as a point on R, ki is the hanging extremity of Ki and
k′i is the middle point on Ki.

This gives us a metric space (see Fig.
fig-QI1
2.1) which satisfies (

loc-D
2.4.1) and is

obviously quasi-isometric to X1 = R through the obvious isometric injection of
X1 into X2. The condition (

vol1-comp
2.4.2) is satisfied. It follows that J1 ' J2, I↑1 ' I

↑
2 .

Now observe that, obviously, I1(r) ' 1. Concerning I2, we have

Rµ2 = {µ2(A), A ⊂ X2} = {n+m
√

2 : n,m ∈ {0, 1, 2, . . .}}

and
I(n+m

√
2) ' 1 + (m− n/2)+

where t+ = max{0, t}. There seems to be no easy fix for this difficulty except
assuming the existence of sets of measure ε with small boundary, for all ε ∈ (0, 1).

Technically, Proposition
pro-iso-QI
2.4.5 does not apply to metric spaces such as graphs

that are not length spaces. However, for graphs, this difficulty is easily overcome,
for instance by considering the one-skeleton of a graph which is a nice length
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Figure 2.1: The quasi-isometric spaces X1 and X2 fig-QI1
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0 1

q q q q q q q q q q q q q q q q q q q qr r r r r r r r r r r r r r r r r r r r
q q
0 1

metric space. (all edges are isometric to a unit interval, the measure is Lebesgue
measure on each edge). Let G be a connected locally finite graph with vertex
set V and symmetric edge set E. Let d be the graph distance (i.e., d(x, y) is
the minimun number of edges one must cross to go from x to y). Consider the
measure µ on V defined by µ(x) = N(x) is the degree of x (i.e., the number of
edges (x, y) ∈ E). Let Ṽ be the one-skeleton of this graph equipped with its
natural length distance d̃ and the mesure µ̃ which is Lebesgue measure on each
edge. We claim that the embedding f : V → Ṽ is a quasi-isometry from (V, d, µ)
to (Ṽ , d̃, µ̃) satisfying the volume condition (

vol1-comp
2.4.2). In fact,

d̃(f(x), f(y)) = d(x, y), Ṽ = [f(V )]1/2,

and
µ̃(B̃(f(x), 1/2)) =

1
2
µ(B(x, 1/2)).

In this setting, the local regularity condition (
loc-D
2.4.1) amounts to assuming

that there is a constant C such that

∀ (x, y) ∈ E, N(x) ≤ CN(y). (2.4.6) N-reg

Under this condition, for any finite set A ⊂ V , we have

µ(A) ' µ(A1) ' µ̃([f(A)]1/2).

and
µ(δA) ' µ̃(δ[f(A)]1/2).

Note that µ̃(δf(A)) is not controled by µ(δA) and that µ(δA) is not controled
by µ̃(δ[f(A)]1), in general. In particular, the choice of the value 1/2 (instead of
1) in µ(δA) ' µ̃(δ[f(A)]1/2) is crucial.

QI-grph Proposition 2.4.7 Referring to the above notation, assume that the connected
graph G satisfies (

N-reg
2.4.6). Let I↑, J be the isoperimetric profiles associated to G

and Ĩ↑, J̃ those associated with its one-skeleton. Then

I↑ ' Ĩ↑, J ' J̃ .
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Proof: For any set A ⊂ V , consider A′ = [f(A)]1/2. The remarks preceding
Proposition

QI-grph
2.4.7 immediately give Ĩ↑(r) ≤ CI↑(Cr) and J(r) ≤ CJ̃(Cr) for

some finite constant C ≥ 1.
Now, let A be an arbitrary set in Ṽ and let A′ ⊂ V be defined by A′ =

A1/2 ∩ V . By inspection, we have

µ̃(A) ≤ µ̃(A1) ' µ(A′)

and
µ̃(δA) ≥ cµ(δA′).

It follows that there are constants c, C ∈ (0,∞) such that, for any A ⊂ Ṽ with
µ̃(A) ≥ r, we have

I↑(cr) ≤ µ(δA′) ≤ Cµ̃(δA),

hence I↑(cr) ≤ CĨ↑(r). Similarly, for any A ⊂ Ṽ with µ̃(A1/2) ≤ r, we have
µ(A′) ' µ(A′1/2) ' µ̃(A1) ≤ Cr and

µ̃(A)
µ̃(δA)

≤ C µ(A′)
µ(δA′)

≤ CJ(Cr).

This yields J̃(r) ≤ CJ(r) and finishes the proof of Proposition
QI-grph
2.4.7.

The following result is a corollary of Proposition
QI-grph
2.4.7. Of course it is simpler

and more reasonable to give a direct proof.

QI-grph1 Proposition 2.4.8 Assume that Gi = (Vi, Ei), i = 1, 2 are two connected graphs
satisfying (

N-reg
2.4.6). Assume that there exists a quasi-isometry f : V1 → V2 satis-

fying (
vol1-comp
2.4.2), that is, such that N(f(x)) ' N(x) for all x ∈ V1. Then

I↑1 ' I
↑
2 , J1 ' J2.
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Chapter 3

Nash inequalities

3.1 Denumerable Markov chains
sec-notmc

The aim of this section is to widen the scope of the definitions introduced in the
context of Cayley graphs in Section

sec-notfgg
1.2.

There are several reasons why this is desirable. First, as far as random walks
on groups are concerned, the notion of simple random walk on a Cayley graph
is much too restrictive. More natural is the notion of random walk associated to
a given measure µ on a (finitely generated) group G. By definition, this is the
Markov process (Xi)∞0 with values in G which evolves as follows. If the current
state is x, the next state is xs where s is chosen uniformly at random according
to µ. It is not hard to see that

P(Xn = y/X0 = x) = µ(n)(x−1y)

where µ(n) denotes the n-iterated convolution of µ. In analogy with (
def-phi
1.2.9), we

set
φµ(n) = P(X2n = id/X0 = id) = µ(2n)(id). (3.1.1) def-phiq

To stick to the simplest and more relevant case, we will assume throughout that
µ is symmetric, i.e.,

µ(x) = µ(x−1).

We are also mostly interested in the case where µ is finitely supported with a
support that generates G. Indeed, this is the case that is the most immediately
relevant when one is interested by connections with the geometry of the Cayley
graphs of the group G and the algebraic structure of G.

Second, from the viewpoint of graphs, Cayley graphs are regular graphs,
i.e., graphs where all vertices have the same number of neighbors. The notion
introduced above — volume growth, isoperimetry, simple random walk — easily
generalize to such graphs. In this larger context, it is interesting to see what
is special if anything about Cayley graphs. This is particularly relevant when
one consider the relation between volume growth and isoperimetry since Cayley
graphs behaves very differently than arbitrary regular graphs.

29
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Third, from a technical view point, the treatement of the function φ defined
at (

def-phi
1.2.9) requires some machinery from reversible denumerable Markov chain

theory and this machinery is better presented in its natural context which we
now introduce.

Let X be a denumerable (infinite) set (e.g., X = G, a finitely generated
group). A Markov kernel K is a non-negative function on X × X such that∑
yK(x, y) = 1. In Markov chain language, a particle is hopping at random

on X according to the following rule: If the current state is x, the next state is
chosen at random according to K(x, ·). The iterated kernel Kn(x, y) is defined
inductively by

Kn(x, y) =
∑
z

K(x, z)Kn−1(z, y). (3.1.2) def-Kn

It represents the probability of going from x to y in exactly n steps. The kernel
K is irreducible if for all x, y ∈ X there exists an integer n = n(x, y) such that
Kn(x, y) > 0.

A measure π on X is called invariant (for K) if∑
x

π(x)K(x, y) = π(y).

The pair (K,π) is called reversible if

π(x)K(x, y) = π(y)K(y, x). (3.1.3)

In this notes, we will always assume reversibility. It is not hard to check that
an irreducible Markov kernel admits at most one reversible measure, up to a
constant multiplicative factor. A kernel K is symmetric if

∀x, y ∈ X, K(x, y) = K(y, x).

This symmetry hypothesis implies that the uniform measure π(A) = #A is
invariant and that the pair (K,#) is reversible.

Assuming that a reversible Markov kernel (K,π) is given, we will work with
the (real) Hilbert space `2(π) with scalar product

〈u, v〉 =
∑
x∈X

u(x)v(x)π(x).

The kernel K induces an operator (also denoted by K) acting on functions by

Ku(x) =
∑
y∈X

K(x, y)u(y).

The hypothesis that (K,π) is reversible is easily seen to be equivalent to the
fact that the operator K is a self-adjoint operator on `2(π). In this context, it
is convenient to replace the probability of return after 2n steps by the quantity

φK(n) = max
x∈X

{
K2n(x, x)
π(x)

}
.
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We introduce a (symmetric) graph structure as follows. We say that x and
y are neighbors and write x ∼ y, if K(x, y) > 0 (this structure is symmetric
because we assume that (K,π) is reversible). This structure is locally finite
(i.e., each vertex as a finite number of neighbors) if and only if K(x, ·) is finitely
supported, for each x. The Kernel K is irreducible if and only if this graph is
connected. We write d(x, y) for the graph distance between x and y and set

VK(n) = inf
x
{π{y : d(x, y) ≤ n})} . (3.1.4) def-VK

The boundary ∂A of a set A is the set of oriented edges from A to X \ A.
The natural measure on edges is the measure

Q(B) =
∑

(x,y)∈B

π(x)K(x, y). (3.1.5) def-Q

This allows us to define the isoperimetric functions I↑K and JK by setting

I↑K(t) = inf
π(A)≥t

{Q(∂A)}, JK(t) = sup
π(A)≤t

{
π(A)
Q(∂A)

}
. (3.1.6) def-IJK

In this general setting there is no good comparison between these isoperimetric
profiles.

Let us compare these definitions with those given for Cayley graphs. When
X = G is a finitely generated group equipped with a symmetric finite generating
set S, set K(x, y) = µS(x−1y) with µS = 1

#S1S . Then

K`(x, y) = µ
(`)
S (x−1y)

If we take π ≡ 1, we have π(A) = #A, Q(B) = #B/#S, and we recover the
functions VS , IS , JS and φS of Section , up to constant multiplicative factors assec-Cayley
follows:

VS = VK , I↑S(n) = #SI↑K(n), #SJS(n) = JK(n), φS(n) = φK(n). (3.1.7) =S-K

Another interesting case is when X = G and

K(x, y) = µ(x−1y)

with µ a symmetric probability measure onG. Then againK`(x, y) = µ(`)(x−1y).
In this case K is locally finite if and only if µ is finitely supported.

Finally, consider a graph G with vertex set X and symmetric oriented edge
set E (loops are allowed but not multiple edges). Here symmetry means that
(x, y) ∈ E imples (y, x) ∈ E. Assume that G is locally finite, i.e., N(x) = #{y :
(x, y) ∈ E} is finite for all x. We say that G is regular if N(x) = r for all x, i.e.,
all vertices have the same number of neighbors. The simple random walk on G
is the markov chain on X with kernel

K(x, y) =
{ 1

N(x) if (x, y) ∈ E
0 otherwise.

The pair (K,N) is reversible and K is symmetric if and only if the graph is
regular.
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3.2 Elementary tools from analysis

Let (K,π) be a reversible Markov chain on a denumerable state space X as in
Section

sec-notmc
3.1. Consider K as an operator acting on the space C0(X) of all real

finitely supported functions by

Ku(x) =
∑
y

K(x, y)u(y).

Because of reversibility K is self-adjoint on `2(X,π). For any p ∈ [1,∞], we
denote by ‖f‖p the norm of f in `p(π).

3.2.1 The function φ

To give a simple example of how this point of view can be useful, we prove

Lemma 3.2.1 For each x, n → K2n(x, x) is a non-increasing function. In
particular, n→ φ(n) is non-increasing. Furthermore,

φ(n) = sup
x,y

{
K2n(x, y)
π(y)

}
.

Proof: Let 1x be the function equal to 1 at x and zero otherwise. Then,

K2n(x, x)π(x) = 〈K2n1x,1x〉 = 〈Kn1x,Kn1x〉
= ‖Kn1x‖22 ≤ ‖K(n−1)1x‖22 = K2(n−1)(x, x)π(x).

Here we have used the fact that K contracts `2(π). This follows from Jensen
inequality (|Kf |2 ≤ K|f |2) and the fact that

∑
x π(x)K(x, y) = π(y). To prove

the last equality in the lemma, write

K2n(x, y)π(x) = K2n(y, x)π(y)
= 〈K2n1x,1y〉 = 〈Kn1x,Kn1y〉
≤ ‖Kn1x‖2‖Kn1y‖2
=

(
K2n(x, x)π(x)K2n(y, y)π(y)

)1/2
.

It follows that

K2n(x, y)
π(y)

≤
(
K2n(x, x)
π(x)

K2n(y, y)
π(y)

)1/2

≤ sup
z

{
K(z, z)
π(z)

}
= φ(n).

Hence

φ(n) = sup
x,y

{
K2n(x, y)
π(y)

}
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as desired. The quantity φ(n) has many interpretations. For instance, in oper-
ator norm notation

φ(n) = sup
x
{K2n(x, x)/π(x)} = sup

x,y
{K2n(x, y)/π(y)}

= sup
x
‖[K2n(x, ·)/π(·)]‖22

= ‖Kn‖22→∞ = ‖Kn‖21→2 = ‖K2n‖1→∞. (3.2.8) phi

3.2.2 Dirichlet forms

The Dirichlet form of K is the symmetric bilinear form

E(u, v) = 〈(I −K)u, v〉.

A simple computation shows that

E(u, v) =
1
2

∑
e∈X×X

du(e)dv(e)Q(e)

where du(e) = u(y)− u(x) and Q(e) = π(x)K(x, y) if e = (x, y). In particular,

E(u, u) =
1
2

∑
e∈X×X

|du(e)|2Q(e) =
1
2

∑
x,y

|u(x)− u(y)|2π(x)K(x, y). (3.2.9) ee

We will also use an other Dirichlet form E∗ associated with K and defined
by

E∗(u, v) = 〈(I −K2)u, v〉. (3.2.10) ee*

Obviously, this satisfies

E∗(u, u) = 〈(I −K2)u, u〉 = ‖u‖22 − ‖Ku‖22
since K is self-adjoint on `2(π).

It turns out that the form E is more convenient geometrically and the form
E∗ more convenient analytically when dealing with the discrete time semigroup
K`. They satisfy E∗ ≤ 2E . Indeed,

〈Ku, u〉 ≤ 1
2

(〈Ku,Ku〉+ 〈u, u〉) =
1
2
(
〈K2u, u〉+ 〈u, u〉

)
hence

E(u, u) = 〈u, u〉 − 〈Ku, u〉 ≥ 〈u, u〉 − 1
2
(
〈K2u, u〉+ 〈u, u〉

)
=

1
2
E∗(u, u).

The reverse inequality E∗ ≥ cE is not true in general (this is related to parity
problems and to the possibility that part of the spectrum is close to −1).

We will need the following technical lemma whose content is twofold. First,
it says that when K charges the diagonal uniformly, E and E∗ are comparable.
Second, it says that, when studying φ(n) up to '-equivalence, one can replace
K by 1

2 (I +K).
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lem-K+ Lemma 3.2.2 Define K+ = 1
2 (I +K) and set φ+(n) = maxxK2n

+ (x, x). Then

1. The Dirichlet form E of K satisfies E(f, f) ≤ 2(‖f‖22 − ‖K+f‖22).

2. φ(n) ≤ 2φ+(n).

3. φ+(4n) ≤ (2/3)8n + φ(n).

In particular, φ ' φ+.

Proof: For the first statement, observe that ‖f‖22−‖K+f‖22 = 〈(I−K2
+)f, f〉 =

E+
∗ (f, f) is the Dirichlet form of the Markov operator K2

+. By (2.1.2) it equals

1
2

∑
x,y

|f(x)− f(y)|2π(x)K2
+(x, y).

As K2
+ = 1

4 (I + 2K +K2) ≥ 1
2K pointwise, it follows that E ≤ 2E+

∗ which is the
desired result.

To prove the second statement, fix x and write

K2n
+ (x, x) = 2−2n

2n∑
0

(
2n
i

)
Ki(x, x)

≥ 2−2n
n∑
0

(
2n
2i

)
K(2i)(x, x)

≥ 1
2
K(2n)(x, x).

The last inequality uses
∑n

0

(
2n
2i

)
= 22n−1 and the fact that i → K(2i)(x, x) is

non-increasing.
Finally, we prove the last statement using spectral theory. Let Eλ be a

spectral resolution of K so that

K =
∫ 1

−1

λdEλ.

Then, for any function u ∈ `2,

〈(K+)8nu, u〉 =
∫ 1

−1

(
1 + λ

2

)8n

〈dEλu, u〉

=
∫ 1/3

−1

(
1 + λ

2

)8n

〈dEλu, u〉+
∫ 1

1/3

(
1 + λ

2

)8n

〈dEλu, u〉

≤ (2/3)8n‖u‖22 +
∫ 1

1/3

λ2n〈dEλu, u〉

≤ (2/3)8n‖u‖22 +
∫ 1

−1

λ2n〈dEλu, u〉 = (2/3)4n‖u‖22 + 〈K2nu, u〉

Here we have used the elementary inequality 1 + λ ≤ 2λ1/4 for 1/3 ≤ λ ≤ 1.
The desired result clearly follows from 〈(K+)8nu, u〉 ≤ (2/3)8n‖u‖22 + 〈K2nu, u〉
by taking u = 1x.
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3.3 Nash inequalities and the behavior of φ

We now collect a number of results that will be essential in relating volume
growth, isoperimetry, and the behavior of φ.

3.3.1 The technique of John Nash
subsec-Nashtech

The theorem that follows is named after J. Nash because its roots are in a
celebrated 1958 paper of Nash where he studies solutions of uniformly elliptic
equations. The specific statement presented below has been obtained through a
long chain of improvements and modifications due to different authors. Nash’s
argument is used by N. Varopoulos in

V2
[41] to study the decay of continuous time

Markov kernels. Its first clean use for discrete time Markov chains is in Carlen et
al

CKS
[5]. This was extended and polished in

CSC1,CSC2
[11, 12]. The useful version presented

here is due to T. Coulhon
CN
[8].

def-Nprofil Definition 3.3.1 The Nash profile of the chain (K,π) is the smallest positive
non-decreasing function NK such that

∀f ∈ C0(X), ‖f‖22 ≤ NK(‖f‖21/‖f‖22)
(
‖f‖22 − ‖Kf‖22

)
.

th-N Theorem 3.3.2 (J. Nash) Set π∗ = inf π. Assume that there is a non-decreasing
positive continuous function N defined on [π∗,∞) such that

‖f‖22 ≤ N(‖f‖21/‖f‖22)
(
‖f‖22 − ‖Kf‖22

)
for all f ∈ C0(X). Then

φ(n) ≤ ψ(n)

where ψ is the decreasing C1 function solution of{
ψ(t) = −ψ′(t)N(1/ψ(t))
ψ(0) = 1/π∗

In particular, for α ≥ 0, −∞ < β <∞, we have

1. If N(t) � (1 + t)1/α then φ(n) � (1 + n)−α.

2. If N(t) � [log∗(t)]α then φ(n) � exp
(
−n1/(α+1)

)
.

3. If N(t) � [log∗(t)]α[log∗ log∗(t)]−β then φ(n) � exp
(
−
[
n(log∗ n)β

]1/(α+1)
)

.

Here and in the rest of the paper log∗(t) = log(2 + t).

Remarks 1. The ratio ‖f‖21/‖f‖22 is bounded below by π∗ and for t > π∗ we
must have N(t) ≥ 1. In particular, if π∗ = 0 then ψ ≡ ∞.

2.Of course, ψ is also defined implicitely by

t =
∫ 1/ψ(t)

π∗

N(s)
ds

s
.
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Proof of Theorem
th-N
3.3.2: Fix f ∈ C0(X) satisfying ‖f‖1 = 1. Set U(n) =

‖Knf‖22. The hypothesis implies

U(n) ≤ N(1/U(n))[U(n)− U(n+ 1)]

because ‖Knf‖1 ≤ ‖f‖1 ≤ 1 and N is non-decreasing. Observe that n →
U(n)− U(n+ 1) is non-increasing because

U(n)− U(n+ 1) = 〈Knf,Knf〉 − 〈Kn+1f,Kn+1f〉
= 〈(I −K2)Knf,Knf〉
= ‖(I −K2)1/2Knf‖22
≤ ‖(I −K2)1/2Kn−1f‖22 = U(n− 1)− U(n).

It follows that we also have

U(n+ 1) ≤ N(1/U(n+ 1))[U(n)− U(n+ 1)].

Thus, the linear extention of U to the positive real axis satisfies

U(t) ≤ −N(1/U(t))U ′(t)

where, for t an integer, U ′(t) can be taken to be equal to either the left or right
derivative. It follows easily from the definition of ψ that

U(t) ≤ ψ(t)

because U(0) ≤ 1 = ψ(0). This implies

〈K2nf, f〉 = ‖Knf‖22 ≤ ψ(n)

for all non-negative functions f ∈ C0(X) with ‖f‖1 = 1. Taking f to be the
function equal to π(x)−11x yields

φ(n) = sup
x

{
K2n(x, x)/π(x)

}
≤ ψ(n)

which is the desired result. The remaining statements follow by calculus.

The next statement gives a simple but remarkably general result based on
Theorem

th-N
3.3.2.

1/2 Theorem 3.3.3 Let (K,π) be a reversible irreducible Markov chain on an in-
finite countable set X. Assume that Q∗ = inf{π(x)K(x, y) : x, y, x ∼ y} > 0.
Then (K,π) satisfies a Nash inequality with N(t) ≤ 8Q−2

∗ t2. In particular, there
exists a finite constant C such that

∀n, φ(n) ≤ Cn−1/2.
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Proof For any function f ∈ C0 and any x ∈ X there is a finite sequence of
distinct elements xi, i = 0, 1, . . . , N , such that x = x0, xi+1 ∼ xi, f(xN ) = 0.
Hence

|f(x)|2 ≤
∑
i

|f(xi+1)2 − f(xi)2| ≤ Q−1
∗

∑
e

|df2(e)|Q(e).

Next, note that∑
e

|df2(e)|Q(e) =
∑

x,y:x∼y
|f(x)− f(y)||f(x) + f(y)|Q((x, y))

≤

( ∑
x,y:x∼y

|f(x)− f(y)|2Q((x, y))

)1/2( ∑
x,y:x∼y

|f(x) + f(y)|2Q((x, y))

)1/2

≤ 2
√

2E(f, f)1/2‖f‖2.

Hence
‖f‖22 ≤ ‖f‖∞‖f‖1 ≤ (2

√
2Q−1
∗ )1/2E(f, f)1/4‖f‖1‖f‖1/22 ,

that is
‖f‖22 ≤ 8Q−2

∗
(
‖f‖21/‖f‖22

)2 E(f, f)

as desired.

3.3.2 The converse statement

We now present a partial converse to Theorem
th-N
3.3.2

th-Nconv Theorem 3.3.4 Associate to

φ : n 7→ φ(n) = sup
x
{K2n(x, x)/π(x)}

the non-decreasing function N = Nφ defined by

N (t) = inf
k: tφ(k)<1

(
1 +

k

− log(tφ(k))

)
. (3.3.1) N1

Then the chain K satisfies the Nash inequality

‖f‖22 ≤ N (‖f‖21/‖f‖22)
(
‖f‖22 − ‖Kf‖22

)
.

In particular, for α ≥ 0, −∞ < β <∞, we obtain the following estimates.

1. If φ(n) � (1 + n)−α then N (t) � (1 + t)1/α.

2. If φ(n) � exp
(
−n1/(α+1)

)
then N (t) � [log∗(t)]α.

3. If φ(n) � exp
(
−
[
n(log∗ n)β

]1/(α+1)
)

then

N (t) � [log∗(t)]
α[log∗ log∗(t)]

−β .
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Proof: This result rests on the following observation: reversibility and the
Cauchy-Schwarz inequality imply that the function

i→ ‖Kif‖2
‖Ki−1f‖2

is non-decreasing for any function f ∈ C0(X). Now, fix f such that ‖f‖1 = 1
and set U(i) = ‖Kif‖22. Then U(i) ≤ φ(i) (see (

phi
3.2.8)). Since i→ U(i)/U(i−1)

is non-decreasing and log x ≤ x− 1, x > 0, we obtain

log[‖f‖22/φ(k)] ≤ log[U(0)/U(k)] ≤ k log[U(0)/U(1)]
≤ k

(
‖f‖22 − ‖Kf‖22

)
‖Kf‖−2

2 .

Rewrite this as

‖Kf‖22 ≤
k

log[‖f‖22/φ(k)]
(
‖f‖22 − ‖Kf‖22

)
.

Using ‖f‖22 = ‖Kf‖22 + (‖f‖22 − ‖Kf‖22), we get

‖f‖22 ≤
(

1 +
k

log[‖f‖22/φ(k)]

)(
‖f‖22 − ‖Kf‖22

)
. (3.3.2) N1*

This proves the desired Nash inequality.
The specific upper bounds on N stated in the theorem follow from the defi-

nition by inspection and the remarks below.

Remarks 1. The function φ satisfies φ(k) ≤ φ(0) = 1/π∗. For t < π∗, one can
take k = 0 in the definition of N and we get N (t) = 1 on (0, π∗).

2. Set A = φ(0)/φ(1) and recall that i → φ(i)/φ(i + 1) is non-increasing.
Define Ñφ = Ñ by

Ñ (t) = N (1/φ(n)) if t = 1/φ(n)

and define Ñ by linear interpolation on the non-negative real axis. Then

Ñ (t/A) ≤ N (t) ≤ Ñ (At).

In particular Ñ ' N .
3. Given t ≥ 1/φ(0) = π∗, we have tφ(k) ≥ φ(k)/φ(0) ≥ [φ(1)/φ(0)]k = A−k

since i→ φ(i)/φ(i+ 1) is non-increasing. Hence,

inf
k

φ(k)<1/t

k

− log(tφ(k))
≥ 1

logA
.

It follows that, for t ≥ π∗,

N (t) ≤ 2 logA inf
k

φ(k)<1/t

k

− log(tφ(k))
.
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4. Let ψ be a continuous decreasing function such that φ ≤ ψ. Then

inf
k

φ(k)<1/t

k

− log(tφ(k))
≤ inf

k
ψ(k)<1/t

k

− log(tψ(k))
.

For t > 1/ψ(0) and t = 1/ψ(u), u ≥ 1, we can take k = [2u+ 1] to obtain

N (t) ≤ A1 u

− log(ψ(2u)/ψ(u))

where A1 = 8 logA, A = φ(0)/φ(1). This formula is useful for computing explicit
examples. For instance, if ψ(t) ' (1 + t)−α, we get ψ(2u)/ψ(u) ' 1 and N (t) �
u � (1 + t)1/α. If instead ψ(t) ' exp(−t1/(1+α)), we get ψ(2u)/ψ(u) ' ψ(u) and
N (t) � u/[− logψ(u)] with u ' [log∗ t]1+α which gives N (t) � [log∗ t]α.

5. Let ψ ≥ φ be as above. Assume further that ψ is (piecewise) smooth and
satisfies

log(ψ(u))− log(ψ(2u))
u

≥ ε −ψ
′(u)

ψ(u)

for some ε > 0. This is satisfied if

(�) ∀ t, s, s ∈ [t, 2t],
−ψ′(s)
ψ(s)

≥ ε−ψ
′(t)

ψ(t)
.

Then, for t > 1/ψ(0) and t = 1/ψ(u), we get

N (t) ≤ A2 ψ(u)
−ψ′(u)

=
A2

−t ψ′ ◦ ψ−1(1/t))

where ψ−1 is the inverse of ψ (not 1/ψ).

The last remark above shows that Theorem
th-Nconv
3.3.4 is close to be a sharp

converse of Theorem
th-N
3.3.2. In fact, Theorems

th-N
3.3.2,

th-Nconv
3.3.4 and the remarks above

give the following result.

th-N=phi Theorem 3.3.5 Fix a reversible chain (K,π) and assume that π∗ > 0. Let N
is a positive non-decreasing continuous function. Let ψ be a positive decreas-
ing smooth function with ψ(0) = 1/π∗. Assume that ψ and N are related by
−ψ′(t)N(1/ψ(t)) = ψ(t), ψ(0) = 1/π∗. Assume further that ψ satisfies (�) for
some ε > 0. Then the following properties are equivalent.

1. The chain K satisfies

‖f‖22 ≤ Ñ(‖f‖21/‖f‖22)
(
‖f‖22 − ‖Kf‖22

)
where Ñ is an non-decreasing function satisfying Ñ ' N

2. The chain K satisfies φ ≤ ψ̃ for some non-increasing ψ̃ ' ψ.
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Proof: Assume 1. Then Theorem
th-N
3.3.2 shows that φ(n) ≤ ψ̃(n) where ψ̃ is

defined implicitely by

t = c1

∫ 1/ eψ(t)

π∗

N(c2s)
ds

s
= c1

∫ c2/ eψ(t)

c2π∗

N(s)
ds

s

for some finite constants c1, c2 ≥ 1. This implies that ψ̃(t) = c2ψ(t′) with
t′ = c−1

1 (t+ t0), t0 =
∫ c2π∗
π∗

N(s)dss . Thus, for t > t0, we have

c2ψ(2c−1
1 t) ≤ ψ̃(t) ≤ c2ψ(c−1

1 t).

On the interval [0, 1/π∗], we have ψ ' ψ̃ ' 1. Thus φ ≤ ψ̃ with ψ̃ ' ψ as
desired.

Assume 2. The there are constants c1, c2 ≥ 1 such that φ(n) ≤ c1ψ(n/c2).
By hypothesis, the function t → ψ(t) = c1ψ(t/c2) satisfies (�). Hence Theorem
th-Nconv
3.3.4 and Remarks 3 above yields a Nash inequality with Nash function

N(t) =
1

−tψ′ ◦ ψ1
(1/t)

=
c2

−c1tψ′ ◦ ψ−1(1/(c1t))
= c2N(c1t).

This finishes the proof of Theorem
th-N=phi
3.3.5.

3.4 Nash inequality and volume growth

We now discuss what the behavior of φ(n) says about volume growth. First we
establish a lower bound on the volume growth V in terms of the Nash profile N .
By Theorem

th-Nconv
3.3.4, this implies lower bounds on V in terms of φ.

th-NV Theorem 3.4.1 Assume that (K,π) satisfies the Nash inequality

∀ f ∈ C0(X), ‖f‖22 ≤ N(‖f‖21/‖f‖22)
(
‖f‖22 − ‖Kf‖22

)
where N is a positive increasing continuous function. Then, for all x ∈ X and
all integers n,m with m ≤ n,

V (x, n) ≥ min{N−1((m/2)2), 2(n/m)−1π∗}.

In particular, for α ≥ 0, −∞ < β <∞,

1. If N(t) � (1 + t)2/α then V (x, n) � (1 ∧ π∗)[(1 + n)/ log∗(n)]α

2. If N(t) � log∗(t)2α, this yields V (x, n) � (1 ∧ π∗) exp(n1/(α+1)).

3. If N(t) � [log∗ t)]2α[log log∗ t]−2β then

V (x, n) � (1 ∧ π∗) exp
(

[n(log∗ n)2β ]1/(α+1)
)
.



3.4. NASH INEQUALITY AND VOLUME GROWTH 41

Furthermore, in case 1 where N(t) � (1 + t)2/α with α > 0 the result stated
above can be improved to V (x, n) � (1 ∧ π∗)(1 + n)α.

cor-NV Corollary 3.4.2 Fix α ≥ 0 and −∞ < β <∞.

1. If φ(n) � (1 + n)−α/2 then V (x, n) � (1 ∧ π∗)(1 + n)α.

2. If φ(n) � exp(−n1/(α+1)) then V (x, n) � (1 ∧ π∗) exp(n2/(α+2)).

3. If φ(n) � exp(−[n(log∗ n)β ]1/(α+1)) then

V (x, n) � (1 ∧ π∗) exp
(

[n(log∗ n)β ]2/(α+2)
)
.

Proof: For all integers r, `, apply the hypothesis to f = max{(`+r)−d(x, y), 0}.
On B(x, `), this function is greater or equal to r. Hence

r2V (x, `) ≤ 2N(V (x, `+ r))V (x, `+ r).

Here we used the facts that

‖f‖22 − ‖Kf‖22 =
1
2

∑
y,z

|f(z)− f(y)|2K2(z, y)π(z)

and that |f(z) − f(y)| ≤ 2 if K2(z, y) 6= 0 for our choice of f . We write this
inequality as

V (x, `+ r) ≥ N−1
(
(r2/2)[V (x, `)/V (x, `+ r)]

)
.

Now, fix m,n satisfying 0 < m ≤ n and set a = [n/m], `i = im, r = m where i =
0, . . . , a. Then, either there is a i ∈ {0, . . . , a−1} such that V (x, `i)/V (x, `i+1) ≥
1/2 and it follows that

V (x, n) ≥ V (x, `i+1)
≥ N−1

(
(m/2)2

)
,

or for all i ∈ {0, . . . , a− 1} V (x, `i)/V (x, `i+1) < 1/2 and it follows that

V (x, n) ≥ 2aV (x, 0) ≥ 2(n/m)−1π∗.

This proves the first announced result. The specific results stated in the theorem
easily follow. For instance, if N(t) � [log∗(t)]α then N−1(t) � exp t1/α and
V (x, n) � min{em2/α

, 2n/mπ∗}. For m = nα/(α+2) this yields the desired result.
When N(t) � (1 + t)2/α with α > 0, the above iteration must be improved

to obtain the announced lower bound. Proceeding as above, we have

`2V (x, `) ≤ 2N(V (x, 2`))V (x, 2`).

For ` = 2n−1, this gives

V (x, 2n) ≥
(
c4nV (x, 2n−1)

)θ
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where θ = α/(2 + α). Hence

V (x, 2n) ≥

[
n∏
1

cθ
i

4θ
i(n−i+1)

]
π(x)θ

n

≥ ε2nα(1 ∧ π∗)

because 0 < θ < 1, θ
1−θ = α/2, and

n

n∑
1

θi = n

(
1− θn+1

1− θ
− 1
)

= n
θ(1− θn)

1− θ
≥ −C + αn/2.

Hence, V (x, `) � (1 ∧ π∗)(1 + `)α.



Chapter 4

The volume and φ

The aim of this chapter is to present very general results relating volume growth
and the behavior of φ. One of the reasons to present such results is to emphasize
the contrast between what happens for general reversible Markov chains and for
random walks on groups.

4.1 General volume upper bounds on φ

Let (K,π) be an irreducible reversible Markov chain on a countable set X. We
will make only one assumption here, namely,

Q∗ = inf
e=(x,y):x∼y

{Q(e)} = inf
(x,y):x∼y

{π(x)K(x, y)} > 0. (4.1.1) Q*

Note that by summing of all y ∼ x, this implies that K is locally finite and that

π∗ = inf
X
π > 0. (4.1.2) pi*

Under this mild assumption we prove an upper bound on φ in terms of the
volume growth. The proof illustrates the Nash inequality technique of Theorem
th-N
3.3.2.

th-FK Theorem 4.1.1 Let (K,π) be an irreducible reversible Markov chain on an in-
finite countable set X satisfying (

Q*
4.1.1). Set

w(t) = inf{n : V (n) > t} and N(t) = 128Q−1
∗ tw(4t).

Then (K,π) satisfies the Nash inequality

‖f‖22 ≤ N(‖f‖21/‖f‖22)E(f, f).

and
φ(n) ≤ ψ(n)

43
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where ψ is the decreasing function defined implicitely by

t = 128Q−1
∗

∫ 1/ψ(t)

π∗

w(s)ds.

In particular, for α > 0, we have

1. If V (n) � (1 + n)α then φ(n) � (1 + n)−α/(α+1)

2. If log V (n) � (1 + n)α then φ(n) � (1 + n)−1(log∗ n)1/α.

Proof Let A ⊂ X be a finite set. Let λ(A) be defined by

λ(A) = inf
{
E(f, f)
‖f‖22

: f 6= 0, support(f) ⊂ A.
}
. (4.1.3)

Thus λ(A) can be understood as the lowest eigenvalue of (I −K) with Dirichlet
(i.e. vanishing) boundary condition in A. The next result gives a general lower
bound on λ(A) in terms of volume growth. Such inequalities are often called
Faber-Krahn inequalities.

Let f be a function with support in Ω normalized by ‖f‖∞ = 1. We have

‖f‖22 =
∑
|f(x)|2π(x) ≤ π(A). (4.1.4) FK1

Let x0 be a point such that |f(x0)| = 1. Let r0 be the radius of the largest
ball centered at x0 and contained in A. Then there is a sequence of points
x1, . . . , xn+1, r0 = n, such that xi ∼ xi+1, i = 0, 1, . . . , n− 1, x1, . . . , xn−1 ∈ A,
xn 6∈ A. In particular, we have f(xn) = 0. It follows that

2E(f, f) =
∑
|f(x)− f(y)|2π(x)K(x, y)

≥
n∑
0

|f(xi)− f(xi+1)|2π(x)K(x, y)

≥ Q∗
n+ 1

(
n∑
0

|f(xi)− f(xi+1)|

)2

≥ Q∗
n+ 1

|f(x0)− f(xn+1)|2 =
Q∗
n+ 1

. (4.1.5)

It follows that λ(A) ≥ Q∗
2(n+1)π(A) . By the definition of r0 = n, we also have

π(A) ≥ π(B(x0, n), i.e., π(A) ≥ V (n). This yields

λ(A) ≥ Q∗
4π(A)w(π(A))

.

By the definitions of λ(A) and of the Nash function N in Theorem
th-FK
4.1.1, this

inequality gives
‖f‖22 ≤ (1/8)N(π(supp(f))/4)E(f, f)
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for any function f ∈ C0. Let t > 0 to be chosen later and write, for any f ≥ 0,

‖f‖22 ≤ 4‖(f − t)+‖22 + ‖f1{f≤2t}‖22 ≤ 4‖(f − t)+‖22 + 2t‖f‖1
where u+ = max{u, 0}. Observe that

‖(f − t)+‖22 ≤ (1/8)N(π(f ≥ t)/4)E(f, f) ≤ (1/8)N((4t)−1‖f‖1)E(f, f).

Hence
‖f‖22 ≤ (1/2)N((4t)−1‖f‖1)E(f, f) + 2t‖f‖1.

Picking 4t = ‖f‖22/‖f‖1 gives

‖f‖22 ≤ N(‖f‖21/‖f‖22)E(f, f).

This is the desired Nash inequality (because E(|f |, |f |) ≤ E(f, f) working with
non-negative functions suffices).

4.2 General volume lower bounds on φ.

This section presents a result essentially due to F. Lust-Piquard which gives a
lower bounds on φ(n) in terms of V . These bounds complement the results stated
in Corollary 2.2.5. We also borrow ideas from a recent paper of T. Coulhon and
A. Grigory’an.

Lower bounds on K2n(x, x) start with the following observation.

K2n(x, x) ≥ π(x)
V (x,m)

1−
∑

z∈B(x,m)c

Kn(x, z)

2

.

To see this let kn(x, z) = Kn(x, z)/π(z) be the kernel of Kn with respect to the
measure π. Write

K2n(x, x)
π(x)

= k2n(x, x) =
∑
z

|kn(x, z)|2π(z)

≥
∑

z∈B(x,m)

|kn(x, z)|2π(z)

≥ 1
V (x,m)

 ∑
z∈B(x,m)

kn(x, z)π(z)

2

=
1

V (x,m)

1−
∑

z∈B(x,m)c

Kn(x, z)

2

. (4.2.1) lb1

Hence a lower bound on φ(n) in terms of V is obtained if we can find m = m(n)
such that Kn(x,B(x,m)c) ≤ 2/3. A trivial solution worth noting is that n = m
always works since Kn(x,B(x, n)c) = 0. This leads to the bound

K2n(x, x) ≥ π(x)
V (x, n)
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which is improved in the following theorem.

th-phi-V Theorem 4.2.1 Fix x ∈ X. Assume that there exists a positive increasing
function v such that V (x, 2r) ≤ π(x)v(r), v(0) ≥ 2, and r → r2/ log v(r) is
increasing. Then, for all n,

K2n(x, x) ≥ π(x)
9V (x,m)

where m is the smallest integer such that 8n ≤ m2/ log v(m). In particular,

1. For α ≥ 0, if V (x, n) � π(x)(1 + n)α then

K2n(x, x) � π(x)[(1 + n) log∗ n]−α/2.

2. For 0 < β < 2, if V (x, n) � π(x) exp(nβ) then

K2n(x, x) � π(x) exp(−nβ/(2−β)).

Proof: Define P = K + i(I − K2)1/2. This make sense because I − K2 is a
positive operator on `2(π). Further, P is an isometry because PP ∗ = P ∗P = I.
By inspection, we have

Kn =
n∑
0

a(n, k)<(P k)

with

a(n, k) =


2−n+1

(
n

(n−k)/2

)
if n− k is even and k > 0

2−n
(

n
n/2

)
if n is even and k = 0

0 if n− k is odd.

The number a(n, k) is the probability of going from 0 to k or −k in exactly n
steps of a nearest-neighbor random walk on Z. We will need the following facts.

1. <(Pn) is a polynomial in K of degree atmost n (in fact <(Pn) = Pn(K)
where Pn is the nth Tchebychev polynomial).

2.
∑
k≥m a(n, k) ≤ 2 exp

(
−m

2

2n

)
For details, see K. Carne paper

C
[6].

Now, fix m ≤ n and set S(k) = B(x, 2k+1m) \B(x, 2km), k = 0, 1, 2, . . . . We
will use the above machinery to estimate

∑
z∈S(k)K

n(x, z). Write

π(x)
∑

z∈S(k)

Kn(x, z) = 〈Kn1S(k),1x〉

=
∑
`

a(n, `)〈<(P `)1S(k),1x〉
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=
∑

`≥2km

a(n, `)〈<(P `)1S(k),1x〉

≤
∑

`≥2km

a(n, `)‖1S(k)‖2‖1x‖2

≤ 2π(x)1/2π(S(k))1/2 exp
(
−4km2

2n

)
.

The third equality is the crucial step. It uses the fact that <(P k) is a polynomial
of degree at most k in K which implies that <(P k)(x, y) = 0 if d(x, y) ≥ k. The
first inequality uses the fact that P is a contraction on `2(π).

Recall that we want to estimate Kn(x,B(x,m)c). We have

Kn(x,B(x,m)c) =
∑
k

Kn(x, S(k))

≤ 2π(x)−1/2
∑
k

π(S(k))1/2 exp
(
−4km2

2n

)
≤ 2

∑
k

exp
(
−4km2

2n
+

1
2

log
V (x, 2k+1m)

π(x)

)
≤ 2

∑
k

exp
(
−4km2

2n
+

1
2

log v(2km)
)

If we pick m so that 8n ≤ m2/[log v(m)], the first term and the ratios of two
consecutive terms in this series are all bounded by exp

(
− 5

2 log v(m)
)
. It follows

that
Kn(x,B(x,m)c) ≤ 2

v(m)5/2 − 1
≤ 2

3

because v(m) ≥ v(0) ≥ 2. Hence (
lb1
4.2.1) yields

K2n(x, x) ≥ π(x)
9V (x,m)

where m is the smallest integer such that 8n ≤ m2/[log v(m)]. This ends the
proof of Theorem

th-phi-V
4.2.1.

T. Coulhon and A. Grigory’an have found a very nice simple proof of the
following complementary result.

th-phi-V-doub Theorem 4.2.2 Assume that V (x, 2n) ≤ CV (x, n) for all n and some x ∈ X.
Then

∀ n ≥ 8C, φ(n) ≥ e−4C

V (x, 4n1/2)
.

In particular, if for some α ≥ 0, V (x, n) ' (1 + n)α then φ(n) � (1 + n)−α/2.
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Proof: Recall again that i → ‖Kif‖2/‖Ki−1f |2 is non-decreasing. It follows
that

‖K`f‖22
‖f‖22

≥
(
‖Kf‖22
‖f‖22

)`
.

For any finite set A define

λ(A) = sup
supp(f)⊂A

f 6≡0

‖Kf‖22
‖f‖22

.

Then,

φ(n) = ‖Kn‖21→2 ≥ sup
A

sup
supp(f)⊂A
‖f‖1=1

‖f‖22
(
‖Kf‖22
‖f‖22

)n

≥ sup
A

λ(A)n

π(A)
. (4.2.2) lb2

Now we use the volume growth hypothesis to estimate λ(A) from below when A
is a ball. Namely, write

λ(A) = 1− (1− λ(A))

= 1− inf
supp(f)⊂A

f 6≡0

‖f‖22 − ‖Kf‖22
‖f‖22

(4.2.3) lb2’

To obtain a lower bound on µ(A) it suffices to pick a test function f . If A =
B(x, 2`) set f(y) = max{(2`− d(x, y)), 0}. Then, ‖f‖22 ≥ `2V (x, `) and

‖f‖22 − ‖Kf‖22 =
1
2

∑
y,z

|f(z)− f(y)|2K2(y, z)π(y)

≤ 4
∑

y∈B(x,2`)

∑
z∈X)

K2(y, z)π(y) ≤ 4V (x, 2`).

Hence
λ(B(x, 2`)) ≥ 1− 4C

`2
.

For n ≥ 8C, we can choose ` = [n1/2]+1 and use (1−x) ≥ e−2x for 0 < x ≤ 1/2
to obtain

φ(n) ≥ 1
V (x, 2`)

(
1− 4C

`2

)n
≥ exp(−8Cn/`2)

V (x, 2`)
≥ e−8C

V (x, 4n1/2)
.

This proves Theorem
th-phi-V-doub
4.2.2.

Remark: The proof of Theorem
th-phi-V-doub
4.2.2 is simple when compared to that of Theo-

rem
th-phi-V
4.2.1 but it must be emphasized that the hypothesis V (x, 2r) ≤ CV (x, r) is a
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strong assumption. In practice, it is hard to verify that V satisfies this doubling
condition because it requires matching polynomial upper and lower bounds on V .
In principle, the same proof could be used in other situations, under the hypoth-
esis that V (x, `+ r(`)) ≤ CV (x, `) for some positive non-decreasing function r.
The conclusion is then that λ(B(x, `+r(`))) ≤ 1− 4C

r(`)2 and φ(n) � 1/V (r−1(n))
where r−1 is the inverse function of r. For instance, assume that there exists
c, C > 0, a > 0, 0 < α ≤ 1 such that c exp(anα) ≤ V (x, n) ≤ C exp(anα).
Then the above condition is satisfied with r(n) = n1−α and it follows that
φ(n) � exp(−nα/2(1−α)). Theorem

th-phi-V
4.2.1 gives a better result under a much

weaker hypothesis in this case.

4.3 The Viscek graphs

This section presents an example showing that Theorem
th-FK
4.1.1 is sharp. Namely,

we show that there are graphs G = (X,E) such that the volume growth function
satisfies V (n) ' nd for some values of d (including arbitrary large values of
d) and the return probability function φ satisfies φ(n) ' n−d/(d+1). For such
examples with d > 1, the lower bounds from Theorems

th-phi-V
4.2.1 and

th-phi-V-doub
4.2.2 are far

off whereas the very general upper bound given by Theorem
th-FK
4.1.1 is sharp.

Let us start by noting that the Cayley graph (Z, {±1}) gives the desired
example for d = 1. For simplicity, we will discuss only one case d > 1.

The Viscek graph G = G4 (the parameter 4 will be explained below) is con-
structed as the increasing limit of finite planar graphs G(n), n = 0, 1, 2, . . . where
G(n) is obtained from G(n−1) by a simple procedure that we now describe. See
Figures

fig-V1
4.1,

fig-V2
4.2.

Start with G(1) being a four branched star around a central vertex. Observe
that any two distinct peripheral vertices in G(1) are at distance 2 = diam[G(1)]
of each other. Suppose that G(n−1) has been constructed and that it contains 4
points x1, x2, x3, x4 such that d(xi, xj) = diam[G(n− 1)] for all i 6= j. To obtain
G(n), pick 5 copies Gi(n−1), i = 0, . . . , 4, of G(n−1) and identify x0

i with xii for
i = 1, 2, 3, 4 where xik, 1 ≤ k ≤ 4, are the four special points in Gi(n− 1). Thus
G(n) is made of a “central” copy of G(n − 1) attached to 4 “peripheral” copies
of G(n−1). For any i ∈ {1, 2, 3, 4}, pick j(i) ∈ {1, 2, 3, 4}\{i} and observe that,
by construction, the points xij(i), 1 ≤ i ≤ 4, give four points in G(n) such that

d(xii+2, x
j
j+2) = diam[G(n)] = 3 diam[G(n− 1)]

for all 1 ≤ i 6= j 6= 4.
This construction generalizes in an obvious way if we replace the parameter

4 by any integer N ≥ 2, yielding the Viscek graph GN (for N = 2, we obtain
the usual doubly infinite path (the Cayley graph of (Z, {±1})). More precisely,
let G(1) be a star with N + 1 vertices. To construct G(n), use N + 1 copies
Gi(n−1), 0 ≤ i ≤ N , of G(n−1), each containing N marked elements xi1, . . . x

i
N

such that d(xik, x
i
`) = diam[Gi(n − 1)], 1 ≤ k 6= ` ≤ N . Attach the peripheral
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Figure 4.1: The Viscek graph G(n), n = 1, 2, 3 fig-V1

s s s��s@ s@
�-
s s s��s@ s@s
s s
�
�
s
@ s@s
s s

�
�
s
@ s@s s s��s@ s@
s s s��s@ s@

� -

s s s��s@ s@s
s s

�
�
s
@ s@s
s s

�
�
s
@ s@s s s��s@ s@
s s s��s@ s@

s s s��s@ s@s
s s

�
�
s
@ s@s
s s

�
�
s
@ s@s s s��s@ s@
s s s��s@ s@

s s s��s@ s@s
s s
�
�
s
@ s@s
s s

�
�
s
@ s@s s s��s@ s@
s s s��s@ s@s s s��s@ s@s

s s
�
�
s
@ s@s
s s

�
�
s
@ s@s s s��s@ s@
s s s��s@ s@

s s s��s@ s@s
s s
�
�
s
@ s@s
s s

�
�
s
@ s@s s s��s@ s@
s s s��s@ s@

copies Gi(n− 1), 1 ≤ i ≤ N , to the central copy G0(n− 1) by identifying x0
i and

xii. For each i ∈ {1, . . . , N}, pick j(i) ∈ {1, . . . , N}\{i} and set x′i = xij(i). Then,
in G(n), d(x′k, x

′
`) = diam[G(n)] = 3 diam[G(n− 1)] so that the construction can

be repeated Note that, by construction, the Viscek graphs are trees.
We want to prove the following result.

pro-Vis Proposition 4.3.1 For any fixed integer N , the Viscek graph GN and the as-
sociated simple random walk satisfy

V (n) ' nd, φ(n) ' n−d/(d+1)

where d = log(N + 1)/ log 3.

Proof: We work with a fixed parameter N . First we observe that, by con-
struction, #G(n) = (N + 1)#G(n − 1) − N , #G(1) = N + 1. Thus #G(n) =
1 +N(N + 1)n−1 ' (N + 1)n.

Next, for any k, define a k-block to be a subgraph isomorphic to the k-
generation finite graph G(k). Fix x ∈ G, r ≥ 3 and consider the integer m such
that 3m ≤ r < 3m+1. The vertex x belongs to some m-block B and any m-
block has diameter 2× 3m−1. Hence B(x, r) ⊇ B. Hence #B(x, r) ≥ #G(m) '
(N + 1)m. The point x also belongs to some (m+ 2)-block, call it A. Let y be a
point in B(x, r). Suppose that y 6∈ A. Then the shortest path from x to y passes
through one of the N “corners” z of A. Let A′ be the (m+ 2)-block adjacent to
A and containing z. Any point at distance at most 2× 3m+1 of z belongs either
to A or to A′. By construction, d(z, y) ≤ 3m+1 and y 6∈ A. Hence y ∈ A′. That
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Figure 4.2: The Viscek graph G(4) fig-V2
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is, B(x, r) is contained in the union of A and its N adjacent (m+ 2)-blocks. It
follows that #B(x, r) ≤ (N + 1)#G(m + 2) ' (N + 1)m. Now, the reversible
measure π of the simple random walk on GN has π(x) proportional to the degree
of x. Since the degree of a vertex varies from 1 to N , we obtain

V (x, r) ' (N + 1)m ' rd, d = log(N + 1)/ log 3.

This proves the first assertion in Proposition
pro-Vis
4.3.1.

Applying Theorem
th-FK
4.1.1, we obtain the upper bound

φ(n) � n−d/(d+1).

To obtain a matching lower bound, we use (
lb2
4.2.2) with A being a m-block. This

gives, for any n and m,

φ(n) ≥ λ(A)n

π(A)
.

We know that, for a m-block A, π(A) ' (N + 1)m. We need to estimate λ(A)
from below. Recall (see

lb2’
4.2.3) that

λ(A) = 1− inf
supp(f)⊂A

f 6≡0

‖f‖22 − ‖Kf‖22
‖f‖22

(4.3.4) lb2’’

where (K,π) is the simple random walk on G.
We now construct a test function f . By definition, the block A has N corner

vertices x1, . . . , xN . Call the shortest path from xi to xj , i 6= j, a diagonal.
These diagonals meet at a unique point o, the center of A. Define f along each
half-diagonal from o to xi so that it varies linearly with f(o) = 1, f(xi) = 0.
Thus at a vertex x on the half-diagonal from o to xi and at distance k from the
center o, we have f(x) = 1− k31−m (the distance from the center to any of the
corner is 3m−1). Now, for any vertex y in A, there exists a unique vertex x on
one of the diagonals such that the shortest path from o to y leave the diagonals
at x (i.e., the graph A is made of the diagonals together with sub-trees hanging
from those diagonals). Define f at y by setting f(y) = f(x). Thus, f varies
only along the diagonals and stays constant when one wanders away from the
diagonals. See Figure

fig-Vf
4.3.

For this function f , we have

λ(A) ≥ 1− ‖f‖
2
2 − ‖Kf‖22
‖f‖22

.

Thus is suffice to estimate ‖f‖22 from below and ‖f‖22−‖Kf‖22 from above. The
m-block A contains a central (m− 1)-block A′. This block A′ is exactly the set
of those vertices in A at distance at most 3m−2 from the center o of A. By the
definition of f , f(x) ≥ 1− 1/3 = 2/3 o A′. Thus

‖f‖22 ≥ (4/9)π(A′) � (N + 1)m.
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Figure 4.3: The function f on a 3-block:
f is proportional to the radius of the black disksfig-Vf
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We also have (Recall that K2 is the step-2 iterated kernel of the simple random
on G)

‖f‖22 − ‖Kf‖22 =
1
2

∑
x,y

|f(x)− f(y)|2K2(x, y)π(x).

Now, f is constant along subtrees hanging off the diagonals of A and is
decreasing linearly along the N half-diagonals. Hence∑

x,y

|f(x)− f(y)|2K2(x, y)π(x) ≤ 4N × (2× 31−m)23m � 3−m.

It follows that there is a constant C = C(N) such that

λ(A) ≥ 1− C(3(N + 1))−m.

This, the volume estimate π(A) ≥ c(N + 1)m and (
lb2’’
4.3.4) yield

φ(n) ≥ c(N + 1)−m(1− C(3(N + 1))−m)n.

If we pick m such that n ' (3(N + 1))m then (1− C(3(N + 1))−m)n ' 1 and

(N + 1)−m ' (3(N + 1))−m
log(N+1)

log[3(N+1)] ' n−d/(d+1).

Hence φ(n) � n−d/(d+1) as desired.
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Chapter 5

Consequences of
isoperimetric inequalities

This chapter shows how the isoperimetric profile I can be used to bound the
volume growth function V from below and φ from above.

5.1 Isoperimetry and volume lower bound

pro-IV Proposition 5.1.1 For t ≥ 0, define v(t) to be such that

t =
∫ v(t)

π∗

ds

I(s)
,

i.e., v is the solution of v′(s) = I(v(s)), v(0) = π∗ with π∗ = inf π. Then

∀t ≥ 0, V (t) ≥ v(t).

In particular, for d ≥ 1, 0 ≤ α <∞, and −∞ < β <∞,

1. If I(n) � (1 + n)(d−1)/d then V (n) � (1 + n)d.

2. If I(n) � n(log∗ n)−α then V (n) � exp
(
n1/(α+1)

)
.

3. If I(n) � n(log∗ log∗ n)β(log∗ n)−α then V (n) � exp
([
n(log∗ n)β

]1/(α+1)
)
.

Here log∗ n = log(2 + n).

Proof: For any finite set A such that π(A) = n, I(n) ≤ Q(∂A). For the balls
B(x, `) = {y ∈ X : d(x, y) ≤ `}, this inequality yields

I(V (x, `)) ≤ Q(∂B(x, `)) ≤
{
V (x, `)− V (x, `− 1)
V (x, `+ 1)− V (x, `)

55
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where V (x, `) = π(B(x, `)). Indeed, by reversibility,

Q(∂B(x, `)) ≤
∑
y,z:

d(x,y)=`
d(x,z)=`+1

K(y, z)π(y)

≤
{ ∑

y:d(x,y)=` π(y)∑
z:d(x,z)=`+1 π(z).

With our convention concerning the extention of functions defined on the
integers to the whole positive axis by linear interpolation, this gives

I(V (x, t)) ≤ V ′(x, t)

(when t is an integer, both the left and right derivatives satisfy this inequality).
The first assertion follows. The explicit results given in the proposition follow
by inspection and somewhat tedious calculus.

5.2 Isoperimetry, Nash profile and φ

We will now show that the isoperimetric function J can be used to bound the
Nash profile N and then φ from above.

The isoperimetric profile J is related to Nash inequalities in a simple but
usually non-optimal way as stated in the following result.

th-NJ Theorem 5.2.1 Let J = JK be the isoperimetric profile of the chain(K,π).
Assume (K,π) satisfies the Nash inequality

∀ f ∈ C0(X), ‖f‖22 ≤ N(‖f‖21/‖f‖22)
(
‖f‖22 − ‖Kf‖22

)
(5.2.1) NI-J

where N is non-decreasing. Then

J ≤ 2N. (5.2.2) NJ

To prove that J is bounded by 2N apply (
NI-J
5.2.1) to f = 1A where A is a

finite set. Observe that ‖1A‖22 = #A = ‖1A‖1 and that

‖K1A‖22 =
∑
x∈X

∣∣∣∣∣∑
y

K(x, y)1A(y)

∣∣∣∣∣
2

π(x)

=
∑
x∈X

∣∣∣∣∣∑
y

K(x, y)1X(y)−
∑
y

K(x, y)1Ac(y)

∣∣∣∣∣
2

π(x)

≥
∑
x∈A

∣∣∣∣∣1−∑
y

K(x, y)1Ac(y)

∣∣∣∣∣
2

π(x)

≥ π(A)− 2Q(∂A).
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Hence (
NI-J
5.2.1) yields

π(A) ≤ 2N(π(A))Q(∂A).

This gives the desired inequality J ≤ 2N because N is non-decreasing.
The next lemma is a clean discrete version of the classical co-area formula of

geometric measure theory.

Lemma 5.2.2 (Co-area formula) For any non-negative function f∑
e

|df(e)|Q(e) = 2
∫ ∞

0

Q(∂Ft)dt

where Ft = {x : f(x) > t}.

Proof: Write∑
e

|df(e)|Q(e) = 2
∑

(x,y):f(x)>f(y)

(f(x)− f(y))Q((x, y))

= 2
∑

(x,y):f(x)>f(y)

∫ f(x)

f(y)

dtQ((x, y))

= 2
∫ ∞

0

∑
(x,y):f(x)>t≥f(y)

Q(x, y)dt

= 2
∫ ∞

0

Q(∂Ft)dt.

The following two results depends on this co-area formula.

th-JN Theorem 5.2.3 For any denumerable Markov chain, the Nash inequality

∀ f ∈ C0(X), ‖f‖22 ≤ 4 J2(4‖f‖21/‖f‖22) E(f, f)

is satisfied.

th-Jphi Theorem 5.2.4 For any denumerable, locally finite, Markov chain

φ(n) ≤ 2ψ(n)

where ψ is the non-increasing derivable function solution of

ψ(t) = −ψ′(t)N(1/ψ(t)), ψ(0) = 1/π∗

with N(t) = 32 J2(4t) and π∗ = inf π. Of course, ψ is also defined implicitely by

t =
∫ 1/ψ(t)

π∗

N(s)
ds

s
.

In particular, for α > 0, −∞ < β <∞, we have
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1. If J(t) � (1 + t)1/α then φ(n) � n−α/2.

2. If J(t) � [log∗(t)]α then φ(n) � exp
(
−n1/(2α+1)

)
.

3. If J(t) � [log∗(t)]α[log∗ log∗(t)]−β then

φ(n) � exp
(
−
[
n(log∗ n)2β

]1/(2α+1)
)
.

Proof of Theorem
th-JN
5.2.3 For any finite set B and A ⊂ B, we have

π(A) ≤ J(π(B))Q(∂A). (5.2.3) NJ1

Fix a non-negative function f , set Ft = {x : f(x) > t} and write f(x) =∫∞
0

1Ft(x)dt. Using (
NJ1
5.2.3) with A = Ft, B = supp(f), and Lemma 3.2.1, we get

‖f‖1 =
∑
x

f(x)π(x) =
∫ ∞

0

π(Ft)dt

≤ J(π(supp(f)))
∫ ∞

0

Q(∂Ft)dt

≤ 1
2
J(π(supp(f)))

∑
e

|df(e)|Q(e).

Replacing f by f2 yields

‖f‖22 ≤
1
2
J(π(supp(f)))

∑
e

|d(f2)(e)|Q(e).

Now(∑
e

|d(f2)(e)|Q(e)

)2

=

(∑
x,y

|f(x)− f(y)||f(x) + f(y)|Q((x, y))

)2

≤

(∑
x,y

|f(x)− f(y)|2Q((x, y))

)(∑
x,y

|f(x) + f(y)|2Q((x, y))

)
≤ 8E(f, f)‖f‖22

it follows that
‖f‖22 ≤ 2J2(π(supp(f))) E(f, f). (5.2.4) NJ2

To finish the proof, set f+
t = max{f − t, 0}. Then f2 ≤ f2

+ + 2tf . Hence

‖f‖22 ≤ ‖f+
t ‖22 + 2t‖f‖1

≤ 2 J2(π({f ≥ t})) E(f, f) + 2t‖f‖1.

The last inequality uses (
NJ2
5.2.4), supp(f+

t ) ⊂ {f ≥ t} and E(f+
t , f

+
t ) ≤ E(f, f).

If we pick 4t = ‖f‖22/‖f‖1 and observe that π({f ≥ t}) ≤ t−1‖f‖1, we obtain

‖f‖22 ≤ 2 J2(4‖f‖21/‖f‖22)E(f, f) +
1
2
‖f‖22.
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Hence
‖f‖22 ≤ 4 J2(4‖f‖21/‖f‖22)E(f, f).

which is the desired inequality. The restriction that f is non-negative is easily
removed since E(|f |, |f |) ≤ E(f, f). This ends the proof of Proposition 3.2.3.

Proof of Theorem
th-Jphi
5.2.4 We now show that Theorem

th-JN
5.2.3, Lemma

lem-K+
3.2.2 and

Theorem
th-N
3.3.2 give Theorem

th-Jphi
5.2.4. First we use Theorem

th-JN
5.2.3 and Lemma

lem-K+
3.2.2

to see that the auxiliary chain K+ = 1
2 (I +K) satisfies the Nash inequality

‖f‖22 ≤ N(‖f‖21/‖f‖22)
(
‖f‖22 − ‖K+f‖22

)
with N(t) = 8J2(4t). Theorem

th-N
3.3.2 then shows that

φ+(n) ≤ ψ(n)

where ψ is the solution of ψ(t) = −ψ′(t)N(1/ψ(t)), ψ(0) = 1/π∗. Finally,
Lemma

lem-K+
3.2.2 yields

φ(n) ≤ 2ψ(n)

which is the desired result.

Remark Theorem
th-N=phi
3.3.5 establishes an almost satisfactory equivalence between

upper bounds on φ and Nash inequalities. In contrast, the bound

JK ≤ 2Nφ

with

Nφ(t) = inf
k

φ(k)<1/t

(
1 +

k

− log(tφ(k))

)
established by Theorems

th-Nconv
3.3.4 and

th-NJ
5.2.1 is rather weak when compared to the

fact that the Nash inequality

‖f‖22 ≤ 4J2(4‖f‖21/‖f‖22)E(f, f)

always holds as stated in Theorem
th-JN
5.2.3. In view of this inequality one could

hope to establish J2 � Nφ instead of the weaker inequality J � Nφ. However,
Ledoux and Coulhon have shown that the inequality J � Nφ is sharp in the
context of denumerable reversible Markov chains.
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Chapter 6

Bounding J and φ using
volume growth on Cayley
graphs

This chapter presents a number of results that are specific to invariant Markov
chains. For simplicity and clarity, we will work in the context of Cayley graphs.
Thus, let G be a finitely generated group with a fixed generating set S satisfying
S = S−1. We consider the invariant Markov kernel

K(g, h) = µS(g−1h) =
1

#S
1S(g−1h)

which defines the simple random walk on the Cayley graph (G,S). Since K is
symmetric, we take π ≡ 1. We thus have

Q(g, h) =
1

#S
1S(g−1h)

and
E(f, f) =

1
2#S

∑
g∈G, s∈S

|f(g)− f(gs)|2.

In this setting, the definitions set down in the introduction and in Section 2 coin-
cide except for the unimportant multiplicative factor #S in IS(n) = #S IQ(n),
#S JS(n) = JQ(n).

6.1 A Poincaré type inequality and its conse-
quences

The results presented in this section are all based on the following very simple
lemma.
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lem-PP Lemma 6.1.1 Let G be a finitely generated group with symmetric generating
set S. For any function f ∈ C0(G), and n = 1, 2, . . . , let

fn(x) =
1

VS(n)

∑
z∈xBS(n)

f(z)

where BS(n) is the ball of radius n around id in the Cayley graph (G,S). Thus,
fn(x) is the mean of f in the ball of radius n around x. Then

‖f − fn‖1 ≤ n
∑

x∈G,s∈S
|f(x)− f(xs)|.

Proof: Fix x, y ∈ G with |y|S ≤ n and write y = s1 · · · sk with si ∈ S, k ≤ n.
Then set s0 = id and observe that

|f(x)− f(xy)| =

∣∣∣∣∣
k∑
1

f(xs0 · · · si−1)− f(xs0 · · · si)

∣∣∣∣∣ .
Hence

|f(x)− f(xy)| ≤
k∑
1

|f(xs0 · · · si−1)− f(xs0 · · · si)|.

Summing over all x ∈ G we get

∑
x∈G
|f(x)− f(xy)| ≤

k∑
1

∑
x∈G
|f(x)− f(xsi)|

≤ k
∑

x∈G,s∈S
|f(x)− f(xs)|.

Summing over all y such that |y|S ≤ n and dividing by VS(n), we get∑
x∈G
|f(x)− fn(x)| ≤ 1

Vs(n)

∑
y:|y|S≤n

∑
x∈G
|f(x)− f(xy)|

≤ n
∑

x∈G,s∈S
|f(x)− f(xs)|.

This is the desired result.
The next theorem gives an upper bound on the isoperimetric profile in terms

of the volume growth.

th-CSC Theorem 6.1.2 Let (G,S) be a Cayley graph. Define w = wS : (0,∞) →
(0,∞) by

w(t) = inf{n : VS(n) > t}.
Then J(t) ≤ 2w(2t), i.e.,

#A ≤ 2w(2#A)×#∂A.

In particular, for d ≥ 0, 0 < γ ≤ 1, we have
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1. If V (n) � (1 + n)d then J(t) � (1 + t)1/d.

2. If V (n) � exp (nγ) then J(t) � [log∗(t)]1/γ .

Proof: We will prove the following statement: for any non-negative function
f ∈ C0(G),

#{x : f(x) ≥ λ} ≤ 2λ−1 w (2‖f‖1/λ)
∑

x∈G,s∈S
|f(x)− f(xs)|.

Taking f = 1A and λ = 1 will then yield the announced result. To prove this
inequality, for some n to be chosen later, write

#{x : f(x) ≥ λ} ≤ #{x : |f(x)− fn(x)| ≥ λ/2}+ #{x : fn(x) ≥ λ/2}

and observe that #{x : |f(x) − fn(x)| ≥ λ/2} ≤ 2λ−1‖f − fn‖1. Hence, by
Lemma 3.1,

#{x : f(x) ≥ λ} ≤ #{x : fn(x) ≥ λ/2}+ 2nλ−1
∑

x∈G,s∈S
|f(x)− f(xs)|.

Inspecting the definition of fn, we see that fn ≤ V (n)−1‖f‖1. Thus, the choice
n = w(2‖f‖1/λ) yields #{fn(x) ≥ λ/2} = 0 and

#{x : f(x) ≥ λ} ≤ 2λ−1 w (2‖f‖1/λ)
∑

x∈G,s∈S
|f(x)− f(xs)|.

cor-CSCphi Corollary 6.1.3 Let (G,S) be a Cayley graph. Define w = wS : (0,∞) →
(0,∞) by

w(t) = inf{n : VS(n) > t}.
Then

φ(n) ≤ 2ψ(n)

where ψ is the non-increasing derivable function solution of

ψ(t) = −ψ′(t)N(1/ψ(t)), ψ(0) = 1

with N(t) = 16(#S)2 w2(8t). Of course, ψ is also defined implicitely by

t =
∫ 1/ψ(t)

1

N(s)
ds

s
.

In particular, for d ≥ 0, 0 < γ ≤ 1, we have

1. If V (n) � (1 + n)d then φ(n) � n−d/2.

2. If V (n) � exp (nγ) then φ(n) � exp
(
−nγ/(γ+2)

)
.

Proof: Use Theorem
th-CSC
6.1.2 and Theorem

th-Jphi
5.2.4. Note that the function N defined

in Corollary
cor-CSCphi
6.1.3 is a Nash function for (G,S) (i.e (G,S) satisfies the Nash

inequality ‖f‖2 ≤ N(‖f‖21/‖f‖22)E(f, f), f ∈ C0(G)).
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6.2 A direct comparison between V and φ

This section is based on an idea of W. Hebisch
Heb
[19] which is also used in

HSC
[20].

We need the following useful result.

lem-Heb Lemma 6.2.1 Let G be a finitely generated group with symmetric generating
set S. Set µ = ε1id + (1− ε)(#S)−11S, ε ∈ (0, 1). Then∣∣∣µ(2n+m)(x)− µ(2n+m)(id)

∣∣∣ ≤√2 ε#S/m |x|µ(2n)(id)

for all x ∈ G and all integers n,m.

Proof: Recall that df(e) = f(xs) − f(x) if e = (x, xs), x ∈ G, s ∈ S is a edge,
and set ‖df‖∞ = max{|df(e)| : e = (x, xs), x ∈ G, s ∈ S}. Then write∣∣∣µ(2n+m)(x)− µ(2n+m)(id)

∣∣∣ ≤ |x| ‖dµ(2n+m)‖∞.

This reduces the proof to the claim that

‖dµ(2n+m)‖∞ ≤
√

2 ε#S/m µ(2n)(id).

To prove this claim, write

∣∣∣µ(2n+m)(xs)− µ(2n+m)(x)
∣∣∣ ≤ (∑

σ∈S

∣∣∣µ(2n+m)(xσ)− µ(2n+m)(x)
∣∣∣2)1/2

=

∑
σ∈S

∣∣∣∣∣∣
∑
y∈G

[
µ(n+m)(y−1xσ)− µ(n+m)(y−1x)

]
µ(n)(y)

∣∣∣∣∣∣
2


1/2

≤
∑
y∈G

(∑
σ∈S

∣∣∣µ(n+m)(y−1xσ)− µ(n+m)(y−1x)
∣∣∣2)1/2

µ(n)(y).

Using the Cauchy-Schwarz inequality and the fact that
∑
G |µ(n)(x)|2 = µ(2n)(id),

we obtain

‖dµ(2n+m)‖∞ ≤
[
µ(2n)(id)

]1/2∑
y∈G

∑
σ∈S

∣∣∣µ(n+m)(yσ)− µ(n+m)(y)
∣∣∣2
1/2

≤ (ε#S)1/2
[
µ(2n)(id)

]1/2∑
y∈G

∑
z∈G

∣∣∣µ(n+m)(yz)− µ(n+m)(y)
∣∣∣2 µ(2)(z)

1/2

.

Let K be the Markov operator defined by Kf = f ? µ. Then K is reversible
with respect to π ≡ 1 because µ is symmetric. In terms of the modified Dirichlet
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form

E∗(f, f) = ‖f‖22 − ‖Kf‖22 = 〈(I −K2)f, f〉

=
1
2

∑
x

∑
z

|f(xz)− f(x)|2µ(2)(z)

= ‖(I −K2)1/2f‖22

the last inequality becomes

‖dµ(2n+m)‖∞ ≤
√

2 ε#S
[
µ(2n)(id)

]1/2
E∗(µ(n+m), µ(n+m))1/2

≤
√

2 ε#S
[
µ(2n)(id)

]1/2
‖(I −K2)1/2Kmµ(n)‖2

≤
√

2 ε#S ‖(I −K2)1/2Km‖→2µ
(2n)(id)

The last inequality uses ‖µ(n)‖22 = µ(2n)(id). The desired claim follows from this
and the next lemma.

lem-analytic Lemma 6.2.2 For any reversible Markov chain (K,π)

‖(I −K2)1/2Km‖2→2 ≤ m1/2.

Proof: Let K2 =
∫ 1

0
λdEλ be a spectral decomposition of the positive self-

adjoint contraction K2 on `2(π). Then, for any f ∈ `2(π),

‖(I −K2)1/2K2`f‖22 =
∫ 1

0

(1− λ)λ2`dEλ(f, f).

When m = 2`, the desired result follows from

max
λ
∈ [0, 1]{λ2` − λ2`+1} ≤ (2s+ 1)−1.

For m = 2`+ 1,

‖(I −K2)1/2Km‖2→2 ≤ ‖(I −K2)1/2K2`‖2→2 ≤ (2`+ 1)1/2 ≤ m1/2.

Lemma
lem-Heb
6.2.1 implies the following result.

pro-rnm Proposition 6.2.3 Let G be a finitely generated group with symmetric generat-
ing set S and let µ = ε1id + (1− ε)(#S)−11S, ε ∈ (0, 1). Then, for all integers
n,m,

µ(2n+m)(id) ≤ 2V (r(n,m))−1

where

r(n,m) = m1/2 µ(2n+m)(id)
2
√

2 ε#S µ(2n)(id)
.
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Proof: It follows from Lemma
lem-Heb
6.2.1 that

µ(2n+m)(x) ≥ 1
2
µ(2n+m)(id) when |x| ≤ r(n,m).

Summing over the ball of radius r(n,m) yields the desired result.

Corollary 6.2.4 Let G be a finitely generated group with symmetric generating
set S. Let d > 0. If φ(n) ' (1 + n)−d/2 then V (n) � (1 + n)d.

Proof: Consider µS = (#S)−11S and µ = 1
2 (1id + µS). By Lemma

lem-K+
3.2.2, we

have φ+(n) = µ(2n)(id) ' φ(n) ' (1 + n)−d/2. Proposition
pro-rnm
6.2.3 with m = n =

2`2 yields
φ+(3`2) = µ(6`2)(id) ≤ 2V (c`)−1

for some constant c > 0. The desired result follows.

cor-HSCphi Corollary 6.2.5 Let G be a finitely generated group with symmetric generating
set S. Let d > 0, 0 < γ ≤ 1.

(1) If V (n) � (1 + n)d then φ(n) � (1 + n)−d/2.

(2) If V (n) � exp (nγ) then φ(n) � exp
(
−nγ/(γ+2)

)
.

Given Proposition
pro-rnm
6.2.3, the technique of proof is similar to that used for The-

orem
th-NV
3.4.1. Details can be found in

HSC
[20]. We do not give the details here since

this result has already been proved by another method in Theorem
cor-CSCphi
6.1.3.

th-V=phi-d Theorem 6.2.6 Let G be a finitely generated group with symmetric generating
set S. Let d > 0. The following two properties are equivalent.

1. V (n) ' (1 + n)d;

2. φ(n) ' (1 + n)−d/2.

Proof: Assume that that V (n) ' (1 + n)d. Then Corollary
cor-CSCphi
6.1.3 (or Corollary

cor-HSCphi
6.2.5) gives φ(n) � (1 + n)−d/2 whereas Theorem

th-V-phi-doub
?? gives φ(n) � (1 + n)−d/2.

Assume instead that φ(n) ' (1 +n)−d/2. Then Corollary
cor-NV
3.4.2 gives V (n) �

(1 + n)d whereas Corollary
cor-HSCphi
6.2.5 gives V (n) � (1 + n)d.

Next we prove a Gaussian lower bound that will be needed later on.

th-Gausslb Theorem 6.2.7 Let G be a finitely generated group. Let S be a symmetric
generating set containing the identity. Let |x| denote the length of x ∈ G with
respect to S and set Let µ = (#S)−11S. Assume that VS(n) ' (1 + n)−d/2 for
some d ≥ 0. Then there exists c1, c2 > 0 such that

µ(n)(x) ≥ c1(1 + n)−d/2e−c2|x|
2/n

for all x, n satisfying |x| ≤ n.
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Proof: By lemma
lem-Heb
6.2.1, there exists a constant C > 0 such that for all integers

s, t, and all x ∈ G,

µ(2t+s)(x) ≥ µ(2t+s)(id)− C
√
s |x|Sµ(2t)(id).

Now, by Theorem
th-V=phi-d
6.2.6, the hypothesis VS(n) ' (1 + n)d implies that φ(n) '

(1 + n)−d/2. Using the fact that id ∈ S, this shows that there exist c > 0 and
η > 0 such that

µ(2t+s)(x) ≥ c(1 + t)−d/2

for all integers t, s and all x ∈ G satisfying t ≤ s ≤ 2t and |x| ≤ η
√

4t. Thus, for
any integer n ≥ 6 and all x ∈ G satisfying |x| ≤ η

√
n,

µ(n)(x) ≥ c(1 + n)−d/2. (6.2.1) mu-n>

Indeed, it suffices to write n = 2t+s with t ≤ s ≤ 2t to obtain the desired result.
Of course (

mu-n>
6.2.1) also holds true for n ≤ 6 by inspection.

Now, fix x and n such that

η
√
n < |x| ≤ ηn

24
.

Let m be the smallest integer such that

|x| ≤ η

12
√
mn.

Observe that 4m ≤ n because we assume |x| ≤ ηn/24. Obviously, one can find
points

id = y0, y1, . . . , ym−1, ym = x

along a geodesic path from id to x in (G,S) such that

|y−1
i yi+1|S ≤ 1 + |x|/m ≤ 1 +

1
12
η
√
n/m, i = 0, . . . ,m− 1.

Set
B = B(id, ρ), B′ = B(id, 1 + 3ρ) with ρ =

η

12

√
n/m.

Then write

n =
m−1∑

0

ni with 4 ≤ [n/m] ≤ ni ≤ [n/m] + 1

and

µ(n)(x) = µ(n0) ∗ · · · ∗ µ(nm−1)(x) (6.2.2) mu-chain1

≥
∑
z0∈B

∑
z1∈B

· · ·
∑

zm−1∈B
µ(n0)(z0)µ(n1)(z−1

0 z1) · · ·µ(nm−1)(z−1
m−2x).

Now observe that there exists c0 > 0 such that

min
zi−1∈B

min
zi∈B

µ(ni)(z−1
i−1zi) ≥ min

z∈B′
µ(ni)(z) ≥ c0(1 + n/m)−d/2 (6.2.3) mu-chain2
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because B′ has radius

1 + 3ρ = 1 +
η

4

√
n/m ≤ η

√
ni

and thus we can apply (
mu-n>
6.2.1). From (

mu-chain1
6.2.2), (

mu-chain2
6.2.3) and the hypothesis that

VS(n) ' (1 + n)d, it follows that there exist c1, c2, c3 such that

µ(n)(x) ≥ [c0(1 + n/m)−d/2]m(#B)m − 1

≥ cm1 (1 + n/m)−d/2 ≥ c2(1 + n)−d/2e−c3|x|
2/n

for all x, n satisfying |x| ≤ ηn/24. Here we have used the fact that m is of order
|x|2/n. This estimate is easily extended to the full range |x| ≤ n by inspection.

It is worth noting that the Gaussian lower bound of Theorem
th-Gausslb
6.2.7 can be

complemented by a matching upper bound.

th-Gaussup Theorem 6.2.8 Let G be a finitely generated group. Let S be a symmetric
generating set containing the identity. Let |x| denote the length of x ∈ G with
respect to S and set Let µ = (#S)−11S. Assume that VS(n) ' (1 + n)−d/2 for
some d ≥ 0. Then there exists c3, c4 such that

µ(n)(x) ≤ c3(1 + n)−d/2e−c4|x|
2/n

for all x, n.

We refer the reader to
HSC
[20] for the proof of this result. Theorem

th-Gausslb
6.2.7 and

th-Gaussup
6.2.8

are stated and proved in
HSC
[20] in greater generality for any probability measure

µ on G with finite symmetric generating support containing the identity.



Chapter 7

A collection of explicit
statements

It might be useful to collect some of the specific results obtained so far. This is
done in the following two statements. The first theorem collects result for gen-
eral graphs (or countable Markov chains), the second collects results for Cayley
graphs.

Let (K,π) be a reversible Markov chain on a countable space X. We assume
that K is locally finite, irreducible.

th-coll Theorem 7.0.9 Let V, J, φ be as defined in Section
sec-notmc
3.1 and let N be the Nash

profile of (K,π) (Section
subsec-Nashtech
3.3.1).

1. For α ≥ 0, we have

• φ(t) � (1 + t)−α/2 ⇐⇒ N(t) � (1 + t)2/α.

• J(t) � (1 + t)1/α =⇒
{
V (t) � (1 + t)α

φ(t) � (1 + t)−α/2.

• φ(t) � (1 + t)−α/2 =⇒
{
V (t) � (1 + t)α

J(t) � (1 + t)2/α.

• V (t) � (1 + t)α =⇒ φ(t) � (1 + t)−α/(α+1).

2. For α ≥ 0 and −∞ < β <∞, we have

• φ(t) � exp(−[t(log∗ t)β ]1/(α+1)) ⇐⇒ N(t) � [log∗ t]α[log∗ log∗ t]−β.

• J(t) � [log∗ t]α/2[log∗ log∗ t]−β/2

=⇒

{
V (t) � exp([t(log∗ t)β/2]2/(α+2))

φ(t) � exp(−[t(log∗ t)β ]1/(α+1)).
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• φ(t) � exp(−[t(log∗ t)β ]1/(α+1))

=⇒

{
V (t) � exp([t(log∗ t)β/2]2/(α+2))

J(t) � [log∗ t]α[log∗ log∗ t]−β .

• log V (t) � (1 + t)α =⇒ φ(t) � t−1(log∗ t)1/α.

Proof The references given below are for both part (1) and part (2). The first
statement is from Theorem

th-N=phi
3.3.5. The second follows from (

IJ3
??), Proposition

pro-IV
5.1.1 and Theorem

th-Jphi
5.2.4. The third follows from Corollary

cor-NV
3.4.2 and Theorems

th-N=phi
3.3.5,

th-NJ
5.2.1. The fourth statement is from Theorem

th-FK
4.1.1.

th-coll-CG Theorem 7.0.10 Let (G,S) be a Cayley graph, K(x, y) = µS(x−1y) and π ≡ 1.
For d ≥ 0 and 0 < γ ≤ 1, we have

• V (t) � (1 + t)d =⇒
{
J(t) � (1 + t)1/d

φ(t) � (1 + t)−d/2.

• log V (t) � (1 + t)γ =⇒

{
J(t) � [log∗ t]1/γ

φ(t) � exp(−tγ/(γ+2)).

Proof The first implication follows from Theorem
th-CSC
6.1.2 and the second from

Corollary
cor-CSCphi
6.1.3. Both take advantage of the group structure to improve very

significantly on the fourth statments of part 1 and 2 of Theorem
th-coll
7.0.9.

The sharpness of these results will be discussed later, in particular in Chapter
chap-poly
9.2 but let us note here that for any Cayley graph and any d > 0 Theorems

th-coll
7.0.9

and
th-coll-CG
7.0.10 give the equivalence

V (t) � (1 + t)d ⇐⇒ J(t) � (1 + t)1/d ⇐⇒ φ(t) � (1 + t)−d/2.

When the comparison function is not a power function, the results are more
subtle. Indeed, for any Caylay graph (G,S) and γ ∈ (0, 1), we have

log V (t) � (1 + t)γ =⇒ J(t) � [log∗ t]1/γ

J(t) � [log∗ t]1/γ =⇒ log V (t) � (1 + t)γ/(γ+1)

and
log V (t) � (1 + t)γ =⇒ φ(t) � exp(−tγ/(γ+2))

φ(t) � exp(−tγ/(γ+2)) =⇒ log V (t) � (1 + t)γ/(γ+1)

............................................................................. .................................
This leaves open the following question

For Cayley graphs, is the behavior of φ tightly related to that of J?

A more technical but more precise way of asking the same question is
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For Cayley graphs, does one have J2 � Nφ?

In support of a positive answer, we have Kesten’s theorem which states that

φ(n) ' e−n ⇐⇒ J ' 1

and Varopoulos’ result

φ(n) ' n−α/2 ⇐⇒ J(n) ' n1/α

α = 1, 2, . . . . However,
.........................................................................................................
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Chapter 8

Non-amenable groups and
groups of intermediate
growth

This chapter covers briefly two distinct topics: Non-amenability and intermedi-
ate growth.

8.1 Non-amenable groups

Let G be a discrete group. One says that G is amenable if there exists a contin-
uous linear functional µ defined on the space B of all bounded functions on G
which preserves positivity, preserves the constant function 1 and is invariant by
left and right translations (requiring bi-invariance is the same as requiring left
or right invariance). This is a well studied class of groups. It contains all finite
groups, all Abelian groups, all subgroups of amenable groups, all groups that
contains an amenable normal subgroup whose quotient is amenable. In particu-
lar any solvable group is amenable. We refer to Wagon

W
[43] for motivations and

to Pier
Pi
[27] for a book length treatment of locally compact amenable groups.

A group which is not amenable is called non-amenable. This notion is rele-
vant here because of celebrated results of Følner (1955)

F
[14] and Kesten (1959)

K
[22].

Theorem 8.1.1 For a finitely generated Cayley graph the following properties
are equivalent.

1. G is non-amenable.

2. (Følner) I(n) ' (1 + n) (i.e., J ' 1).

3. (Ketsen) φ(n) ' exp(−n).
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We will not prove this theorem here but we observe that the equivalence between
2) and 3) follows from Theorems 2.4 and 2.12 and are elementary. It follows
from the theorem that finitely generated non-amenable groups have exponential
volume growth. As we shall see shortly there are many examples of amenable
groups having exponential volume growth.

8.2 Intermediate growth

In 1968, J. Milnor and J. Wolf
Mi,Wo
[24, 44] proved that finitely generated solvable

groups (see the beginning of the next chapter) either have exponential volume
growth or contains a nilpotent subgroup of finite index. Together with a result
of H. Bass

B
[3] this shows that, for a finitely generated solvable group, either

V (n) ' exp(n) or V (n) ' (1 + n)d for some integer d. For a long time the
question of whether or not there exist groups with V growing faster than any
polynomial but slower than any exponential was left open. It was settled by R.
Grigorchuk who proved that there exists a rich class of such finitely generated
groups. These groups are called groups of intermediate growth. See the survey
of R. Grigorchuk

G
[15] where further references can be found. The examples of

Grigorchuk satisfy exp(n1/2) � V (n) � exp(nα) with 1/2 ≤ α < 1.
Groups of intermediate growth must be amenable. There are several classes

of groups in which intermediate growth does not appear. These include the class
of solvable groups (J. Wolf

Wo
[44], J. Milnor

Mi
[24]) and the class of finitely generated

subgroups of connected Lie groups (J. Tits
T
[36]).

The known results concerning I, J , and φ that are relevant for groups of
intermediate growth are as follows:

Theorem 8.2.1 Let (G,S) be a Cayley graph of a finitely generated group.

(1) If V (n) � exp (nγ) for some 0 < γ ≤ 1 then

I(n) � n

[log∗ n]1/γ
, J(n) � [log∗ n]1/γ , φ(n) � e−n

γ/(γ+2)
.

(2) If either I(n) � n/[log∗ n]1/γ or φ(n) � exp
(
−nγ/(γ+2)

)
, then

V (n) � exp
(
nγ/(1+γ)

)
.

Whether or not these results are sharp is not known except for (1) with γ = 1
(i.e., exponential growth) in which case we will present several examples that
shows that (1) is sharp for certain groups and not sharp for others.



Chapter 9

Polycyclic groups.

This chapter focuses on polycyclic groups and, more generally, on groups that
contains a polycyclic subgroup of finite index. We shall see that for polycyclic
groups the behavior of and the relationships between V, I, J and φ is well un-
derstood. Recall the following classical definitions (see

Rag,Rob
[33, 34]):

A group G is solvable (or soluble) if it admits a series of subgroups

G = G1 ⊃ G2 · · · ⊃ Gk = {id}

such that Gi+1 is a normal subgroup of Gi and Gi/Gi+1 is abelian for 1 ≤ i < k.
A group is polycyclic if it admits a series of subgroups

G = G1 ⊃ G2 · · · ⊃ Gk = {id}

such that Gi+1 is a normal subgroup of Gi and Gi/Gi+1 is cyclic for 1 ≤ i < k.
Given two subgroups H,L of a group, let [H,K] be the subgroup generated

by the commutators [h, k] = hkh−1k−1. The lower central series of a group H
is the non-increasing sequence

H = H1 ⊃ · · · ⊃ Hi ⊃ · · ·

defined inductively by Hi = [Hi−1, H]. A group is nilpotent if and only if its
lower central series terminates, i.e., there exists an integer c called the class of
H such that Hc 6= {id}, Hc+1 = {id}.

Any finitely generated nilpotent group is polycyclic. Any polycyclic group is
solvable and finitely generated. Any subgroup of a polycyclic group is polycyclic.
We will encounter examples of solvable non-polycyclic groups later on.

9.1 The polynomial realm

This section contains results in which the hypothesis and the conclusion involve
power functions only. We do not assume that G is polycyclic nor contains a
polycyclic group of finite index.
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We first recal a celebrated result of M. Gromov. See
Gr,VW
[16, 37]. This theorem

explains why this section is included in a chapter about polycyclic groups.

Theorem 9.1.1 (M. Gromov) Let (G,S) be a Cayley graph. Assume that
there exists a constant α ≥ 0 and an increasing sequence of integers (ni)∞1 such
that

V (ni) � nαi .

Then there exists a nilpotent group H ⊂ G of finite index in G. Further,

V (n) ' (1 + n)d where d =
c∑
1

` rk(H`/H`+1)

where c is the nilpotency class of H, Hi, 1 ≤ i ≤ c, is the lower central series
of H and rk(Hi/Hi+1) is the torsion-free rank of the Abelian group Hi/Hi+1.
Furthermore, H can be taken to be torsion free.

The growth of nilpotent groups was first computed by H. Bass
B
[3]. The special

case of the above theorem when one assumes that G is solvable follows from
work of H. Bass, J. Milnor and J. Wolf

B,Mi,Wo
[3, 24, 44] and is easier than the general

case. In this section as well as in future sections, we will distinguish between
the results for which a proof is known which does not use any structure theorem
and those for which all known proofs use some structure theorem. The results
that depend on structure theorems are marked with (*). For instance, the proof
of Theorem 7.1.2 below does not use any structure theorem whereas the proof
of Theorem 5.1.3 uses one, namely Gromov’s theorem.

Theorem 9.1.2 Let (G,S) be a finitely generated Cayley graph and fix α ≥ 0.
The following properties are equivalent.

(1) V (n) � (1 + n)α.

(2) I(n) � (1 + n)(α−1)/α (i.e., J(n) � (1 + n)1/α).

(3) φ(n) � (1 + n)−α/2.

Proof: It suffices to apply Theorem 5.0.1. Observe that the equivalence between
(2)and (3) is proved by showing that they are equivalent to (1).

Theorem 9.1.3 (*) Let (G,S) be a finitely generated Cayley graph. Fix α ≥ 0.
The following properties are equivalent.

(1) ∃C, ∃ ni ↗∞ such that V (ni) ≤ C(1 + ni)α.

(2) ∃C, ∃ ni ↗∞ such that I(ni) ≤ C(1 + ni)(α−1)/α.

(3) ∃ c > 0, ∃ ni ↗∞ such that J(ni) ≥ c(1 + ni)1/α.

(4) ∃ c > 0, ∃ ni ↗∞ such that φ(ni) ≥ c(1 + ni)−α/2.
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(5) G contains a nilpotent subgroup H of finite index and

d =
∑

` rk(H`/H`+1) ≤ α

where Hi is the lower central series of H.

Furthermore, the last property implies that V (n) ' (1 + n)d, I↑(n) ' (1 +
n)(d−1)/d, J(n) ' (1 + n)1/d, and φ(n) ' (1 + n)−d/2.

Proof: Fix α > 0. Assume that (2) or (3) or (4) is satisfied. Then theorem 5.0.1
shows that certainly, for any β > α, there exists ni ↗ ∞ such that V (ni) ≤
C(1+ni)β (if not, we would have a contradiction). This shows that if any one of
(1), (2), (3) or (4) is satisfied we can use Gromov’s Theorem 7.1.1 and conclude
that G contains a nilpotent subgroup H of finite index. Let

d =
∑
`≥1

` rk(H`/H`+1).

Then, we have VG(n) ' VH(n) ' (1 + n)d. It follows that d ≤ α. Furthermore,
by Theorem 4.1.2, Corollary 4.1.3 and Theorem 2.3.2, VG(n) ' (1 + n)d implies
φ(n) ' (1 + n)−d/2 and I(n) � (1 + n)(d−1)/d. Thus, to finish the proof, we
only have to show that VG(n) ' (1 + n)d implies I↑(n) � (1 + n)(d−1)/d and
J(n) � (1 + n)1/d.

Lemma 9.1.4 Let (G,S) be a Cayley graph. Assume that VS(n) ' (1 + n)d.
Then there exists a sequence of finite sets Fi ⊂ Fi+1 ⊂ G such that, for all
i = 1, 2, . . . ,

1. #Fi ' (1 + i)d

2. #∂Fi ' (1 + i)d−1.

3. If 2r−1 < i ≤ 2r, then Fi is a ball of radius j with 2r−1 < j ≤ 2r.

In particular, I↑(n) � (1 + n)(d−1)/d and J(n) � (1 + n)1/d.

Proof: First, under the hypothesis of the lemma, Theorem 4.1.2 implies that
the ball B(id, j) of radius j satisfies ∂B(id, j) � (1+j)d−1. Now, fix i and let r be
the integer such that 2r−1 < i ≤ 2r. Then B(id, 2r) ⊃

⋃
2r−1<`≤2r{z : |z| = `}

and

C2rd ≥ #B(id, 2r)

≥ |S|−1
∑

2r−1<`≤2r

#∂B(id, `)

≥ |S|−12r−1 min
2r−1<`≤2r

#∂B(id, `).

Hence there exists j such that 2r−1 < j ≤ 2r and

∂B(id, j) ≤ 2C |S| 2r(d−1) ' (1 + j)d−1 ' (1 + i)d−1.

This ends the proof of the Lemma.
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Theorem 9.1.5 Let (G,S) be a finitely generated Cayley graph and fix d ≥ 0.
The following properties are equivalent.

(1) V (n) ' (1 + n)d.

(2) J(n) ' (1 + n)1/d.

(3) φ(n) ' (1 + n)−d/2.

Proof: (1) implies (3) by Theorem 2.3.2 and Corollary 4.1.3. (1) implies (2) by
Theorem 4.1.2 and Lemma 7.1.4.

We now prove that (2) implies (1). Proposition 3.1.1 and (1.1.1) show that

J(n) � (1 + n)1/d implies V (n) � (1 + n)d.

Hence it suffices to prove that J(n) � (1 + n)1/d implies V (n) � (1 + n)d. This
follows from Theorem 4.1.2. Indeed, we have

(1 + n)1/d � J(n) � w(n)

where w(n) = inf{k : V (k) > n}. Thus

V
(

(1 + `)1/d
)
� 1 + `.

This shows that V (n) � (1 + n)d.
The fact that (3) implies (1) follows from Corollary 2.2.5 and Corollary 4.2.4.

Remark: Stating (2) in the above theorem in terms of the isoperimetric profile
I requires some care. In particular, we are not able to prove that

(2’) I(n) ' (1 + n)(d−1)/d

is equivalent to (2). What can be shown is that (2) is equivalent to

I(n) � (1 + n)(d−1)/d and c inf
an≤`≤bn

I(`) ≤ (1 + n)(d−1)/d

for some a, b, c > 0. One can also ask whether or not (2) can be replaced by

(2”) I↑(n) ' (1 + n)(d−1)/d.

The answer is yes but the proof uses Gromov’s theorem. We will show that (1)
is equivalent to (2”). “(1) implies (2”)” follows from Theorem 4.1.2. To prove
“(2”) implies (1)”, assume that there is a γ > d such that V (n) � (1 + n)γ .
Then, Theorem 4.1.2 contradicts (2”). Thus there exists an increasing sequence
of integers (ni) such that V (ni) ≤ Anγi . By Gromov’s theorem, it follows that
V (n) ' (1 + n)a for some integer a. Theorem 6.1.3. and (2”) then imply that
a = d.

Corollary 9.1.6 (*) Let G,S) be a finitely generated Cayley graph. Fix d ≥ 0.
The following property is equivalent to each of the properties (1), (2) and (3) of
Theorem 7.1.5. and to (2”) above.

(4) G contains a nilpotent subgroup H of finite index and d =
∑
` rk(H`/H`+1)

where Hi is the lower central series of H.
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9.2 Polycyclic groups having exponential growth
chap-poly

This section describes what is known about the isoperimetric profiles I, J and
the return probability φ when G is polycyclic and V (n) ' exp(n).

The following theorem gather results obtained by G. Alexopoulos, T. Coulhon
and L. Saloff-Coste, W. Hebisch, C. Pittet and N. Varopoulos.

Theorem 9.2.1 Let (G,S) be a Cayley graph of a finitely generated group G
having exponential volume growth. Assume that G contains a polycyclic subgroup
of finite index. Then

1. The isoperimetric profile satisfies J(n) ' log∗ n, I↑(n) ' n/ log∗(n).

2. The probability of return after 2n steps satisfies φ(n) ' exp(−n1/3).

Example: The simplest example of a polycyclic group with exponential volume
growth is given by the semidirect product G = Z ∝τ Z2 where the action τ is

given by matrix
(

2 1
1 1

)
.

Proof of Theorem 7.2.1: Upper bounds. Since V (n) ' exp(n), Theorem
4.1.2 shows that J(n) � log∗(n) (also I↑(n) � n/ log∗ n) and Corollary 4.1.3
yields φ(n) � exp(−n1/3). The proofs of the matching lower bounds are given
in Sections 7.3 and 7.4 below. Note that, by invariance of J, I↑ and φ under
quasi-isometry, It suffices to prove the theorem for polycyclic groups.

The following theorem states that the results collected above in Theorems
7.1.5, 7.2.1 and in Section 6.1 are sufficient to describe precisely the possible
behaviors of V, I↑, J and φ for those finitely generated groups that can be realized
as discrete subgroups of connected Lie groups.

Theorem 9.2.2 (*) Assume that G is a discrete subgroup of a Lie group having
finitely many connected components. Then

• either G is non-amenable in which case, if G is finitely generated, then
V (n) ' exp(n) and

φ(n) ' exp(−n), J(n) ' 1, I↑(n) ' (1 + n);

• or G is amenable, finitely generated, and

(a) either V (n) ' exp(n), in which case

φ(n) ' e−n
1/3
, J(n) ' log∗(n), I↑(n) ' 1 + n

log∗(n)
;

(b) or V (n) 6' exp(n), in which case there exists an integer d such that
V (n) ' (1 + n)d and

φ(n) ' (1 + n)−d/2, J(n) ' (1 + n)1/d, I↑(n) ' (1 + n)1−1/d.
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Theorem 7.2.2 is a corollary of Theorems 7.1.5, 7.2.1, and of the following
result

Theorem 9.2.3 Let G be a discrete subgroup of a Lie group having finitely many
connected components. Then either G contains a free group on two generators
or G is finitely generated and contains a polycyclic subgroup of finite index.

Theorem 7.2.3 is proved in Section 7.5 below.

9.3 Følner sets

This section contains the proof of the following result.

Theorem 9.3.1 Let (G,S) be a Cayley graph of a polycyclic group G. Then
the isoperimetric profile of (G,S) satisfies

J(n) � log∗ n, I↑(n) � n/ log∗ n.

Since J and I ↑ are invariant under quasi-isometry, Theorem 7.3.1 implies similar
bounds for groups containing a polycyclic group of finite index. Theorem 7.2.1(1)
follows. The proof of Theorem 7.3.1 requires a number of remarks and algebraic
lemmas. We start with the following simple lemma.

Lemma 9.3.2 Let N be a group generated by a finite symmetric set B. Let
H be a finitely generated group of automorphisms of N with finite symmetric
generating set A. Then there exists an integer q such that

∀ h ∈ H, ∀ x ∈ N, |h(x)|B ≤ q|h|A |x|B .

Proof: This follows trivially by induction if we set q = supa∈A, b∈B{|a(b)|B}.
We will apply Lemma 7.3.2 when N is a normal subgroup of a larger group G,
H is another subgroup of G generated by a finite set A and H acts on N by
restriction to N of the inner automorphisms g → hgh−1, h ∈ H.

Next, we use some classical results to reduce slightly the complexity of the
group G we need to consider in Theorem 7.3.1. Since G is polycyclic, there
exists an integer m such that Gm is torsion free and G/Gm is finite. See

Hall,Rag
[18, 33]

Thus, passing to a subgroup of finite index, we can assume that G is torsion free.
According to a result of Malcev (

Rob
[34], 15.1.4), any finitely generated polycyclic

group contains a (finitely generated) subgroup of finite index whose derived
group is nilpotent. Thus, passing to a subgroup of finite index, we can assume
that we have an exact sequence

0→ N → G→ Zr

where N is a finitely generated nilpotent group. We take advantage of (part of)
this special structure in the following elementary algebraic lemma.
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Lemma 9.3.3 Let G be a finitely generated group. Assume that there is an
exact sequence

0→ N → G→ Zr

with N finitely generated. Let B be a finite symmetric generating set of N . Let
ai, i = 1, . . . , r, be elements of G which project on the canonical basis of Zr and
set A = {aεi ; i = 1, . . . , r, ε = ±1}. Let S = A ∪ B. Then S generates G, any x
in G can be written uniquely as

x = y ak11 · · · akrr , y ∈ N, k = (k1, . . . , kr) ∈ Zr,

and there exists an integer q such that

|y|B ≤ q|x|S , |k| ≤ |x|S

where |k| =
∑r

1 |ki|.

Proof: The fact that S generates G is obvious. We will use the following
notation. For any k = (k1, . . . , kr) ∈ Zr, set

k = ak11 · · · akrr .

By hypothesis, the set
K = {k : k ∈ Zr} ⊂ G (9.3.1)

is a section of Zr in G. Thus, any x ∈ G can be written uniquely as x = y k
with y ∈ N and k ∈ K. The point of the Lemma 7.3.3 is to yield an estimate
on |y|B and |k| in terms of |x|S . For the proof, we need the following lemma.

Lemma 9.3.4 Referring to the setting of Lemma 7.3.3, there exists an integer q
with the following property. For each ε = ±1, each r-tuple k = (k1, . . . , kr) ∈ Zr
and each i ∈ {1, . . . , r} there exists x ∈ N such that

ak11 · · · akrr aεi = xak11 · · · a
ki+ε
i · · · akrr and |x|B ≤ q|k|.

Proof: We start with an auxiliary result. Using the notation introduced at
(7.3.1), we claim that there exists an integer q such that for any k ∈ K, ε = ±1
and i ∈ {1, . . . , r}, there exists y ∈ N satisfying

k aεi k−1 = y aεi and |y|B ≤ q|k|. (9.3.2)

The proof is by induction on |k| =
∑r

1 |k`|. The claim is trivial if |k| = 0, i.e.,
k = id. Assume that the claim is true if |k| = ` and fix a k with |k| = `+ 1. Let
j = max{` : k` 6= 0} and set

k′j =
{
kj − 1 if kj > 0
kj + 1 if kj < 0,

and k′ = (k1, . . . , kj−1, k
′
j , 0, . . . , 0), ε′ = kj − k′j . Set also

z = [aε
′

j , a
ε
i ] = aε

′

j a
ε
ia
−ε′
j a−εi .
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Then,

k aεi k−1 = k′ aε
′

j a
ε
ia
−ε′
j (k′)−1

= k′ z aεi (k′)−1 = k′ z (k′)−1 k′ aεi (k′)−1.

Letting the group generated by A act on N by restriction of inner automorphisms
in G, Lemma 7.3.2 yields

|k′ z (k′)−1|B ≤ |z|B q|k
′| ≤Mq|k|−1 (9.3.3)

where
M = max{|[α, α′]|B : α, α′ ∈ A}.

Furthermore, by the inductive hypothesis,

k′ aεi (k′)−1 = y′ aεi with |y′|B ≤ q|k
′| = q|k|−1. (9.3.4)

Thus, k aεi k−1 = y aεi with y = k′ z (k′)−1 y′. By (7.3.3), (7.3.4), it follows that
|y|B ≤ (M + 1)q|k|−1. This finish the proof of the claim (7.3.2) if q ≥ (M + 1),
which we can assume is satisfied from the beginning.

To finish the proof of Lemma 7.3.4, we write ak11 · · · akrr aεi = ki ki aεi with

ki = ak11 · · · a
ki−1
i−1 ki = akii · · · a

kr
r .

Set ` =
∑i−1
j=1 |kj |, `′ =

∑r
j=i |kj |. Then, applying (7.3.2), there exists y ∈ N

with |y|B ≤ q`
′

such that
ki ki aεi = ki y aεik

i.

Now, Lemma 7.3.2 yields
ki y = xki

with x ∈ N and |x|B ≤ |y|Bq` ≤ q`+`
′

= q|k|. Finally, we get

ak11 · · · akrr aεi = ki ki aεi
= ki y aεi ki = xki aεi ki

= xak11 · · · a
ki+ε
i · · · akrr

with x ∈ N and |x|B ≤ q|k|, as desired.

Proof of Lemma 7.3.3: Fix an integer q ≥ 2 so large that the conclusion of
Lemma 7.3.2 (with H = 〈A〉 acting on N by restriction of the inner automor-
phisms in G) and Lemma 7.3.4 are satisfied. We will prove Lemma 7.3.3 for
this q. Only the estimates on |y|B and |k| need to be proved. We proceed by
induction on |x|S . If |x|S = 0, the result is trivial. Assume that we have proved
the desired estimates if |x|S ≤ `. Let x be such that |x|S = ` + 1 and write
x = x′ s with |x′|S = `, s ∈ S = A ∪B. By the induction hypothesis,

x′ = y′ k′ with |y′|B ≤ q`, |k′| ≤ `.
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We consider two cases, depending on whether s ∈ A or s ∈ B.
If s ∈ A, Lemma 7.3.4 yields

k′ s = z k with |z|B ≤ q|k
′| ≤ q` and |k| = |k′|+ 1 ≤ `+ 1.

Thus x = y k with y = y′ z and k satisfying

|y|B ≤ 2 q` ≤ q`+1 = q|x|S , |k| ≤ |x|S

since q ≥ 2.
If s ∈ B, we can write

x = y′ ξ k

with
k = k′ and ξ = k′ s (k′)−1.

By Lemma 7.3.2, |ξ|B ≤ q`. Hence y = y′ ξ satisfies |y| ≤ 2q` ≤ q|x|S . This ends
the proof of Lemma 7.3.3.

We will need two refinements of Lemma 7.3.3. The first of these two results
is crucial for constructing Følner sequences. The second result will be used only
in next sextion, in the proof of the lower bound on the probability of return φ.

Lemma 9.3.5 Referring to the setting of Lemma 7.3.3, there exists an integer
q such that, for any x ∈ G and any s ∈ S, if x = y k with y ∈ N , k ∈ K, then

xs = z k′ with z ∈ N, k′ ∈ K and |z|B ≤ |y|B + q|k|, |k′| ≤ |k|+ 1.

Proof: Let q be an integer so large that Lemma 7.3.2 and 7.3.4 are satisfied. If
s ∈ A, apply Lemma 7.3.4 to write

x = y k s = y z k′

with |k′| = |k|+ 1 and |z|B ≤ q|k|. If s ∈ B, write

x = y k s = y z k

with z = k sk−1 and use Lemma 7.3.2 to see that |z|B ≤ q|k|.

Lemma 9.3.6 Referring to the setting of Lemma 7.3.3, let ψ be the canonical
projection G 7→ G/N = Zr. Given a sequence σ = (si)`1 ∈ S`, let

k(i) = ψ(s1 · · · si) = (k1(i), . . . , kr(i))

and set
t(σ) = max

1≤i≤`
|k(i)|.

Then there exists an integer q such that, for any integer ` and any sequence
σ = (si)`1 ∈ S`, we have

s1 . . . s` = y k with y ∈ N, k ∈ K

and
|y|B ≤ `qt(σ), |k| ≤ t(σ).
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Proof: We proceed by induction on `. If ` = 0 there is nothing to prove.
Assuming that we have the desired result for any sequence of length ` of elements
of S, we prove it for σ = (s1, . . . , s`+1), si ∈ S. To this end, write

x = s1 · · · s`+1 = x′s`+1

with x′ = s1 · · · s`. By the induction hypothesis, x′ = y′ k′ with |y′|B ≤ ` qt(σ
′),

|k′| ≤ t(σ′), σ′ = (s1, . . . , s`). By Lemma 7.3.5, we have

x = x′s`+1 = y′ k′ s`+1 = y k

with
|y|B ≤ |y′|B + q|k

′| ≤ ` qt(σ
′) + q|k

′| ≤ (`+ 1)qt(σ
′)

and k = ψ(s1 · · · s`+1) thus |k| ≤ t(σ). The proof is complete since t(σ′) ≤ t(σ).

Remark: The difference between Lemma 7.3.6 and Lemma 7.3.3 is rather sub-
tle. On the one hand observe that t(σ) is bounded by ` for any sequence of
length `, but that it can in fact be much smaller. On the other hand, |s1 · · · s`|S
can be much smaller than `.

Finaly, we need a variant of the construction used in Lemma 7.1.4 to produce
Følner sequences in groups of polynomial growth.

Lemma 9.3.7 Let (N,B) be the Cayley graph of a finitely generated group N .
Assume that VB(n) ' (1 + n)d for some d > 0. Then for any integer R ≥ 2,
there exists an increasing sequence of finite sets D(i) such that

1. For each i, D(i) = B(id, ρ(i)) for some ρ(i) satisfying

R2i ≤ ρ(i) ≤ R2(i+1) − (R2 − 1)Ri.

In particular there exist c0, C0 such that c0R2di ≤ #D(i) ≤ C0R
2di.

2. There exists C1 such that, for each i and ρ(i) as above, the set C(i) =
B(id, ρ(i) + (R2 − 1)Ri) \B(id, ρ(i)) satisfies #C(i) ≤ C1R

(2d−1)i.

Proof: Consider the annulus

A(i) = B(id, R2(i+1)) \B(id, R2i).

Subdivise this annulus into the union of the annulii

A(i, `) = B(id, R2i + (`+ 1)Ri(R2 − 1)) \B(id, R2i + `(R2 − 1)Ri)

where ` varies from 0 to Ri − 1. Then

#A(i) =
Ri−1∑
`=0

#A(i, `)

≥ Ri min
`∈{0,...,Ri−1}

{#A(i, `)} .
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It follows that there exist a constant C1 and an integer `0 ∈ {0, . . . , Ri−1} such
that

#A(i, `0) ≤ C1R
(2d−1)i.

Setting
D(i) = B(id, ρ(i)), ρ(i) = R2i + `0(R2 − 1)Ri,

we find that C(i) = A(i, `0) and thus #C(i) ≤ C1R
(2d−1)i as desired. This ends

the proof of Lemma 7.3.7.

Proof of Theorem 7.3.1: We will prove the following more precise result.

Lemma 9.3.8 Let G be a finitely generated group. Assume that there is an
exact sequence

0→ N → G→ Zr

with N a nilpotent finitely generated group. Let B be a finite symmetric gen-
erating set of N . Let A be as in Lemma 7.3.3 and consider the Cayley graph
(G,S) where S = A ∪ B. Then there exist a constant C, an integer M , and an
increasing sequence of finite sets F (i) with the following properties.

1. For each positive integer j there is at least one i such that

M j ≤ #F (i) ≤M j+1.

2. For each integer i,

#∂F (i) ≤ C#F (i)
log∗[#F (i)]

.

Before embarking with the proof, observe that this yields

J(n) � log∗(n), I↑(n) � n

log∗ n

for any group G as in the lemma. By passing to a subgroup of finite index, this
proves Theorem 7.3.1.

Returning to the proof of Lemma 7.3.8, we observe that N being nilpotent,
there exists a d ≥ 0 such that the volume growth function of (N,B) satisfies
VB(n) ' (1 +n)d. Thus we can apply Lemma 7.3.7 to the Cayley graph (N,B).
Let q be the integer given by Lemma 7.3.5. Fix R = q and let D(i) ⊂ N be the
sets given by Lemma 7.3.7. In G, consider the finite subsets

F (i) = {x = y k ∈ G : y ∈ D(i) ⊂ N, k ∈ K, |k| ≤ i} . (9.3.5)

These sets clearly form an increasing sequence and there exists two positive
constants c2, C2 such that

c2i
rR2di ≤ #F (i) ≤ C2i

rR2di. (9.3.6)

Hence

sup
i

#F (i+ 1)
#F (i)

<∞
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which shows that one can pick M large enough so that conclusion 1 of Lemma
7.3.8 is satisfied.

The main part of the proof is to estimate the size of the boundary of F (i).
Here it is convenient to work with the boundary δF (i) instead of ∂F (i). Recall
that δF (i) is the set of point in F (i) which have at least one neighbor in F (i)c.
See Chapter 1, Section 1.

Fix an integer i. Let ρ(i), R2i ≤ ρ(i) < R2(i+1) be the integer given by
Lemma 7.3.7 so that D(i) = BN (id, ρ(i)) ⊂ N . By Lemma 7.3.5, if x ∈ F (i)
and s ∈ S, xs = z k′ with |z|B ≤ ρ(i) +Ri and |k′| ≤ i+ 1. It follows that ∂F (i)
is contained in the union of the sets

{x = y k ∈ G : y ∈ N, k ∈ K, |y|B ≤ ρ(i), |k| = i}

and
{x = y k ∈ G : y ∈ C(i), k ∈ K, |k| ≤ i}

with C(i) ⊂ N as in Lemma 7.3.7. Of course,

# {k ∈ K, |k| = i} ' (1 + i)r−1.

Hence there exist constants C3, C4 such that

#∂F (i) ≤ C3

(
(1 + i)r−1R2di + (1 + i)rR(2d−1)i

)
≤ C4

(
1
i

+R−i
)

#F (i).

Since log∗[#F (i)] ' i, it follows that there exists a constant C such that

#∂F (i) ≤ C#F (i)
log∗[#F (i)]

.

This ends the proof of Lemma 7.3.8.

9.4 Lower bound on φ

In this section we prove the following result.

Theorem 9.4.1 Let (G,S) be a Cayley graph of a polycyclic group G. Then
the probability of return after 2n steps satisfies

φ(n) � exp(−n1/3).

By invariance under quai-isometry, this implies that the same result holds for
groups containing a polycyclic subgroup of finite index. As in Section 7.3, it
suffices to prove this result for groups G admitting an exact sequence

0→ N → G→ Zr

where N is a finitely generated nilpotent group. Let ψ denote the canonical
projection ψ : G 7→ G/N = Zr. Fix a symmetric generating set B in N and



9.4. LOWER BOUND ON φ 87

a1, . . . , ar ∈ G such that ψ(a1) = e1, . . . , ψ(ar) = er where (e1, . . . , er) is the
canonical basis of Zr. As in Lemma 7.3.3, set

S = A ∪B

where A = {a±1
i , i = 1, . . . , r}. Recall that, if k = (k1, . . . , kr) ∈ Zr, then

|k| =
r∑
1

|ki| and k = ak11 · · · akrr .

As in 7.3.1, we set K = {k : k ∈ Zr}. Thus any x ∈ G can be written uniquely
as

x = y k with y ∈ N and k ∈ K.

We set µ(g) = 1
#S1S(g) and consider the left-invariant random walk (Xn)n≥0

on G with independent increments X−1
n Xn+1 of law µ. In other words, Xn =

ξ0ξ1 . . . ξn where each ξi, i ≥ 1, is picked independently and uniformly (i.e.,
according to µ) in S.

Recall that this induces a family of probability measure Px, indexed by the
starting point x ∈ G, on the path space GN so that

Px(Xn = y) = µ(n)(x−1y).

Let α = #A, β = #B so that #S = α+β, and consider the random variable
Zn = ψ(Xn) ∈ Zr. Then

Zn = Z0 +
n∑
1

ζi

where ζi = ψ(X−1
i−1Xi) = ψ(ξi) with ξi is distributed according to µ. Thus

(Zn)n≥0 can be interpreted as a random walk on Zr with independent identically
distributed increments ζi of law ν given by

ν(ζ = 0) =
β

α+ β
, ν(ζ = ±ej) =

α

2r(α+ β)
, j = 1, . . . , r. (9.4.1)

The law ν induces a family of probability measures Pz, indexed by the starting
point z ∈ Zr, on the path space [Zr]N so that

Pz(Zn = z′) = ν(n)(z′ − z).

Let
Mn = max

0≤j≤n
|Zj |. (9.4.2)

Let q be the integer given by Lemma 7.3.6 and consider the sets

D`
m = {x = y k ∈ G : |y|B ≤ ` qm, |k| ≤ m} .

Lemma 7.3.6 has the following consequence.
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Lemma 9.4.2 With the notation introduced above, for all integers ` and m,

Pid(X` ∈ D`
m) ≥ P0(M` ≤ m).

Proof: For any sequence σ = (s1, . . . , s`), let

k(i) = ψ(s1 · · · si), t(σ) = max
1≤i≤`

|k(i)|.

Then Lemma 7.3.6 says that

{x = s1 · · · s` : σ = (si)`1 ∈ S`, t(σ) ≤ m}
⊂ {x = y k : y ∈ N, k ∈ K, |y|B ≤ `qm, |k| ≤ m}.

Thus

P0(M` ≤ m) = Pid

(
sup

1≤i≤`
|Zi| ≤ m

)
≤ Pid(X` ∈ D`

m).

Proof of Theorem 7.4.1: Recall from Lemma 2.1.1 that

µ(2`)(id) = sup
g∈G

µ(2`)(g).

Thus, for any finite set D ⊂ G,

Pid(X2` ∈ D) =
∑
g∈D

µ(2`)(g) ≤ [#D]µ(2`)(id).

Applying this to D = D2`
m , and using Lemma 7.4.2, we get

φS(`) = µ(2`)(id) ≥
[
#D2`

m

]−1 P0(M2` ≤ m). (9.4.3)

Since the group N is nilpotent, VB(n) ' (1 + n)d for some integer d ≥ 0. Thus
there exists a constant C0 such that

#D2`
m ≤ C0(1 +m)r(1 + `)dqdm ≤ C0(1 + `+m)r+dqdm. (9.4.4)

Suppose that there exists a constant C1 such that P0(M2` ≤ m) ≥ e−C1`/m
2
.

Then (7.4.3), (7.4.4) yield

φS(`) ≥ exp
(
−C1

`

m2
− C2m− C3 log `

)
for all `,m ≥ 2 with C2 = d log q, C3 = log(r + d). Taking m = `1/3 yields the
result stated in Theorem 7.4.1. Thus the proof of Theorem 7.4.1 reduces to the
following result in random walk on Zr.

Lemma 9.4.3 Let ν be the probability measure on Zr given by (7.4.1) with
α, β > 0. Consider the random walk (Zn)n≥0 generated by ν and let (Mn)n≥0

be as in (7.4.2). Then there exists a constant C such that

P0(M` ≤ m) ≥ e−C`/m
2
.
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This lemma is essentially well known although it seems hard to find a reference
in text books. We give a complete proof for the convenience of the reader.

Lemma 9.4.4 Referring to the setting of Lemma 7.4.3,

P0(M` ≥ m) ≤ 2 P0(|Z`| ≥ m).

Proof: This follows from what is known as the reflection principle. Let τ the
first time that (Zn)n≥0 hits the set of S(m) = {k ∈ Zr : |k| = m}. Because the
walk takes only nearest neighbor steps, it has to hit S(m) to exit B = B(0,m) =
{k ∈ Zr : |k| ≤ m}. Hence

P0(M` ≥ m) = P0(τ ≤ m).

Write
P0(τ ≤ m) = P0(τ ≤ m; |Z`| ≤ m) + P0(τ ≤ m; |Z`| ≥ m).

Then, using the Markov property,

P0(τ ≤ m; |Z`| ≥ m) =
∑

1≤j≤m

∑
y:|y|=`

P0(τ = j;Zτ = y)Py(|Z`−j | ≥ m) (9.4.5)

and, similarily,

P0(τ ≤ m; |Z`| ≤ m) =
∑

1≤j≤m

∑
y:|y|=`

P0(τ = j;Zτ = y)Py(|Z`−j | ≤ m). (9.4.6)

Fix y ∈ S(m). The point y belongs to one of the faces of dimension r− 1 of the
convexe polytope B. These faces are the intersections of B with the hyperplanes

Hm
ε =

{
y :

r∑
i=1

εiyi = m

}
where ε = (εi)r1 with εi = ±1. Let Rmε be the affine reflection through the
hyperplane Hm

ε . Observe that the random walk (Zn)n≥0 has the symmetry
property

Px(Zn = z) = PRmε (x)(Zn = Rmε (z)).

with respect to each Rmε . This is because the reflections Rmε are automorphisms
of the usual graph structure of Zr and, moreover,

ν(z − x) = ν(Rmε (z)−Rmε (z)).

Let ε = ε(y) be such that y ∈ B ∩ Hm
ε . Let B′ = B(z0,m) = Rmε (B).

By construction, B′ lies in {y ∈ Zr : |y| ≥ m}. Moreover, since Rmε (y) = y,
Rmε (B) = B′, we have

Py(|Zn| ≤ m) = Py(|Zn| ∈ B) = Py(|Zn| ∈ B′) ≤ Py(|Zn| ≥ m). (9.4.7)

By (7.4.5), (7.4.6) and (7.4.7), we have

P0(τ ≤ m; |Z`| ≤ m) ≤ P0(τ ≤ m; |Z`| ≥ m).

Hence
P0(τ ≤ m) ≤ 2 P0(τ ≤ m; |Z`| ≥ m) = 2 P0(|Z`| ≥ m).
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Lemma 9.4.5 Referring to the setting of Lemma 7.4.3, we have

P0(|Z`| ≥ m) ≤ 2r e−m
2/[2r2 `].

Proof: First let us note that the constants in this estimate are not optimal.
Still this bound will suffices for our purpose and it has a simple proof. For
k = (k1, . . . , kr), let ‖k‖ = max{|ki| : 1 ≤ i ≤ r} be the sup-norm of k. Write
Z` = (Zi`)

r
1 in coordinates. Of course, |Z`| ≤ r‖Z`‖. Thus

P0(|Z`| ≥ m) ≤ P0(‖Z`‖ ≥ m/r) ≤ r P0(|Z1
` | ≥ m/r).

Now, Z1
` is distributed as a one dimensional random walk with independent

increments taking values 0,±1 with probability

1− α

r(α+ β)
and

α

2r(α+ β)
respectively.

Denote by T a random variable with this law. Hence, for any s, t > 0,

P0(|Z1
` | ≥ t) = 2 P0

(
Z1
` ≥ t

)
= 2 P0

(
esZ

1
` ≥ est

)
≤ 2e−stE0

(
esZ

1
`

)
= 2e−st

[
E0

(
es T

)]`
≤ 2e−st

[
1− α

r(α+ β)
+

α

r(α+ β)
cosh(s)

]`
≤ 2e−st [cosh(s)]` ≤ 2e−st+

1
2 s

2`.

Here, we have used the elemetary inequality cosh(s) ≤ e 1
2 s

2
which can be proved

by comparing the power series of both side. Setting s = t/` yields

P0(|Z1
` | ≥ t) ≤ 2e−

t2
2` .

For t = m/r, this proves Lemma 7.4.5.

Corollary 9.4.6 Referring to the setting of Lemma 7.4.3, we have

Px(M` ≥ m) ≤ 4r e−m
2/[8r2 `]

for all x ∈ Zr such that |x| ≤ m/2.

Proof: This follows from Lemmas 7.4.4, 7.4.5 and

Px(M` ≥ m) = P0

(
sup

0≤i≤`
|x+ Zi| ≥ m

)
≤ P0(M` ≥ m− |x|) ≤ P0(M` ≥ m/2)

≤ 2P0(|Z`| ≥ m/2) ≤ 4r e−m
2/[8r2 `].
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Lemma 9.4.7 Referring to the setting of Lemma 7.4.3, there exists ε ∈ (0, 1)such
that

Px(|Z`| ≥ m/2) ≤ 1− ε

for all m, ` and all x ∈ Zr such that ` ≤ m2, |x| ≤ m/2.

Proof: This can be proved using the central limit theorem. An alternative
(more elementary) is as follows. By Theorem 4.2.6,

Px(|Z`| ≤ m/2) ≥ c1
∑

|y|≤m/2

(1 + `)−r/2 exp(−c2|y − x|2/`).

Let x` be a point at distance [
√
`] from x and such that |x`| = |x| − [

√
`] ≤

m/2−[
√
`]. Such a point can be found by moving along a geodesic path from 0 to

x. Then, B(x`, [
√
`]) ⊂ B(0,m/2), #B(x`, [

√
`]) ' (1 + `)r/2 and d(x, y) ≤ 2

√
`

for all y ∈ B(x`, [
√
`]). Hence,

Px(|Z`| ≤ m/2) ≥ c3
∑

|y−x`|≤[
√
`]

(1 + `)−r/2 ≥ ε.

Lemma 9.4.8 Referring to the setting of Lemma 7.4.3, there exist η, ε ∈ (0, 1)
such that

Px(M` ≤ m; |Z`| ≤ m/2) ≥ ε

for all m, ` and all x ∈ Zr such that ` ≤ ηm2, |x| ≤ m/2.

Proof: Fix x, `,m with |x| ≤ m/2, ` ≤ m2, and write

Px(M` ≤ m; |Z`| ≤ m/2) ≥ 1− Px(M`| ≤ m)− Px(|Z`| ≤ m/2).

Then, by lemma 7.4.7 and Corollary 7.4.6, there exists ε > 0 such that

Px(M` ≤ m; |Z`| ≤ m/2) ≥ ε− 4re−m
2/[8r2`].

It follows that
Px(M` ≤ m; |Z`| ≤ m/2) ≥ ε/2

for all x, `,m with |x| ≤ m/2, ` ≤ ηm2 if η−1 = 8r2 log(8r/ε).

Proof of Lemma 7.4.3: Let η, ε be as given by Lemma 7.4.8. Fix m such that
m2 ≥ 1/η. We are going to prove by induction on n that

Px(M` ≤ m; |Z`| ≤ m/2) ≥ ε(1+n) (9.4.8)

if |x| ≤ m/2 and n[ηm2] < ` ≤ (n+1)[ηm2]. Lemma 7.4.8 gives the desired result
if n = 0. Assume that (7.4.8) holds for n and let ` be such that (n+ 1)[ηm2] <
` ≤ (n+ 2)[ηm2]. Set `′ = (n+ 1)[ηm2]. Then

Px(M` ≤ m; |Z`| ≤ m/2)
≥ Px(M` ≤ m; |Z`′ | ≤ m/2; |Z`| ≤ m/2)
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≥ Px
(
M`′ ≤ m; sup

`′≤i≤`
|Z`′ + (Z` − Z`′)| ≤ m; |Z`′ | ≤ m/2; |Z`| ≤ m/2

)
= Ex

(
1{M`′≤m; |Z`′ |≤m/2}PZ′` (M`−`′ ≤ m; |Z`−`′ | ≤ m/2)

)
≥ εEx

(
1{M`′≤m; |Z`′ |≤m/2}

)
= εPx (M`′ ≤ m; |Z`′ | ≤ m/2)

≥ εn+2.

This proves (7.4.8). Since n is of order `/m2 we get that there exists C > 0 such
that

Px(M` ≤ m; |Z`| ≤ m/2) ≥ e−C`/m
2

for all m ≥ 1/
√
η, |x| ≤ m/2 and all `. The case where m ≤ 1/

√
η is easily

treated by inspection. In particular,

P0(M` ≤ m) ≥ e−C`/m
2

as stated in Lemma 7.4.3.

9.5 Discrete subgroups of Lie groups

The aim of this section is to provide a proof of Theorem 7.2.3 which states
the following: Let Γ be a discrete subgroup of a Lie group with finitely many
connected components. Then either Γ contains a free subgroup on two generators
or Γ contains a finite index subgroup which is polycyclic.

Tits alternative
T
[36] applied to a Lie group G with a finite number of con-

nected components shows that any subgroup of G either contains a free subgroup
on two generators or a finite index subgroup which is solvable. If we add the
hypothesis that the subgroup is discrete we get the following result.

th:main Theorem 9.5.1 Let G be a Lie group with a finite number of connected com-
ponents and let Γ be a discrete subgroup of G. The following are equivalent.

1. The group Γ contains a finite index subgroup which is polycyclic

2. Any subgroup of Γ is finitely generated

3. The group Γ contains no free subgroup on two generators.

For example this shows that a solvable subgroup of Gl(n,Z) is polycyclic (a
result due to Mal’cev). Note that the hypothesis that the subgroup is discrete
is necessary. For exemple, consider the subgroup of the affine group of the real
line generated by x 7→ x + 1 and x 7→ λx. If λ ∈ N, λ > 1 it has derived group
isomorphic to Z[1/p1, 1/p2, ..., 1/pk] where p1, p2, ..., pk are the primes appearing
in the decomposition of λ. If λ is a positive transcendental real, the group we get
is not finitely presented. It is isomorphic to the wreath product of two infinite
cyclic groups

Rob
[34] 15.1 Ex.. In this section we explain how 3) implies 1), using

classical results. The facts that 1) implies 2) and that 2) implies 3) are easy.
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th:abelian Theorem 9.5.2 Let G be a Lie group with a finite number of connected compo-
nents and let A be a discrete abelian subgroup of G. Then A is finitely generated.

Theorem 7.5.2 clearly follows from Theorem 7.5.1 but actually Theorem 7.5.2
combined with Tits alternative and the following caracterisation of polycyclic
groups among solvable one (see

Rob
[34] 15.2.1) implies Theorem

th:main
9.5.1.

th: mal Theorem 9.5.3 (Mal’cev) Let Γ be a solvable group such that any abelian
subgroup is finitely generated. Then Γ is polycyclic.

Let us know recall some facts needed for the proof of
th:abelian
9.5.2. If the group G

is solvable, the following proposition (
Rag
[33] 3.8) implies Theorem

th:abelian
9.5.2.

prop:Rag Proposition 9.5.4 Let G be a connected solvable Lie group. Let H be a closed
subgroup of G. Let H0 be the connected component of the identity of H. Then
H/H0 is finitely generated.

We will need the following well known result.

lem:center Lemma 9.5.5 The center Z(G) of a semi-simple connected Lie group G is a
discrete finitely generated abelian group.

Proof: The center Z(G) of a Lie group is a closed subgroup. By the Von
Neumann Cartan theorem it is a Lie subgroup

Var
[38] 2.12.6. As G is semi-simple,

the connected component Z(G)0 is the identity. We conclude that Z(G) is
discrete. Hence the projection

G→ G/Z(G)

is a Galois covering. We have the associated exact sequence

π1(G)→ π1(G/Z(G))→ Z(G).

But a connected Lie group has the same homotopy type of a compact subgroup
Hor
[21] XV 3.1. This implies that π1(G/Z(G)) is finitely generated.

lem:abel Lemma 9.5.6 Let G be an algebraic group. Let A be an abelian subgroup. Then
the Zariski closure A of A is an abelian group.

Proof: If g ∈ G we denote by φg the algebraic map from G to itself given by

x 7→ xgx−1g−1.

Let e be the identity element of G and let

IA =
⋂
a∈A

φ−1
a (e).

As A is abelian we have A ⊂ IA. Let

JA =
⋂
x∈IA

φ−1
x (e).
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As A ⊂ IA we have that JA ⊂ IA. Elements of JA commutes because if x, y ∈ JA
then x ∈ IA, hence y ∈ φ−1

x (e). Notice that JA still contains A. This implies
that

A ⊂ A ⊂ JA.

This shows that A is abelian.

Proof of Theorem
th:abelian
9.5.2: Let G0 be the connected component of G. The

quotient A/A ∩ G0 injects into G/G0 which is finite by hypothesis. Hence we
can assume that G is connected. Let R be its radical. Let p1 be the projection on
G/R which is semi-simple. We take the quotient of G/R by its center Z(G/R)
and denote by p2 the projection. This quotient is a connected semi-simple Lie
group with trivial center hence it is the connected component H0

R of the real
points of an algebraic group H defined over R (in fact over Q but here we don’t
care)

Zim
[Zim] 3.1.6. We denote by p = p2p1 the projection from G onto H0

R. Let
A be our discrete abelian subgroup of G. Let p(A) be the Zariski closure of the
abelian subgroup p(A) of H. This is an algebraic group defined over R

Bor
[4] 1.3 b)

and by Lemma
lem:abel
9.5.6 it is an abelian group. Hence the real points of this Zariski

closure form an abelian Lie subgroup of HR with a finite number of connected (in
the sense of the Euclidean topology) components

Mo
[25]. Let Q be the connected

component of the identity of this abelian Lie group. Let B = A ∩ p−1(Q). As
Q is of finite index in p(A)R, the group B is of finite index in A. We have the
exact sequence

Z(G/R)→ p−1
2 (Q)→ Q.

According to Lemma
lem:center
9.5.5, as G/R is semi-simple its center Z(G/R) is

abelian of finite type, say Zk × T with T finite and as Z(G/R) is a discrete
subgroup, the projection in the above exact sequence is a covering map. As Q
is connected it implies that the connected component of the Lie group p−1

2 (Q)
maps isomorphicaly on Q. Hence the sequence splits and as the kernel is central
we get a direct product

p−1
2 (Q) = Q× Zk × T.

We also have the exact sequence

R→ p−1
1 (Q× Zk × T )→ Q× Zk × T.

We denote the Lie group p−1
1 (Q × Zk × T ) by X. Let X0 be the connected

component of X. It is a solvable Lie group because it is an extension of Q by R
and we have the exact sequence

X0 → X → Zk × T.

The discrete subgroup B sits in X, its intersection with X0 is finitely generated
according to Proposition

prop:Rag
9.5.4 and its projection in Zk × T is of course finitely

generated. Hence B is finitely generated and so is A.
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Remarks: 1. Following the same lines as above, we can prove Theorem
th:main
9.5.1

without using Theorem
th: mal
9.5.3. Instead of considering an abelian discrete sub-

group A, we consider a solvable discrete subgroup S. Instead of Lemma
lem:abel
9.5.6 we

use the fact that in an algebraic group, the Zariski closure of a solvable subgroup
is again a solvable subgroup (this easily follows from

Bor
[4] AG. 6.6 applied to a

morphism of algebraic varieties from a product G×G× ...×G (with the Zariski
topology of the product) to G given by a multi-commutator of rank big enough
so that the image of this multi-commutator is trivial). To conclude, instead of
Theorem

th: mal
9.5.3, we only need the fact that a solvable group with all its subgroups

finitely generated is polycyclic (this is obtained by refining the derived series).
2. Notice that Proposition

prop:Rag
9.5.4 is easily proved using Theorem

th: mal
9.5.3. First

it is enough to prove the proposition for simply connected solvable Lie groups
and for discrete subgoups. See

Rag
[33], 3.8. Those Lie groups are closed subgroups

of complex linear groups
Rag
[33] 1.4. So if A is abelian discrete in a complex linear

group G, the Zariski closure A of A in G is an abelian Lie group with a finite
number of connected components (see

Sha
[35] Book 3 ch.7,2). Hence A is finitely

generated.
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Chapter 10

Baumslag-Solitar groups

10.1

In this chapter we consider the group defined by

G = 〈a, b : aba−1 = b2〉.

More generally, one can consider the family of Baumslag-Solitar groups Gq =
〈a, b : aba−1 = bq〉. The groups Gq and Gr are not necessary quasi-isometric
when q 6= r. Farb and Mosher

FM
[?] prove that these groups are quasi-isometric if

and only if they are commensurable (i.e. contain isomorphic subgroups of finite
index). It is easy to check that the argument developped below for G = G2 also
work for G = Gq. These groups are solvable but not polycyclic. This chapter
priovides a detailled proof of the following result.

Theorem 10.1.1 Let G = 〈a, b : aba−1 = b2〉. Then

(1) G has exponential growth.

(2) φ(n) ' exp
(
−n1/3

)
.

(3) J(n) ' log∗(n).

10.2 The group 〈a, b : aba−1 = b2〉
The aim of this section is to give several description of G = 〈a, b : aba−1 = b2〉
and of the Cayley graph (G,S) with S = {a±, b±}).

Proposition 10.2.1 Let G = 〈a, b : aba−1 = b2〉. Each element g ∈ G can be
written uniquely as

ak(bak1)(bak2) · · · (bakn)b`

with k, ` ∈ Z, n an integer, and k1, . . . , kn positive integers if n 6= 0.

97
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Proof: Let g ∈ G be a word in the alphabet {a, a−1, b, b−1}:

g = aα1bβ1 · · · aαj bβj

with αi, βi ∈ Z, α1 or β1 6= 0 αi, βi 6= 0 for 1 < i < j−1, αj 6= 0. (we assume that
words are automatically simplified using the rules xnxm = xn+m, xnx−n = id).
We say that this is a normal form if the condition of the proposition are satisfied.
Given a word

aα1bβ1 · · · aαj bβj ,
using the rules ba−1 = a−1b2 and b−1a−1 = a−1b−2 and working from right to
left, we can move all the negative power of a to the front. Thus we can assume
that

g = aα1bβ1 · · · aαj bβj

with αi, βi ∈ Z, α1 or β1 6= 0 αi > 0, βi 6= 0 for 1 < i < j − 1, αj 6= 0. Now, let
t = j+ 1 if this is a normal form. If not, there exists 1 < i < j such that βi 6= 1,
let t be the smallest such integer. Reading from left to right, t is the first time
that one of the normal form conditions is violated. Let N = t− j + 1. N is the
number of powers of a that appear after t (including t).

The existence of a normal form as asserted in the proposition will be proved
by induction on N using the rules b2a = ab, b−1a = bab−1. Observe that these
rules do not affect the positivity of the power of a.

If N = 0 the present writing of g is a normal form. N = 1 never occurs.
If N = 2, we have g = aα1(baα2) · · · (baαj−2)bβj−1aαj bβj with α2, . . . , αj > 0

and βj−1 6= 1. Using b2a = ab, b−1a = bab−1, we move bβj−1 forward and get

g =
{

aα1(baα2) · · · (baαj )b` if βj−1 is odd
aα1(baα2) · · · (baαj−2)(baαj−1+αj )b` if βj−1 is even. .

Both words are normal forms.
Let n ≥ 1 be an integer. Suppose that any g which can be written as a word

with N ≤ n has a normal form. Let h be an element which can be written as a
word with N = n+ 1. Thus,

h = aα1(baα2) · · · (baαt)bβtaαt+1 · · · bβj−1aαj bβj

with α2, . . . , αj positive integers and βt 6= 1 By using the allowed rules as above,
we can write

h =
{
aα1(baα2) · · · (baαt)(baα′)bβ′aαt+2 · · · aαj bβj if βj−1 is odd
aα1(baα2) · · · (baαt+αt+1)bβ

′
aαt+2 · · · aαj bβj if βj−1 is odd

In both cases, the new writing of h has N = n. This proves the existence of a
normal form. Unicity will be proved as part of the next proposition.

Proposition 10.2.2 The group G = 〈a, b : aba−1 = b2〉 is isomorphic to the
group of affine transformations of the line generated by A(z) = 2z, B(z) = z+1,
that is, the group of 2 by 2 matrices generated by

A =
(

2 0
0 1

)
, B =

(
1 1
0 1

)
.
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Proof: Since ABA−1 = B2, there exists a homorphism from G to the matrix
group generated by A,B that send a to A and b to B. To prove injectivity,
observe that

h = ak(bak1)(bak2) · · · (bakn)b`

with k, ` ∈ Z, n an integer, and k1, . . . , kn positive integers if n 6= 0, is send to

H = Ak(BAk1)(BAk2) · · · (BAkn)B` =
(
u v
0 1

)
with

u = 2k+
Pn

1 ki , v = `2k+
Pn

1 ki + 2k
(

n∑
i=1

2
Pi−1
m=1 km

)
.

If H is the identity matrix and n = 0, we must have k = ` = 0. If H is the
identity matrix and n > 0, then k +

∑n
1 ki = 0, thus k ≤ 0. Furthermore,

−` = 2k
[
2k1+···+kn−1 + · · ·+ 2k1 + 1

]
.

The term in brackets is not divisible by 2 and ` ∈ Z implies that k ≥ 0. Thus
k = 0. It follows that ` = 0. This proves that our homorphism is an isomorphism
and the missing unicity in Proposition 8.2.1.

We now descibe and draw the Cayley graph of G = 〈a, b : aba−1 = b2〉. The
basic building block of this Cayley graph is the cell shown in Figure 8.1.

Figure 10.1: The basic cell

r r r
r r

a a

b

b b

- -

6 6
-

One way to construct the desired Cayley graph is to first consider the planar
graph shown in Figure 8.2 which represents those elements of G that can be
written as akb` with k, ` ∈ Z. This is only a small part of the Cayley graph of
G. Consider what happens when one translate the set P = {akb` : k, ` ∈ Z}
by b on the left. We obtain a new copy of Figure 8.2 since left translation are
automorphisms of the Cayley graph. However, if k ≤ 0, then bakb` = akb`+2 ∈ P
whereas if k > 0, bakb` 6∈ P . Thus the part P− of P that lies below the
horizontal line containing the identity (including this line) is globally preserved
under x → bx whereas the part P+ of P that lies above this line is send to an
independent copy of P+, call it P ′+, that is attach to P as shown in Figure 8.3.
This procedure must be carried over infinitely many times to obtain the full
Cayley graph of G.
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If one identifies all the points on a same horizontal line, that is the points

ak(bak1)(bak2) · · · (bakn)b`, ` ∈ Z

for fixed integers k, k1, . . . kn with k1 > 0, . . . , kn > 0, the Cayley graph of G
collaps to a binary tree shown in Figure 8.5.

Remark: The normal form of an element g given by Proposition 8.2.1 does
not always have minimal length as a word in a±1, b±1. For instance g = a−2b32

in normal form is also equal to b8a−2. Similarly, g = a−2bab4 can be written
b2a−2ba.

10.3 Følner sets for 〈a, b : aba−1 = b2〉
From Proposition 8.2.1 it clearly follows that G = 〈a, b : aba−1 = b2〉 has
exponential volume growth. Indeed, the ball of radius 3n around the identity
contains all the points of the form

ak1(ba)`1ak2(ba)`2 · · · akj (ba)`j

with ki, `i integers such that k1 ≥ 0, `j ≥ 0, k2, . . . , kj > 0, `1, . . . , `j−1 > 0,∑j
1 ki + `i ≤ n. Moreover all these points are distincts. Thus the ball of radius

3n in G contains the ball of radius n of a free semigroup generated by two letters
a and (ba). It follows that V (3n) ≥ 2n+1 − 1.
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Figure 10.2: The elements akb`
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Figure 10.3: P and bP
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Figure 10.4: A piece of the Cayley graph of G = 〈a, b : aba−1 = b2〉
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Figure 10.5: The tree profile of G
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